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Abstract: In this paper, we investigate the dynamical behavior of a virus dynamics model with multi-target cells. 

The incidence rate of infection is given by a nonlinear function. The model is a 12 n -dimensional nonlinear ODEs 

that describes the population dynamics of the virus, n  classes of uninfected target cells and n  classes of infected 

cells. Using the method of Lyapunov function, we have proven that if 10 R , then the uninfected steady state is 
globally asymptotically stable (GAS), and if the infected steady state exists, it is GAS. 
[Elaiw, A.M. and Alghamdi M.A. Global stability of a viral dynamics model with multi-target cells and 
nonlinear incidence rate. Life Sci J 2013;10(4):2263-2267] (ISSN:1097-8135). http://www.lifesciencesite.com. 
302 
 
Keywords: Virus dynamics; Global stability; multitarget cells; Lyapunov function. 
 
1. Introduction 

Mathematical modeling and model analysis 
of virus infection  such as human immunodeficiency 
virus (HIV) [1-16], hepatitis B virus (HBV) [17] and 
hepatitis C virus (HCV) [18] have attracted the 
interests of mathematicians during the recent years. 
The basic model of viral infection is given by [1-2]: 
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where 
yx,

 and v  are the populations of the 
uninfected target cells, infected cells and free virus 
particles, respectively. The uninfected cells are 

generated from sources within the body at rate  , die 

with rate constant d and become infected at rate 

,xv
 where 


 is the infection rate constant. The 

infected cells are produced at rate xv  and die with 

rate constant a . The virus particles are produced by 

the infected cells with rate constant
,p

and are 

removed from the system with rate constant c .  
In model (1)-(3), it is assumed that the virus 

attack one class of target cells (CD4+ T cells in case 
of HIV or hepatic cells in case of HCV and HBV) and 
the infection rate is given by bilinear incidence rate. 
The purpose of this paper is to propose a virus 
infection model with multi-target cells and establish 
the global stability of its steady states. The incidence 
rate is assumed to be nonlinear.  We prove that if 

10 R , then the uninfected steady state is globally 
asymptotically stable (GAS), and if the infected steady 
state exists then it is GAS.  
 
2. The model  

In the literature, the infection process in most 
virus infection models is characterized by bilinear 

incidence rate 
xv

. However, the actual incidence 
rate is probably not linear over the entire range of 
x and  v [22-23]. In this section we make a 
generalization of the basic virus infection model (1)-

(3) by assuming that the virus attacks n  classes of 
target cells and the incidence rate is nonlinear.  
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where 
nikq ii ,...,1,0,0 

. All the variables 
and other parameters have the same meaning as given 
in model (1)-(3).  
 
2.1. Positive invariance 

We note that model (4)-(6) is biologically 
acceptable in the sense that no population goes 
negative. It is straightforward to check the positive 
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invariance of the non-negative orthant 
12 


nR  by 

model (4)-(6). In the following, we prove that there 
always exists a compact positively invariant set for 
model (4)-(6). 

 
Proposition 1. There exist positive numbers 
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2.2. Steady states  

It is easy to show that, system (4)-(6) has an 
uninfected steady state 
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 where 

0,0,/ 000  vydx iiii 
. The system can also 

has a positive infected steady state 

),...,1,,,( **** nivyxE ii 
. The coordinates of 

the infected steady state, if they exist, satisfy the 
equalities: 
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We define the basic reproduction number for system 
(4)-(6) 
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where  iR ,0  is the basic reproduction number for the 
dynamics of the interaction of the virus only with the 

target cells of class . 
 
2.3 Global stability 

In this section, we prove the global stability 
of the uninfected and infected steady states of system 
(4)-(6) employing the method of Lyapunov function 
[24]. We define a function 
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Then H has the global minimum at  1s , 

0)1( H
. It follows that 
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for all 0s . 

We also define the following function 
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It is clear that 
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 for any 0s  and F has 

the global minimum 
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. 

Theorem 1. If 10 R , then 
0E  is GAS. 

Proof. Assume that 
1iq

. Define a Lyapunov 

function 0W  as follows: 
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The time derivative of 0W
 along the 

trajectories of (4)-(6) satisfies 
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 at the steady state 
0E . Hence 

from LaSalle's Invariance Principle, 
0E is GAS. 

 

Theorem 2. If 
*E exists then it is GAS. 

 

Proof. Assume that 
1iq

. Define a Lyapunov 

function 1W
 as follows: 
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The time derivative of 1W
 along the 

trajectories of (4)-(6) satisfies 
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Using the infected steady state conditions 

(7)-(9), we obtain 
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From Eq. (12) we drive that, if 
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 where the equality occurs at then 
*E  The 

global stability of 
*E  follows from LaSalle's 

Invariance Principle. 
 
 
 

3. Conclusion 
In this paper we have proposed a virus 

infection model with multi-target cells. The model 

describes the interaction of the virus with n classes 
of target cells. In this model, the incidence rate is 
assumed to be nonlinear. The global stability of the 
uninfected and infected steady states of the model is 
established by direct Lyapunov method. We have 

proven that, if 
10 R

, then the uninfected steady 
state is GAS, and if the infected steady state exists 
then it is GAS. 
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