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Abstract: Aggregate production planning (APP) is considered as mid-term decision planning. The purpose of multi-

period APP is to set up overall production levels for each product category to meet fluctuating or uncertain demand 

in the near future and to set up decisions and policies on the subject of hiring, lay-offs, overtime, backorder, 

subcontracting, facilities and inventory. In this study, we develop a new multi-objective linear programming model 

for general APP for multi-period and multi-product problems. We assume that, there is uncertainty in critical input 

data (i.e., market demands and unit costs). This model is suitable for 24-hour production systems. To show 

practicality of our model, we will implement this model in a case study. Finally, we propose an interactive solution 

procedure for achieving the best compromise solution. 
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1. Introduction 

Aggregate production planning (APP) 

determines the best way to meet forecast demand in 

the intermediate future, often from 3 to 18 months 

ahead, by adjusting regular and overtime production 

rates, inventory level, labor levels, subcontracting 

and backorder rates, and other controllable variables. 

APP aims to identify production, inventory and work 

force levels to meet fluctuating demand requirements 

over an intermediate-range planning horizon (Chase 

and Aquilano 1992). Other forms of family 

disaggregation plans that are derived from APP are 

master production schedule, material requirement 

planning and capacity plan. In this research, we will 

develop a multiple objective APP model for multi-

product and multi-period. Also, in this model, we 

will assume that costs and demand and resources are 

imprecise which have triangular possibility 

distributions. In this section, we review some 

pervious researches. Baykasoglu (2001) extended 

Masud’s (1980) model by adding subcontracting and 

setup decisions or setup cost of product, setup time of 

product, and subcontracting cost of product. He 

developed a multi-objective linear goal programming 

model that with the following model objectives: 1) 

maximization of profit, 2) minimization of workforce 

changes, 3) minimization of inventory investment, 

and 4) minimization of backorder. To solve the 

model, he applied Tabu search, due to the high 

complexity of the model and the large number of 

model constraints. Techawiboonwong and Yenradee 

(2003) developed a linear model for multi-product 

APP that enabled workers to be transferred among 

production lines. Their model had only one objective 

function or minimizing total cost. In reality, when a 

worker performs any task for a long time, they get 

used to the task. Then, if that worker is transferred to 

operate a different task, their skill with the new task 

would likely be lower than that with the old task. 

This also impacts productivity. A feasible way to 

evaluate the extent to which productivity falls is to 

evaluate training cost and cost due to the loss of 

production. Therefore, they add to their model cost of 

transferring workers as a cost parameter. They 

compared two situations: 1) the worker cannot 

transfer among production lines, and 2) the worker 

can transfer between lines. The results of APP model 

showed that the total cost increases about 5% when 

the workers did not transfer among production lines; 

however, the goals and model inputs in these APP 

models were assumed to be crisp. In the real world, 

APP problems with deterministic parameters are 

unsuitable for yielding an effective solution. In the 

real word, APP problems, input data or parameters 

such as demand, resources, and costs, are generally 

imprecise due to incomplete or unobtainable 

information (Baykasoglu, and Gocken, 2010; Wang, 

and Liang, 2004). These imprecise parameters can be 

defined as random numbers with probability 

distribution, fuzzy numbers or interval numbers 

(Baykasoglu, and Gocken, 2010). Recently, several 

researches have been conducted on fuzzy APP. Mula 

et al. (2006) reviewed more than 87 articles focused 

on production planning under uncertainty. The results 

of their study revealed that, most of the analytical 

models were crisp or mentioned only one type of 

uncertainty and assumed the simple structure of the 

production process. Therefore, they suggested that 

more researches need to be done in the future about 

production planning under uncertainty. Aliev, et al. 

(2007) proposed an APP model in a supply chain. In 

this model, market demand, production capacity and 
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storage capacity in production environment were 

uncertain. They solved their model by using the 

genetic algorithm to achieve near- optimal solutions. 

They compared their fuzzy model with crisp and 

disintegrated approaches. Comparison of the results 

of fuzzy and crisp integrated production-distribution 

aggregate planning showed that the profit achieved 

by the fuzzy model was 5-10% higher than the crisp 

model, especially, when the actual demand declined 

from the forecasted value or the capacity plummeted 

over the planning horizon. Torabi et al. (2009) 

developed a fuzzy hierarchical production planning 

comprised of two decision-making levels. Their 

proposed model attempted to maximize total profit or 

maximize the difference of the revenue and operation 

costs. In their model, all cost parameters were 

imprecise. Their results showed that hierarchical 

production planning models with fuzzy data are more 

practical than hierarchical production planning 

models with crisp data. Other APP models are Fung 

et al. (2003), Wang et al. (2003), Sillekens et al. 

(2011). However, the majority of APP models have 

cost-related objectives, whereas non-cost objectives 

are often sought by managers. This article is 

organized as follows: Section 2 introduces the 

problem and lays the frameworks for problem 

formulation of multi-objective APP model. Section 3 

proposes a procedure for solving fuzzy APP model. 

Implementation of APP model (case study) is given 

in Section 4. Finally, Section 5 gives some 

conclusions and suggestions for further studies. 

 

2. Fuzzy aggregate production planning model 

In this section, we develop a new mathematical 

model for APP problem. The characteristics and 

assumptions of the model can be described as 

follows.it is assumed that company produces N types 

of products to fulfil market demand over planning 

horizon T. A manufacturer wants to find, for each 

product and each planning period, the ‘best’ 

production level and inventory level. It also wants to 

find the workforce level for each period. The 

forecasted maximum demands for each product do 

not necessarily remain constant from period to 

period. In addition, a portion of the forecasted 

demand (which can also vary from period to period) 

must be satisfied in that particular period. The rest of 

the forecasted demands can either be backordered or 

not satisfied at all; however, all backorders must be 

fulfilled within the next period. Assigning a set of 

crisp values for model parameters is inappropriate for 

dealing with ambiguous APP decision problems; 

thus, we assume that environmental coefficients and 

related parameters are uncertain (Gen et al., 1992; 

Wang and Liang, 2004; Alive et al., 2007; Torabi et 

al., 2009; Baykasouglu et al., 2010; Tang et al., 

2003). Therefore, forecast demand-related operating 

costs, and machine and labor capacities are fuzzy 

over the planning horizon. 

In this research, we assume that our imprecise 

input data are triangular positive fuzzy numbers R= 

(R1, R2, R3) as shown in Figure 1. The membership 

function is as follows: 

 

                  [(x-R2) /(R2-R1)]+1    (R1≤ x ≤ R2),     

µ(x)=         [(x-R2) /(R2-R3)]+1   (R2≤ x ≤ R3)   

0 (x≤R1 OR x≥R3) 

                   

where x is decision variable         (1) 

Other assumptions are: 

1) Average hiring and firing cost are considered; 

2) Raw materials are always available without 

shortage; Appendix 1: Transformation method 

(Okada et.al 1991, Gen et.al 1992) 

Suppose we have fuzzy multi-objective model as 

follows:  

 

Max zk= Σ   ckj  xj, k=1,2,.., q1 

 

Min  zk= Σ ckj xj, k=q1+1,.., q=q1+q2 

 

Subject to: 

 

Σ aij xj ≤ bi  i= 1,2,…,m1 

 

Σ aij xj  ≥ bi  i= m1+1,…, m2 

 

Σ aij xj = bi  i= m2+1,…,m=m1+m2+m3 

                  xj≥0    j= 1,…,n 

where 

 

ckj=(ckj1,ckj2,ckj3) is a fuzzy coefficient of the k-th 

objective function and j-th decision variable 

 

aij =(aij1,aij2,aij3) is a fuzzy technical coefficient of the 

i-th constraint and j-th decision variable 

 

bi =(bi1,bi2,bi3) is a fuzzy available resource of i-th 

constraint  

xj is decision variables. All fuzzy parameters in this 

multi-objective model are triangular fuzzy numbers. 

Crisp multi-objective linear model can be computed 

by following formulation: 

 

Max zk= Σ [(1-α)ckj3+α ckj2] xj, k=1,2,.., q1 

 

Min  zk= Σ [(1-α)ckj1+α ckj2 ]xj, k=q1+1,.., q=q1+q2 

 

Constraint: 

 

Σ [(1-α)aij1+α aij2] xj ≤ (1-α)bi3+α bi2,     i= 1,2,…,m1 
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Σ [(1-α)aij3+α aij2 ]xj  ≥ (1-α)bi1+α bi2, i= m1+1,…, m2 

 

Σ [(1-α)aij1+α aij2 ]xj ≤(1-α)bi3+αbi2,    i= m2+1,…,m 

                  

Σ [(1-α)aij3+ α aij2 ] xj ≥(1-α)bi1+αbi2,  i= m2+1,…,m 

                  xj≥0    j= 1,…,n 

where α is a cutoff value between zero to one, 

α=[0,0.1,0.2,0.3,…,1]. 

Appendix 2: A sample of input data (α= 0) for 

Shahab Shishe company example (max-min method) 

Max  λ  

λ-((1/189023)*(395587-(0.016p11 + 0.016p12 + 

0.016p13 + 0.016p14 + 0.007p21 +0.007p22 +0.007p23 

+ 0.007p24 + 440w1 +440w2+ 440w3+440w4+ 

0.003I11+ 0.003I12+ 0.003I13 + 0.003I14+0.0008I21+ 

0.0008I22+ 0.0008I23+ 0.0008I24)))<=0; 

λ-((1/22)*(22- (Wh1+ Wh2+ Wh3+ Wh4+ WL1+ 

WL2+ WL3+ WL4)))<=0; 

λ-((1/.028)*( 1-[(B11+ B12+ B13+ B14+ B21+ B22+ 

B23+ B24)/17490000])-.971)<=0; 

λ>=0; 

λ<=1; 

W1<80; W2<80; W3<80; W4<80; 

W1>58;   W2>58;  W3>58;  W4>58; 

W1 – Wh1 +WL1 = 68; 

W2 – W1 –Wh2 +WL2 = 0; 

W3 – W2 – Wh3 + WL3 = 0; 

W4 – W3 – Wh4 + WL4 = 0; 

P11> -500000; 

P12 +  I11 – B11 > 1970000; 

P13+ I12-B12 > 1600000; 

P14+ I13-B13 > 1500000; 

P21 > -4540000; 

P22+I21-B21> 2650000; 

P23+I22-B22>2550000; 

P24+I23-B23> 1880000; 

0.018p11+0.013p21- 744w1 < 0;   0.018p12+0.013p22- 

744w2 < 0;  

 0.018p13+0.013p23- 744w3 < 0;  

0.018p14+0.013p24- 744w4 < 0;    

0.0002p11+0.00015p21<744;   

0.0002p12+0.00015p22<744;  

0.0002p13+0.00015p23<744;  

0.0002p14+0.00015p24<744; 

P11- I11+B11 < -320000; 

P11 – I11 + B11 > -360000; 

I11 – B11 – I12 + B12 + p12 < 2130000; 

I11 – B11 – I12 + B12 + P12 > 2070000; 

I12 – B12 – I13 +B13 +P13 < 1760000; 

I12 – B12 – I13 + B13 + p13 >1700000; 

I13 – B13 – I14 + B14 +p14 < 1660000; 

I13 – B13 – I14 + B14 + p14 > 1580000; 

P21 – I21 + B21 < -4480000; 

P21 – I21 + B21 > -4500000;  

I21 – B21 –I22 + B22 + P22 < 2740000; 

I21 – B21 –I22 + B22 +P22 > 2700000; 

I22 –B22 –I23 +B23+ P23 < 2660000; 

I22 – B22 – I23 + B23 + P23 > 2620000; 

I23 – B23- I24 +B24 +P24 < 1940000; 

I23 – B23 – I24 + B24 + P24 > 1920000; 

End. 

 

3) Production system cannot operate with less than a 

certain number of workers (minimum workforce 

level); 

4) Overtime and subcontracting are not allowed. 

 

 
Figure 1. Triangular fuzzy number R 

 

After reviewing the literature and considering 

practical solutions, the proposed fuzzy APP model 

selected total cost, changes in work force level, and 

customer service as objective functions (for total 

costs, see Gen et al., 1992; Wang and Liang, 2004; 

Alive et al., 2007; Baykasouglu et al., 2010; Tang et 

al., 2003; for changes in workforce level, see Gen et 

al., 1992; Baykasouglu et al., 2010; Masud, 1981; 

and for customer service, see Chen and Liao, 2003). 

The three objective multi-period multi-product APP 

model with fuzzy parameters can be formulated as 

follows: 

Indices: 

n         product type 

t          planning period 

Decision variables: 

pnt     units of production for product n in period t 

(units) 

wt         work force level in period t (man-day) 

Int     inventory level for product n in period t (units) 

Bnt      backorder level for product n in period t (units) 

wht       worker hired in period t (man-day) 

wlt        worker lay-off in period t (man-day) 

Parameters and constants: 

N        total number of products 

T     total number of planning periods in the planning 

horizon 

cpnt   production cost for product n in period t ($/unit) 

ct         labor cost in period t ($/man-period) 

cint      inventory carrying cost for product n in period 

t ($/unit-period) 

cht      cost to hire one worker in period t ($/man-day) 

clt    cost to lay off one worker in period t ($/man-

day) 

csnt      cost of stock out product n in period t ($/unit-

period) 
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Hn     hours of labor needed for each unit for product 

n 

Unt      hours of machine usage per unit of nth product 

in period t (machine-hour/unite) 

Rt      maximum working hours in period t (a month), 

equal to regular working hours per worker per day* 

working shift in per day* working days for period t   

In0     initial inventory level for product n (units) 

Bn0    initial backorder level for product n (units) 

w0     initial work force level (man-day) 

Dnt    forecasted demand for product n in period t 

(units) 

Dmin,n  minimum demand for product n in period t 

(units) 

wmax    maximum workforce level available in period 

t (man-day)  

wmin    minimum workforce level available in period t 

(man-day) 

Mt max  maximum machine capacity available in 

period t (machine-hour) 

cpnt, ct, Dnt, Dmin,n, wmax,Unt and Mt max are triangular 

fuzzy numbers.   

Objective functions: 

(1)Minimize total cost: 

 

min Z1= ∑ ∑ cpt pnt + ct wt  + Int  cint        (2) 

 

 

(2) Minimize the changes in work force level: 

 

 

min   Z2= ∑ ( wht + wlt )                   (3) 

 

 

(3) Maximize customer service: 

 

 

max  Z3=( 1 - ∑   ∑  Bnt  /  ∑  ∑  Dnt  )         (4) 

 

 

The constraints: 

 

wmin≤wt ≤ wmax            (5)  

wt= wt-1 + wht – wlt          (6)  

 

ΣHn pnt ≤  Rt  wt                   (7) 

                                            

Int – Bnt = In,t-1 – Bn,t-1 +pnt  -Dnt      (8)  

 

pnt + In,t-1 – Bn,t-1 ≥ Dmin,n                       (9)  

 

 Σ  Unt pnt ≤ Mt max         (10) 

                                                             

pnt, wt, Int, Bnt,wht, wlt ≥ 0;  n=1,…,N; t=1,…,T      (11)  

3. Solving procedure 

For solving our fuzzy APP model, the following 

steps are required: 

Step 1: Formulate a fuzzy model 

Step 2: Transform fuzzy model into crisp model by 

using the transformation method proposed by Okada 

et al. (1991), (see Appendix 1). 

Step 3: Solve the crisp multi-objective linear model 

after setting α (α-cut) parametrically through multi-

objective genetic algorithm. 

Step 4: Determine the weight of each objective 

function by using fuzzy AHP method proposed by 

Chang (1996). 

Step 5: Finding the best compromise solution by 

using TOPSIS method proposed by Hwang  and 

Masud (1980).  

 

3-1. Fuzzy AHP 

In this study, we used fuzzy AHP method 

proposed by Chang (1996) for determining the 

weight of each objective or minimizing total cost, 

minimizing the change in workforce level and 

maximizing customer service. For these purposes, 

managers of the company evaluated three objectives. 

As a result of their evaluation, the metrics of pairwise 

comparison are given in Table 1. Then, we calculated 

fuzzy synthetic extent by Equation 12. 

Si= ∑  mgi
j
. [ ∑ ∑  mgi

j
  ]

-1
  (12) 

where all mgi
j
 (j=1,…,m) are triangular fuzzy 

numbers. mgi
1
, mgi

2
,… mgi

m
 are values of extent  

analysis of ith objective for m goals.  

 

3-2. Genetic algorithm 

The genetic algorithm is a powerful method for 

combinatorial optimization problems. Our 

implementation of genetic algorithm is presented as 

follows. 

 

3-2-1. Selection 

Selection provides the opportunity to deliver the 

gene of a good solution to the next generation. In this 

study employs the pareto tournament method 

proposed by Horn, Nafpliotis and Goldberg in 1994. 

In this method, two candidates for selection are 

picked at random from the population. A comparison 

set of individuals is also picked randomly from 

population. If one candidate is dominated by 

comparison set but the other is not dominated, the 

non-dominated candidate is selected for reproduction. 

If both candidates are either non-dominated or 

dominated, a sharing method according to the niche 

count is used to choose the winner. Candidate with 

the smaller niche count is selected as the winner. In 

this research, tournament size is equal 2.  

 

 

n=1   t=1 

~ 

N    T 

t=1 

T 

N       T 

n=1   t=1 

n=1 

N 

N 

n=1 

n=1   t=1 

N       T 
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Table 1. Pairwise comparison of three objectives 

   Z1                Z2         Z3 

Z1      (1, 1, 1)  (3/2, 2, 5/2)   (5/2, 3, 7/2) 

Z2      (2/5, 1/2, 2/3) (1, 1, 1)     (2/5, 1, 3/2) 

Z3  (2/7, 1/3, 2/5)  (2/3, 1, 5/2) (1, 1, 1) 

Where Z1= minimize total cost, Z2=minimize changes in workforce level and Z3= maximization customer service. 

Degree of possibility of M1 ≥ M2 is calculated by Equation 13. 

V (M1≥M2) =1        if m1≥m2, 

V (M2≥M1) = l1-u2/ (m2-u2) – (m1-l1), otherwise  (13) 

When M1= (l1, m1, u1) and M2= (l2, m2, u2) are triangular fuzzy numbers. 

The results of computation are: s1= (0.35, 0.55, 0.8), s2= (0.12, 0.22, 0.36), and s3= (0.14, 0.21, 0.44); and V 

(s1≥s2)=1, v (s1≥s3)=1, v (s3≥s2)=1, v (s2≥s1)=0.14, v (s3≥s1)= 0.2, v (s2≥s3)=0.94. Finally the weights of each 

objective after normalization are W= (0.75, 0.1, 0.15). 

 

3-2-2. Reproduction 

The best chromosomes that have a lower fitness 

function are selected for reproduction. 

3-2-3. Crossover 

Scattered crossover is used in this study. 

Scattered crossover creates binary vectors randomly. 

It then selects the genes where the binary vector is 

one from the first parent, and genes where the vector 

is a zero from the second parent and then combines 

them to form the child. For example, parent1= [2 3 4 

5] and parent2= [1 2 3 4] and the random crossover 

vector is [11 0 0], and the child will be [2 3 3 4]. 

3-2-4. Mutation 

In our implemented GA, we used adaptive 

feasible mutation. Adaptive feasible mutation 

randomly generates directions that are adaptive with 

respect to the least successful or the unsuccessful 

generation. 

3-2-5 Fitness function 

The objective functions are chosen as the fitness 

function that it defined in Section 2. 

3-2-6. Termination condition 

The search process stops if the number of 

generations exceeds the maximum number of 

generations, or if some specified number of 

generations is reached without improving upon the of 

best-known solution. 

Solutions or individuals are real decision variables 

such as production, inventory and backorders. 

3-3. TOPSIS 

Among the many famous multiple-criteria 

decision-making methods for ranking and selecting 

numerous possible alternatives through the 

measuring Euclidean distances, TOPSIS (technique 

for order performance by similarity to ideal solution) 

is a practical and useful technique first introduced by 

Hwang and Yoon (1981).(Goyal et al., 2012). 

TOPSIS is based on the concept that a chosen 

alternative should not only be nearest to the positive 

ideal solution (PIS) but also should be furthest from 

the negative ideal solution (NIS) (Goyal et al., 2012, 

Sajedi et.al, 2013).To determine a compromise 

solution, we will use TOPSIS method as follows: 

 

Uj
+
= ( ∑ Wk (Zk j- Zk

B
)

2 
/ Zk*

2
)

1/2,  
 

 

                       j = 1,..., v    (14) 

     

Uj
-
 =( ∑ Wk (Zkj - Zk

W
)

2
 / Zk*

2
)

1/2
,  

 

                        j = 1,..., v    (15) 

 

Zk* = ( ∑ Zkj
2
 )

1/2
    

 

                        k= 1, 2,..., v     (16) 

 

Zk
B
  : the best value of k-th objective function 

Zk
W 

 : the worse value of k-th objective function 

Wk   weight of k-th objective function which is 

obtained in Section 4-1. 

We obtain the nearest nondominated solution to best 

value using the following equation.  

ej
*
 = Uj

-
 / Uj

+
 + Uj

-
,     0 < ej

*
 < 1,  

 j = 1, 2,..., v                           (17) 

 The greater value of ej
*
 will be selected as a 

compromise solution. 

3-4. Multi-objective technique 

There are several ways to solve multi-objective 

linear programming models in the literature; among 

them, the fuzzy programming approaches are more 

common. Zimmermann (1978) proposed the first 

fuzzy approach for solving multi-objective linear 

programming problems, called max–min approach. 

Max-min is single-phase method which tends to 

maximize overall satisfaction degree of objective 

(surrogate objective of λ). In this method, the 

following formulation is used for solving multi-

objective linear problems: 

 Max λ 

Subject to: λ≤ (zk(x)-zk
NIS

) /(zk
PIS

-zk
NIS

),    k=1, …, L 

λ≤ (ws
NIS

-ws(x)) / (ws
NIS

-ws
PIS

),                  s=1, …, r, 

K=1 

 

    K=1 

q 

K=1 

 

q 

v 

  j=1 
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λ ϵ [0,1], x ϵ X, where k is maximum objectives and s 

is minimum objectives. 

The linear membership function of these objective 

functions can now be computed as follows: 

 

              1                                          if z1< z1
PIS

 

µz1=       (z1
NIS

 – z1) / (z1
NIS

- z1
PIS

)     if z1
PIS

≤ z1≤ z1
NIS

 

              0                                           if z1> z1
NIS

 

 

              1                                          if z2< z2
PIS

 

µz2=       (z2
NIS

 – z2) / (z2
NIS

- z2
PIS

)     if z2
PIS

≤ z2≤ z2
NIS

 

              0                                           if z2> z2
NIS

 

 

                1                                        if z3> z3
PIS

 

µz3=        (z3- z3
NIS

) / (z3
PIS

 – z3
NIS

)   if  z3
PIS

≤ z3 ≤ z3
NIS

 

                0                                         if z3> z3
NIS

 

 In this research, besides solving our model by multi 

objective genetic algorithm, we will use max-min 

formulation to convert multi-objective problem into 

single-objective problem and then solve this single-

objective problem through the simplex method (exact 

method). To compare the objective values obtained 

by LINGO with the results of the multi-objective 

genetic algorithm, a quality measure, the percent 

deviation of solution, is defined according to the 

following equation (Ramezanian et al. 2012): 

% deviation = (objective function value of GA - 

objective function value LINGO/ objective function 

value LINGO)*100               (19) 

4. Implementation of model (Case study) 

4.1. Case description 

Shahab Shishe Company is used as a case study 

to demonstrate the practicality of the proposed 

methodology. Shahab Shishe Company produces two 

types of products, tubes and bulbs, which are used for 

producing lamps. The APP decision problem for 

Shahab Shishe Company is described as follows. 

There is a four-period planning horizon of four 

months based on the Iranian calendar. The model 

includes two types of product or tubes and bulbs. The 

forecast demand, minimum demand, production cost, 

payroll cost, maximum machine capacity and 

maximum workforce level are fuzzy numbers with 

triangular possibility distributions from period to 

period. Table 2-3 summarizes the forecast demand, 

minimum demand and cost data used by Shahab 

Shishe Company.  Other relevant data are as follows. 

The hours of labor needed for each unit production 

are 0.018 for tubes and 0.013 for bulbs. Hours of 

machine usage for each of four planning periods are 

(0.0002, 0.00023, 0.00026) and (0.00015, 0.00018, 

0.0002) for tubes and bulbs respectively. Maximum 

machine capacities are (700, 720, 744) for tubes and 

bulbs in each of the four planning periods. We have 

31 working days per period (month), three working 

shifts of eight hours each, and 24 working hours per 

day. The initial workforce is 68 workers and the 

maximum workers allowed are (60, 70, 80) for 

periods 1 to 4. 

 

Table 2. Forecast demand and minimum demand data 

Item                                    Period 

 1 2 3 4 

D1t (2040000, 

2060000, 

2080000) 

(2070000, 

2100000, 

2130000) 

(1700000, 

1730000, 

1760000) 

(1580000, 

1620000, 

1660000) 

D2t (2500000, 

2510000, 

2520000) 

(2700000, 

2720000, 

2740000) 

(2620000, 

2640000, 

2660000) 

(1920000, 

1930000, 

1940000) 

Dmin1 (1900000, 

1960000, 

2060000) 

(1970000, 

1990000, 

2010000) 

(1600000, 

1650000, 

1700000) 

(1500000, 

1550000, 

1580000) 

Dmin2 (2460000, 

2480000, 

2500000) 

(2650000, 

2670000, 

2700000) 

(2550000, 

2580000, 

2620000) 

(1880000, 

1900000, 

1920000) 

 

 

 

Table 3. Cost data 

Product  cpnt ($/unit) csnt ($/unit) cint ($/unit) ct ($/worker) cht  ($/worker) clt($/worker) 

Tubes (0.016, 0.02, 0.024) 0.015 0.003 

 (440, 465, 480) 
30 5 

Bulbs (0.007, 0.009, 0.011)   0.004 0.0008 

 

 

Also, the minimum workforce level is 58 

workers. Furthermore, the company has 2400000 

beginning inventory for tubes and 7000000 for bulbs. 

4.2. Results of problem  

We transformed fuzzy model into crisp model 

by using the transformation method proposed by 

Okada et al. (1991) by 11 different α from zero to 

one. The genetic algorithm was coded in MATLAB 

R2009 (a), and all tests were conducted on a laptop 

computer with a core i5-2410m processor 2.3 GHz 

with 4 GB of RAM. The results of solving crisp 

models by using multi objective genetic algorithm 

and run times (second) are given in Table 4. For this 

example the population size is equal to 180 and the 

number of generations is equal to 360. The 

computational times recorded in table 4 can be 

considered reasonable times for a problem of this 

size.  
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Table 4. Values of objective functions at different 

levels of α 

α           Z1             Z2         Z3       Run time(s) 

0                      228172        4          0.981                   2 

0.1                   231673        4          0.981                   3 

0.2                   235232        4          0.982                   2 

0.3                   238710        5          0.982                   2 

0.4                   240878        5          0.982                   3 

0.5                   245792        5          0.982                   3 

0.6                   249984        5          0.984                   2 

0.7                   253076        5          0.984                   4  

0.8                   256213        5          0.983                   3 

0.9                   258046        4          0.986                   3 

1                      276802        4          0.962                   3 

By using TOPSIS, we can obtain compromise solutions (α 

= 0) among dominated solutions. The solutions in α = 0 are 

as follows: 

P1t = [416666, 1193334, 1700000, 1600000] or production 

units for tubes 

P2t = [0, 0, 810000, 1950000] or production units for bulbs 

Wt = [68, 68, 69, 72]   or workforce level in the four 

periods 

I1t = [776666, 0, 0, 0] or inventory level for tubes in four 

months 

I2t = [4480000, 1740000, 0, 0] or inventory level for bulbs 

in four months 

B1t = [0, 100000, 99999, 81104] or backorder level for 

tubes per period 

B2t = [0, 0, 70000, 40000] or backorder level for bulbs per 

period 

Wht =[0, 0, 1, 3]  or workers hired  per period 

Wlt =[0, 0, 0, 0] or workers laid off   per period. 

Z1 = 228172, Z2 = 4, Z3 = 0.981 

 

Now, we compute exact solutions by max-

min method and compare the results. Table 5 shows 

the total degree of satisfaction of the decision maker 

(λ) for this example, achieved through max-min 

method.  

 

Table 5. Total degree of satisfaction at different 

levels of α 

α λ 

0 0.79 

0.1 0.73 

0.2 0.6 

0.3 0.54 

0.4 0.58 

0.5 0.61 

0.6 0.54 

0.7 0.59 

0.8 0.6 

0.9 0.56 

1 0.52 
As demonstrated above, maximum degree of satisfaction is 

0.79(for α=0), which confirms our proposed solution 

strategy results. Optimum solutions for this problem in α=0 

are as follows. 

P1t = [0, 1710000, 1700000, 1500000] or production units 

for tubes. 

P2t = [0, 0, 978234, 1721766] or production units for bulbs. 

Wt = [67, 67, 67, 67]   or workforce level in the four 

periods. 

I1t = [360000, 0, 0, 0] or inventory level for tubes in four 

months. 

I2t = [4500000, 1800000, 158234, 0] or inventory level for 

bulbs in four months. 

B1t = [0, 0, 0, 80000] or backorder level for tubes per 

period. 

B2t = [0, 0, 0, 40000] or backorder level for bulbs per 

period. 

Wht =[0, 0, 0, 0]  or workers hired  per period. 

Wlt =[1, 0, 0, 0] or workers laid off   per period. 

Z1 = 221626, Z2 = 1, Z3 = 0.993 

Satisfaction degree of each objective function is: µz1=0.92, 

µz2=0.95 and µz3=0.79.  

%Deviation between optimum result (max-min) and GA 

result z1=2.9%. It can be concluded for a problem of this 

size, that max-min approach is most suitable. 

 

5. Conclusion 

In this paper, we formulated aggregate 

production planning with fuzzy parameters. To 

transformation a fuzzy APP model into a crisp 

model, we used the transformation method suggested 

by Okada et al. (1991). We solved crisp APP models 

(11 crisp models with 11 different α values ranging 

from zero to one) by using genetic algorithm. Then, 

we combined fuzzy AHP and TOPSIS to achieve the 

best compromise solution. This model is more 

suitable for 24-hour production systems. We used 

real-world problems to illustrate the practicality of 

our model. 

For further studies, we can extend this model in 

a supply chain and develop a fuzzy multi-objective 

production/distribution planning model with some 

modification of the proposed model. 
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Appendix 1: Transformation method (Okada et.al 

1991, Gen et.al 1992) 

Suppose we have fuzzy multi-objective model as 

follows: in all summation symbols (sigma) lower 

index is j=1 and upper index is n. 

 

Max zk= Σ  ckj xj, k=1,2,.., q1 

 

Min zk= Σ ckj xj, k=q1+1,.., q=q1+q2 

 

Subject to: 

 

Σ aij xj ≤ bi i= 1,2,…,m1 

 

Σ aij xj ≥ bi i= m1+1,…, m2 

 

Σ aij xj = bi i= m2+1,…,m=m1+m2+m3 

                  xj≥0    j= 1,…,n 

where 

 

ckj=(ckj1,ckj2,ckj3) is a fuzzy coefficient of the k-th 

objective function and j-th decision variable 

 

aij =(aij1,aij2,aij3) is a fuzzy technical coefficient of the 

i-th constraint and j-th decision variable 

 

bi =(bi1,bi2,bi3) is a fuzzy available resource of i-th 

constraint  

xj is decision variables. All fuzzy parameters in this 

multi-objective model are triangular fuzzy numbers. 

Crisp multi-objective linear model can be computed 

by following formulation: 

 

Max zk= Σ [(1-α)ckj3+α ckj2] xj, k=1,2,.., q1 

 

Min  zk= Σ [(1-α)ckj1+α ckj2 ]xj, k=q1+1,.., q=q1+q2 

 

Constraint: 

 

Σ [(1-α)aij1+α aij2] xj ≤ (1-α)bi3+α bi2,     i= 1,2,…,m1 

 

Σ [(1-α)aij3+α aij2 ]xj  ≥ (1-α)bi1+α bi2, i= m1+1,…, m2 

 

Σ [(1-α)aij1+α aij2 ]xj ≤(1-α)bi3+αbi2,    i= m2+1,…,m 

                  

Σ [(1-α)aij3+ α aij2 ] xj ≥(1-α)bi1+αbi2,  i= m2+1,…,m 

                  xj≥0    j= 1,…,n 

where α is a cutoff value between zero to one, 

α=[0,0.1,0.2,0.3,…,1]. 

Appendix 2: A sample of input data (α= 0) for 

Shahab Shishe company example (max-min method) 

Max  λ  

λ-((1/189023)*(395587-(0.016p11 + 0.016p12 + 

0.016p13 + 0.016p14 + 0.007p21 +0.007p22 +0.007p23 

+ 0.007p24 + 440w1 +440w2+ 440w3+440w4+ 

0.003I11+ 0.003I12+ 0.003I13 + 0.003I14+0.0008I21+ 

0.0008I22+ 0.0008I23+ 0.0008I24)))<=0; 

λ-((1/22)*(22- (Wh1+ Wh2+ Wh3+ Wh4+ WL1+ 

WL2+ WL3+ WL4)))<=0; 

λ-((1/.028)*( 1-[(B11+ B12+ B13+ B14+ B21+ B22+ 

B23+ B24)/17490000])-.971)<=0; 

λ>=0; 

λ<=1; 

W1<80; W2<80; W3<80; W4<80; 

W1>58;   W2>58;  W3>58;  W4>58; 

W1 – Wh1 +WL1 = 68; 

W2 – W1 –Wh2 +WL2 = 0; 

W3 – W2 – Wh3 + WL3 = 0; 

W4 – W3 – Wh4 + WL4 = 0; 

P11> -500000; 

P12 +  I11 – B11 > 1970000; 

P13+ I12-B12 > 1600000; 

P14+ I13-B13 > 1500000; 

P21 > -4540000; 

P22+I21-B21> 2650000; 

P23+I22-B22>2550000; 

P24+I23-B23> 1880000; 

0.018p11+0.013p21- 744w1 < 0;   0.018p12+0.013p22- 

744w2 < 0;  

 0.018p13+0.013p23- 744w3 < 0;  

0.018p14+0.013p24- 744w4 < 0;    

0.0002p11+0.00015p21<744;   

0.0002p12+0.00015p22<744;  

0.0002p13+0.00015p23<744;  

0.0002p14+0.00015p24<744; 

P11- I11+B11 < -320000; 

P11 – I11 + B11 > -360000; 

I11 – B11 – I12 + B12 + p12 < 2130000; 

I11 – B11 – I12 + B12 + P12 > 2070000; 

I12 – B12 – I13 +B13 +P13 < 1760000; 

I12 – B12 – I13 + B13 + p13 >1700000; 

I13 – B13 – I14 + B14 +p14 < 1660000; 

I13 – B13 – I14 + B14 + p14 > 1580000; 

P21 – I21 + B21 < -4480000; 

P21 – I21 + B21 > -4500000;  

I21 – B21 –I22 + B22 + P22 < 2740000; 

I21 – B21 –I22 + B22 +P22 > 2700000; 

I22 –B22 –I23 +B23+ P23 < 2660000; 

I22 – B22 – I23 + B23 + P23 > 2620000; 

I23 – B23- I24 +B24 +P24 < 1940000; 

I23 – B23 – I24 + B24 + P24 > 1920000; 

End. 
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