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1. Introduction 

    Many investigations have been carried out 

concerning the existence and uniqueness of solution 

of deterministic and stochastic integro-differential 

equations of Volterra type. See [1]-[5].However, in 

the last few decades, many authors pointed out that 

fractional models are very suitable for the description 

of properties of various real materials, e.g. polymers. 

It has been shown that new fractional-order models 

are more adequate than previously integer-order 

models. See [6]-[7]. In many cases it is better to have 

more initial information to obtain a good description 

of the evolution of a physical system. The local initial 

condition is replaced then by a nonlocal condition, 

which gives better effect than the initial condition, 

since the measurement given by a nonlocal condition 

is usually more precise than the only one 

measurement given by a local condition, see [8]-[9]. 

Therefore, in this paper we shall be concerned with 

extending the results in William J.padgett and Chris P. 

Tsokos [5].That is we shall consider a nonlinear 

random perturbed factional integro-differential 

equation of Volterra type of the form: 

 

 
 

 With the nonlocal condition 

 
Where

 the fractional derivative is provided by the Caputo 

derivative and  

(i)  the supporting set of a probability measure 

space  

(ii)  is the unknown stochastic process for 

 

(iii)  is called the stochastic perturbing term 

and it is a scalar function of and scalar  

(iv)  is a stochastic kernal defined for  and 

 satisfying  and 

(v)  is a scalar functions of  scalar 

 and will be specified later. 

 

The purpose of this paper is to obtain the 

conditions concerning the stochastic process in 

equation (1.1) which guarantee the existence and 

uniqueness of random solution  and to 

investigate the asymptotic statistical behavior of such 

a random solution. In addition, the usefulness of the 

results will be illustrated with an application to 

fractional stochastic differential systems. We shall 

utilize the spaces of functions and admissibility 

theory which were introduced into the study of 

random integral equations by Tsokos [10].The 

nonlocal Cauchy problem  has 

applications in many fields such as viscoelasticity, 

fluid mechanics and electromagnetic theory. See for 

example [11]. 

 

2. Preliminaries. 

    Let  denote a probability measure space, 

that is  is a nonempty set known as the sample 

space,  is a sigma-algebra of subsets of , and  is 

a complete probability measure on .We let 

, denote a stochastic process 

whose index set is . Let  be the space 
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of all random variables which have a 

second moment (or square- summable) with respect 

to -measure for each .That is: 

 
The norm of  in  is 

defined for each by: 

 

 

 
With respect to the functions in equation 

 we make the following assumptions: 

The random solution will be 

considered as a function of with values in the 

space The functions 

under convenient conditions will be 

functions of  with values in . 

Let  be the space of all 

measurable and -essentially bounded random 

variables of   With respect to the stochastic 

kernel, we will assume that, for each  and  

satisfying   is essentially 

bounded with respect to , So that the product of 

 and  will always be 

in  for each fixed  and  The norm of 

 in  will be denoted and 

defined by 

 
 Also the mapping  from 

the set into  

is continuous. 

 And further, whenever  as  

 as 

It will be assumed also that for each fixed  

and  

 
Uniformly for  Where  

is some constant depending only on  and  

  

 

Definition 2.1. 

We define the space  

to be the space of all continuous functions from  

into  and define a topology on  by 

means of the following family of seminorms 

  

It is known that such a topology is 

metrizable and that the metric space  is complete. 

 

Definition 2.2. 

We define the space 

 to be the space of all 

continuous functions from  into  such 

that there exists a constant  and a positive 

continuous function  on satisfying 

 

 
 

The norm in  will be 

defined by: 

 
 

Definition 2.3.  
We define the space 

 to be the space of all 

continuous and bounded functions on with values 

in  that is  is the space of all second 

order stochastic processes on which are bounded 

and continuous in mean square. The norm in  is 

defined by: 

 
 

It is clear that  are Banach spaces and 

the following inclusion hold:  

Finally, let  

be Banach spaces and let  be a linear operator from 

 into itself. Now we give the 

following definitions with respect to  and  

 

Definition 2.4. 

The pair of Banach spaces  is said to 

be admissible with respect to the operator  if and 

only if  

 

Definition 2.5.  

The Banach space  is said to be stronger 

than the space  if every convergent sequence in  , 

with respect to its norm, will also converge in (but 

the converse is not true in general).  

 

Definition 2.6. 

We call  a random solution equation 

(1.1) if  for each  satisfies the 

equation (1.1) for every  and satisfies the 

nonlocal initial condition, almost surely.  

 

Definition 2.7. 

The random solution  is 

stochastically exponentially stable if there exist 

constants  and  such that for 

each   
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We now state the following lemma which 

is given by Tsokos in [4]. 

 

Lemma 2.1. 

Let  be a continuous linear operator from 

 into itself. If  and  are 

Banach spaces stronger than  and if  is 

admissible with respect to , then  is a continuous 

linear operator from  into .  

 

Note that: 

If the operator  is continuous, then 

it is bounded, and there exists a constant  such 

that 

 

 
 

The infimum of such constants  is called 

the norm of the operator  

 

3. Main results 

Using the definitions of the fractional 

derivatives and integrals, it is suitable to rewrite the 

considered problem in the form: 

 

 

 
Changing the order of integration  

 

 

 
Where 

 
Now define the integral operators  and  

on  

 as follows: 

 

 
Now we shall prove two lemmas 

concerning the continuity of  and  as mappings 

from  into itself. 

 
Lemma 3.1.  

The operator  defined by the 

equation  is a continuous mapping from the 

space  into itself. 

Proof: 

Step1, we shall show that  

First let ,then  

 
 

For each  Since  is 

continuous function on the interval  and hence 

bounded by some   

Thus   

each  

Secondly let  then  

 

 

 

 
 

Hence  is a continuous function at each 

with values in  

That is, continuous in mean square on  

then   

Step2 we shall show that  is a continuous 

operator as follow: 

Let  in  as   

Then for  then 

 

 

 

 

 
 

For  but by definition as  

 
 

Uniformly in  therefore, 

For  there exists an  such that  

implies that   

Then  is a continuous operator, Hence the 

required result. 
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Lemma 3.2. 

The operator  defined by equation  

is a continuous mapping from the space  into itself. 

Proof:  

Step1, we shall show that  

First we must show that the function 

 given by the equation  belongs to the 

space  and is a continuous mapping from 

the set  into  

as follow: 

For fixed  and  satisfying  , 

and by using the assumptions on  then  

 

 
Hence  for each  

and  satisfying  

Now let  be a sequence in  such 

that  as  then  

 

 

 

 
Since  as  and  

is continuous in  then, for  there exist an 

 such that  implies  

 
 

(Since  as ), then   

Also there exist an  such that 

 implies that   

 
Uniformly in  for  then  

 
 

 

 

 
 

Since  as  then  

 

 
 

Similarly, there exist an  such that 

 implies that 

 
 

Hence there exist an  so that for 

 we have  

 

 
 

That is the mapping  is 

continuous. Now, since  for 

each  and  satisfying  we have that 

for each  the product  

is in  Thus,  

 

 

 
 

Since  and  are 

continuous in  on the interval  and are therefore 

bounded on  Then    

Now, let then by the 

continuity condition on  we obtain  

 

 
 

 
 

 
 

   As  thus  is continuous in the 

mean square for each  Then  

Step2 we will show that  is continuous 

operator as follow: 

Let  in  as  

then 
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Where  

Since  is continuous in  

it is bounded by some  in the compact region 

. 

By definition, we have  for  that there 

exists an  so that for  

 
Uniformly in  and hence for  

 
 

For all  where . 

Therefore,  in  as 

 That is  is continuous operator, 

Hence the required result.  

 

Lemma 3.3. 

Assume that  then the 

nonlocal Cauchy problem  is equivalent to 

the following integral equation. 

 

 

 

Where:  and  are defined 

by   and  

 

 

 
Proof: 

Let  in multiplying both sides 

by  and taking , then  

 

 

 

Substitute from  into  then  

 

 

  
Substitute from  into  then  

 

 

 
Hence the required result.  

We now prove the following existence theorem. 

 

Theorem 3.1. 

Suppose the random equation  

satisfies the following conditions: 

(i)  and  are Banach spaces stronger than  

and the pair  is admissible with respect to each 

of the operators,  and  defined by  

(ii)   is an operator on 

 With values in 

 satisfying: 

 
For  and  are 

constants;  

(iii)  is an operator on  

With values in  satisfying: 

 
 For  and  constant; 

 

Then there exists a unique random solution 

 of equation , provided that 

 

 

 

 
Where  and  are the norms of  and , 

respectively 

 

Proof: 

By condition (i), lemmas 2.1, 3.1, and 3.2 

 and  are continuous from  into  Hence, their 

norms  and  exist. 
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Define the operator  by  

A  

 

 
 

We must show that  and that the 

operator  is a contraction operator on  Then we 

may apply Banach’s fixed-point theorem to obtain 

the existence of a unique random solution. Let 

 Taking the norm in  in  we get  

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 
By the last condition of the theorem.  

Thus  

Let  be another element of   

From the assumptions, it is clear that 

 since the difference 

of two elements of a Banach space is in the Banach 

space, 

 

 

 

 

 

 

 

 
Since by hypothesis 

  

then  is a contraction operator on  Applying 

Banach’s fixed-point theorem, there exists a unique 

element of  so that completing 

the proof.  

 

Corollary 3.1.  

If the stochastic fractional integro-

differential equation  

 
With the nonlocal condition 

 
Satisfies the following conditions:  

(i)  and  are Banach spaces stronger than  

and the pair  is admissible with respect the 

operator  defined by  

(ii)   is an operator on  

  With values in 

 satisfying: 

 
For  and  are 

constants;  

(iii)  

Then there exists a unique random solution 

 of equation  provided that: 
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Where is the norm of  

Proof:  

Since  is the equivalent of  with 

 equal to zero, the proof follows from that 

theorem 3.1 with  being the null operator. 

 

4. Boundedness and asymptotic behavior of 

random solution. 

Using the spaces  

and  we now give some results 

concerning the asymptotic behavior of the random 

solution of  We first consider the unperturbed 

case  

 

Theorem 4.1. 

Suppose the equations  satisfy the 

following conditions: 

(i)  for some 

constants  and   

(ii)  satisfies, for some 

 and    

 

 
For  and  at each  

and  constant; 

(iii)  

Then there exists a unique random of 

solution of  which is stochastically 

exponentially stable, provided that  is small enough. 

 

Proof:  

It is sufficient to show that condition (i) 

implies the admissibility of the pair of spaces 

 with respect to the operator  defined by 

, and that condition (ii) is equivalent to 

condition (ii) of Corollary 3.1 with 

 

Let  taking the norm 

in  of  we obtain  

 

 
Let   then. 

 

 
Let then  

 

 

Since  then  

 
Now 

 

 
Since  

Hence for  is a positive 

constant we have  that is  is 

admissible with respect to  

Now let   

then  

 

 

 

 
Then condition (ii) implies that condition 

(ii) of Corollary holds.Therefore, by Corollary  

there exists a unique random solution and 

 
Then the solution is stochastically 

exponentially stable, Hence the required result. 

Now, if  is not identically equal to 

zero, then we can still obtain the result that there is a 

unique random solution of  which is bounded in 

the mean square for all  

 

Theorem 4.2. 

Assume that equations  satisfies the 

following conditions: 

(i)  for some constants 

  

(ii)  satisfies, for some 

   and 

 
For  and   and  

are constant; 

(iii)  satisfies, for some  

   and 

 
For  and  at each  and 

 are constant; 

(iv)  

Then there exists a unique random of 

solution of  which is bounded in the mean 

square on , provided that , 
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and are sufficiently 

small. 

 
Proof: 

It will suffice to show that the pair of 

spaces  is admissible with respect to the 

integral operators  and defined by  

respectively under condition (i). 

Let  then from  we have 

that 

 
Thus  and the pair  is 

admissible with respect to  

By the same way we have 

 
Thus  and the pair  is 

admissible with respect to  Clearly conditions (ii), 

(iii) of theorem 4.2 implies conditions (ii), (iii) of 

theorem 3.1. Therefore, the conditions of theorem 3.1 

hold with and  and then 

there exists a unique random solution of  

bounded in the mean square by  for all 

  

 

5. Application to stochastic differential systems.  

Consider the following nonlinear fractional 

differential system with random parameters: 

   
 

 
 

With the following initial conditions  

 

 
Where ,

, the fractional derivative is 

provided by the Caputo derivative,  is an  

matrix of measurable functions,  and  

are  vectors of random variables for each 

  is an  vector of measurable 

functions,  is a scalar random variable for 

each   is a scalar functions of  

, and  denotes the transpose of a matrix. 

The system  may be reduced 

to a stochastic fractional integro-differential equation 

of the form Now integrating  we have  

 

 

 
Substituting from  into  we obtain  

 

 

 
Now assume that  for all 

 and  a constant. Also, let  

and  if we assume that the 

matrix  is stochastically stable, that is there 

exist an  such that  

 
Where   are the 

characteristic roots of the matrix, then it has been 

shown by Morozan [12] that  

 
For some constant  we also let 

 for each  

and 

 
Let 

 
Then 

 

 

 
Where  is a constant, since  

Thus by definition  

Also, 

 
So that it satisfies a Lipschitz condition. 

Now, by the assumptions on 

 and  we have  

 
Satisfying 

 

 

 
Therefore, all conditions of theorem 4.2 are 

satisfied and there exists a unique random solution of 

the system  which is bounded in the mean 

square on  
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