
Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com 

 1361 

Distributed Data and Programs Slicing  
 

Mohamed A. El-Zawawy1,2 

 

1College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), 
Riyadh, Kingdom of Saudi Arabia 

2Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt 
maelzawawy@cu.edu.eg  

 
Abstract: This paper presents a new technique for data slicing of distributed programs running on a hierarchy of 
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the heaps. The proposed technique has the shape of a system of inference rules. In addition, this paper presents a 
simply structure type system to decide type soundness of distributed programs. Using this type system, a 
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1. Introduction 
              Breaking down a large distributed program 
into smaller pieces or minimizing its size is essential 
for many software analysis techniques such as 
parallelization [19], debugging [22], program 
comprehension [14], testing [16], downsizing, and 
restructuring. Introduced by Mark Weiser [20], data 
and program slicing [3] are applicable techniques for 
narrowing the focus of a program to a certain region 
of the memory. Interesting enough, data slicing was 
motivated by the desire of guiding students through 
debugging programs. A program slice can be defined 
as an executable subset of the program that simulates 
the original program on a certain data slice (region of 
the memory). Data slicing is useful when compilers 
need to modify data structures in the program being 
compiled without breaching pre-compiled 
assumptions about data layout. 
             Distributed systems [15] are typically 
constructed on hierarchical memory structure (Local 
stores and caches of processors, such as cell game 
processor, are organized in a hierarchal fashion). This 
memory system equips each process with explicitly 
controlled local caches or stores. Distributed 
computations and their hierarchy models of 
memories have been the focus of much research 
activities. This is partially justified by the existence 
of low-cost processors facilitating building such 
distributed systems. Rather than distributed systems 
of a number of processors create immunity against 
different sorts of failures, they also have incremental 
growth capabilities and high throughput. One 
example of memory hierarchy is to partition memory 
into computational grids consisting of clusters 

partitioned into nodes including program threads. 
Practically, memories of most distributed 
programming languages have a two level abstraction. 
The model of distributed systems used in this paper is 
the single program multi data (SPMD) model [15]. 
             Type systems [13] are theoretical means for 
proving type soundness which amounts to the 
absence of method-not-found and field-not-found 
errors. For distributed programming languages, like 
�ℒ��� of this paper, a type system guaranties that 
every use of a location considers its predefined type. 
Proving this property is, however, not easy due to the 
potential intervention of executing the program on 
different machines of hierarchy. 
             This paper presents a new technique for 
slicing distributed programs running on hierarchal 
memories. The proposed technique has the form of 
inference rules which are simply structured. The new 
technique is illustrated using a simple, however rich, 
model of distributed programming language (�ℒ��� 
- Figure 2). The paper also presents a type system 
that checks type soundness of programs of �ℒ���  
and programs resulting from the proposed slicing 
technique. A prove that prosperity of type soundness 
of a program is preserved by the slicing technique is 
also presented in this paper. 
             Rather than the traditional algorithmic way, 
using a system of inference rules [4–6] to achieve 
static analyses and transformations of distributed 
programs has recently proved to be a good choice. 
This is so as derivations in the system of rules work 
as simply-structured correctness proofs for results of 
the system. Such proofs are required by many 
applications like proof-carrying code [9]. 
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Fig. 1. A motivating example for distributed data and 

program slicing. 

Motivation 
             Suppose a distributed system including two 
machines �� and ��  each of them has two memory 
regions �� and ��.  On this system, suppose also a 
distributed program defining the following types: 
���� �� = ������ 
{��: ����

�, ��: ����
�, ��: ����

�, ��: ���(��, {��,��})}; 
���� �� = ������ 
{��: ���(��, {��}), ��: ���(��, {��,��})}; 
             The left-hand-side of Figure 1 illustrates how 
these data types will be allocated on memories of 
machines �� and �� . The right-hand-side of the 
figure explains distributed data slicing effects on the 
two machines into the two regions. Annotations are 
used in integer fields of data structures to determine 
regions of machines that will host these fields. The 
slicing includes inserting shapes of original data 
structures in each region of each machine. However 
such a shape of a region typically contains only 
relevant data and necessary pointers. 
             The aim of this paper is to provide formal 
techniques to transform memories of �� and �� into 
that on the right-hand-side Figure 1. Moreover the 
proposed technique is required to slice the program 
that includes the type definitions into slices each 
works on the data of a certain region. 
Contributions 
             Contributions of this paper include: 

1. A new type system for checking type 
soundness of distributed programs. 

2. A novel and sound technique for slinging 
distributed data and programs running on 
hierarchal systems of memories.  

3. A mathematical proof that the proposed 
slicing technique preserves typing 
properties. 

Organization 
             The organization in the rest of the paper is as 
following. The syntax of the target language and a 
system of inference rules for type checking of the 
language constructs are presented in Section 2. 
Section 3 introduces the new technique for slicing of 
distributed programs running on hierarchal machines. 
The type system of Section 2 is used in Section 3 to 
prove that the proposed slicing technique preserves 
type-soundness of sliced programs. Related work is 
reviewed in Section 4.  
            

 
 
2. Target Language �ℒ���: Syntax and Type 
Checking   
              This section presents the syntax of the target 
language and a system of inference rules for type 
checking of the language constructs. The syntax of 
the target programming language,  �ℒ���, is 
presented in Figure 2. We assume an arbitrary 
hierarchy of machines. In term of parallel programs, 
a single execution thread resembles a machine. A 
countably infinite collection of variables (machine-
private) is used in the language and denoted by ���� 
with typical elements �, �. Sets of finite arithmetic 
and Boolean operations are denoted by ��� and ���, 

respectively. The set of machine identifiers is 
denoted by ℳ. The types of the language are integer, 
pointer, structure, and named types (�). The empty 
structure, struct{}, is denoted by void as a shorthand. 
It is noted that base types (integer types) are 
quantified (Similar type quantification can be found 
in [3]) with pairs of a region and a set of machines. 

 ��� � ∈ � ⊆ℳ 
� ∈ ����� ∶≔ ���(��, �) ∣ ����� ∣ �

∣ ������{��: ��,… , ��: ��}.  
� ∈ ���� ∶≔ ���� � = � ∣ ���� ∣ �.      
� ∈ ����� ∶≔ � ∣ �. � ∣∗ �.     

� ∈ ����� ∶≔ ���� ∣ � ≔ � ∣  ������� � �� �
∣  ��; �� ∣ �� � �ℎ�� ������ ��
∣  �ℎ��� � �� ��.  

� ∈ ����� ∶≔ ��       

�, � ∈  ����, � ∈ ℤ, ��� ∈ ���, ���  ��� ∈  ���,   

� ∈ ���� ∶≔ � ∣ �� ��� �� ∣ &� ∣ ��� � ∣

������ −�(�,�) ∣ ������� � �� � ∣ ���� <

����� → ���(��, �) > � ∣ ���� < ������,��� →

���(��, ��) > �.  

 
Fig. 2. The programming language model, �ℒang.  
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Fig. 3. Typing rules for expression. 
 

Γ ⊨�  �: �

 Γ ⊨�   �: �
(��)     

Γ ⊨�  ��: ��� (��,�)             Γ ⊨�  ��: ��� (��,�)

 Γ ⊨�  �� ��� ��: ��� (�� , �) 
����  ��� ���

�
� 

� ∈  ℳ
Γ ⊨� ��� �: ���

� �
(����)     

Γ ⊨�  �: �

Γ ⊨� � ∶ ���
� �

(&��)     
Γ ⊨�  e: τ

�         τ′ ⊆ τ

Γ ⊨�  e ∶ τ
(⊆�) 

����ℎ − �(�) = ��      Γ ⊨�  �: ���
��
 �

Γ ⊨�: modify − w (e, m) ∶  ptr� �
(������ −��)     

Γ ⊨�  e: τ

Γ ⊨�  compute e  at  m: τ
(�����) 

Γ ⊨�  �: ������,���

Γ ⊨� cast < ����r�, M�� ↪ ���(��,��) >  �: ���(��,��)
(�����

�) 

Γ ⊨�  e: ptr
�τ(��,�) ℎ�� � ���� ����ℎ���� ����  �

Γ ⊨� ���� < ����� ↪ ���(��,�) > �: ���(��,�)
(�����

�) 

This is so to determine the locations of the data of 
these types. The language programs are executed on a 
distributed system of � machines with identifiers �� 
through��.  Each machine has �  regions named �� 
through��.The set of all the regions is denoted by ℜ. 
�ℒ���  can be realized as a generalization of the 
language in [10]. 
             The hierarchy level hosting the smallest 
common ancestor of two machines is the distance 
between the two machines. The number of levels in 
the machines hierarchy is dubbed the depth of the 
hierarchy. The width of a pointer on a machine is the 
distance between the machine hosting the pointer and 
the machine hosting the location pointed-at by the 
pointer. We assume a function width-f that assigns 
each pointer its width. The symbol h denotes the 
height of the machine hierarchy. Therefore the set of 
widths of pointers is {1,… , ℎ}and the pointer type is 
parameterized by the machine ��  of the location it 
points-at.  
             Expressions (�)  and l-expressions (�)  are 
inspired by that of �. Binary operations (arithmetic 
and boolean) are only applicable to integers in the 
same region of possibly different machines. 
Expressions include:  

 ��� �: allocates a memory location of type 
� and returns the allocated address. 

 ������ −�(�,�) : changes the pointer 
width. More specifically, it changes the 
machine the expression points-at. Hence the 
type of �  becomes the reference  �����, 

rather than ����
�
�.  

 ������� � �� �: computes the expression �  
on the machine � and distributes the value 
to other machines.  

 ���� < ����� → ���(��,�) > �:  casts 
from pointers to integers in different regions 
of different machines.   

 ���� < ������,��� → ���(��, ��) > �: casts 
between integers in different regions of 
different machines. 
The statement ������� � �� � executes the 

statement � on the machine �. A �ℒ��� program is 
a sequence of type definitions followed by a 
statement. 
Remark 1. Primitive values such as Boolean values 
and integers are not incorporated in the 
language �ℒ���. It is straightforward to include 
them as an extension. Although the language �ℒ��� 
is SPMD, the proposed data-slicing technique is 
easily extendable to other parallelism models. 
However these extensions are not considered in this 
paper. 
              A system of inference rules for type 
checking of components of �ℒ���  is presented in 
Figures 3 and 4. A context, Γ, is a map from variables 
and type names to types. A program is well-typed 
(WT) if its body,  �, is well-typed with initial 
environment Γ� . In the allocation rule(����) , the 
expression generates a pointer type ����for all �. As 
the allocation takes place on the same machine that is 
executing the statement, the width of the created 
pointer is 1. 
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             The modify expression enables modifying the 
machine �� that a pointer references. This, of course, 
results in changing the top-level expression width. 
This way is used to decrease the width of the 
expression more often than to increase it. This is so 
because of the subtyping rule. After a dynamic 
analysis, the modify statement can be used to express 
that the expression references data on a machine 
closer than initially thought. The inclusion 
relationship in the rule (⊆�) applies only on structure 
types. The remaining rules are self-explanatory. 

 
3.  Data Slicing of ����� 

             This section presents a new technique for 
data slicing [3] of distributed programs [10] running 
on hierarchal machines. The type system of the 
previous section is used later in this section to prove 
that the proposed technique preserves type-soundness 
of sliced programs. Data slicing of distributed 
programs aims at dividing heaps of hierarchy 
(distributed) machines into separate regions. The base 
types (only integers in our case) of the input program 
of data slicing have to be region-machine-annotated. 
The result of the slicing is a new program whose data 
structures are split into separate regions of the heaps 
of hierarchy machines. Of course the new and 
original programs have to be semantically equivalent. 
Data must be contained in regions of machine 
hierarchy according to data annotations; adding new 
pointers to do so is allowed. However complete 
independence of regions is assumed; cross-region 
boundaries pointers are not allowed.  
             As a result of data slicing, every machine 
region reflects the original structure of heaps in 
machine hierarchy (for an example see Figure 1). 

Hence if, for example, the data of a liked list in the 
original heap hierarchy are annotated with different 
regions of different machines, then every region on 
each machine will include a similar linked list with 
only the list data for this region. Hence whereas base 
fields will be divided among regions of different 
machines in the hierarchy according to their 
annotations, the same pointer maybe replicated into 
many regions as necessary. Therefore in data slicing 
base fields are separated and pointers are replicated. 
 

Example: Consider applying the slicing technique on 
the statement compute: 

�������  ∗ �. ��  ��  ��, 
where the type of �  is ������  and ��  is the type 
defined in the motivating example illustrated by 
Figure 1. The result of the slicing will be the 
statement:  

�������  ∗ �.(��, ��). ��  ��  ��. 
This amounts to returning the value of �� of structure 
� hosted by region ��  of machine ��. 
             A simple structure induction, on structure of 
type's τ, proves Lemma 1 reasoning about type 
transformations of Figure 5. 
Lemma 1. Suppose that  � ⇝(�,�)

�  �′. Then (�′ ≠

����) implies �  and ��are of the same type. 
             Using Lemma1, it is not hard to prove 
Corollary 1, describing transformations of Figure 6. 
Corollary 1. Suppose that � ⇝(�,�)

�  ��. Then � and 

�� define equivalent types.  
             Figures 5, 6, and 7 present the proposed 
slicing technique. Inference rules for slicing types 
over regions and machines of a distributed system are 
shown in Figure 5. The main notation in this figure is 

Γ ⊨�  �:�� (��)            
Γ(t) = τ

 Γ ⊨t   type � = �: �� 
(��)      

Γ ⊨t  d1: WT              Γ ⊨t  d2: WT

 Γ ⊨t  d1  d2: WT 
(��) 

� ∈ ���(Γ)

Γ ⊨� �: Γ(�)
(��

�)      
� ∈ ���(Γ)

Γ ⊨� �. (��,�): Γ(�)
(��

�)         
Γ ⊨�  y: τ�         {y: τ�} ⊆ τ�

Γ ⊨�  l. y: τ�
(�. ��) 

Γ ⊨�  �: ���
��

Γ ⊨� ∗ e: τ
(∗ ��)  Γ ⊨�  ����:�� (�����)    

Γ ⊨�  l: τ      Γ ⊨�  e: τ

Γ ⊨�  l ≔ e ∶   WT
(≔�) 

Γ ⊨�  S:  WT

Γ ⊨� compute  S  at  n: WT
(��������)     

Γ ⊨� S�: WT             Γ ⊨�  S�:WT

Γ ⊨�  S�S� ∶   WT
(����) 

Γ ⊨� e: int(r�,M)                Γ ⊨� S�:WT        Γ ⊨�  S�:WT

Γ ⊨�  �� �  �ℎ��  ��  ����  ��:  ��
(���) 

Γ ⊨� e: int(r�,M)                Γ ⊨� S�:WT 

Γ ⊨�  �ℎ��� �  ��  ��:  ��
(����) 

 

 

 

 

 

 
Fig. 4. Typing rules for type definitions, left expressions, statements, and programs. 
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� ⇝(�,�)
� �� meaning that the type ��   is the slice of 

the original type � on the region �� of the machine �. 
The rules (����

�) and (����
�) express that the slice of 

region ��  of machine �  includes only integers 
annotated with the pair (�, �) . The rules  (���

1
� ) , 

(����
�) , and (����)  for pointers, and structures 

recursively invoke the inference rules of the figure. 
For a machine m, the rule (����) calculates the slices 
of a type � on the regions of the machine.  
 

             Figure 6 shows rules for slicing definitions 
over regions of machines. The rule (�����)  is the 
basic one for definition slicing. In this rule, the right-
hand-side of a type definition is sliced over different 
regions of a machine �  transforming the original 
definition statement into �  statements on �.  
             Inference rules for expression slicing over 
regions are included in Figure 7. The rule (�����

�) 
recursively uses expression rules to compute an 
integer in region �� . This integer is then casted into 
this region. Clearly the assumption that inter-region 
pointers are not allowed is preserved by this rule as 

the rule only involves moving a single integer 
between regions. On the other side, as clarified by the 
rule (�����

�), the transformation of an expression of 
pointer casting is affected by the casting being 
region-specific. Rules for slicing over machines of 
left expression, statement, and program are presented 
in figure 8. According to the rule (��)  slicing a 
reference to a variable amounts to selecting the 
element of the variable belonging to the addressed 
region. A key rule in the proposed technique is that of 

assignment (:=�). The main idea behind this rule is to 
achieve, if the assigned type is not void, the 
corresponding assignment in every region of every 
machine.  
Remark 2. The fact that assignments are done 
separately in different regions of different machines 
is the reason that most of the inference rules on the 
proposed technique rules are region-oriented. This is 
done assuming the existence of the expression sliced-
type in the addressed region. 
              The following results prove that the 
proposed data slicing technique preserves type-
checking properties of distributed programs. 

� ⇝(�,�)
� �� (�

�)      
� = �         � ∈ �

���(��,�) ⇝(�,�)
� ���(��,�)

(���1
� )         

(� ≠ �)  ∨ (� ∉ �)

���(��,�) ⇝(�,�)
� ����

(���2
� ) 

� ⇝(�,�)
� �′       �� ≠ ���� 

���� �  ⇝(�,�)
�  ����  �′

(����
�)          

  (� ≠ ��)    ∨     (� ⇝(�,�)
� ����)

����′ � ⇝(�,�)
�  ����

(����
�) 

�� ⇝(�,�)
� ��

′       

������ {�
1
:�1;… ; �

�
:��}  ⇝(�,�)

�  ������ {�
1
: �1

′ ;… ; �
�
: ��

′ }
(����) 

∀� ∈ ℜ.� ⇝(�,�)
� ��       

 �  ⇝(�,�)
�  ������ {�1:�1;… ; ��: ��}

(����) 

 

 

 

 
 

Fig. 5. Types slicing over regions and machines. 
 

ϵ ⇝(�,�)
� � (��)            

∀ i. τ⇝(�,�)
�  τi

 type  t = τ   ⇝(�,�)
� type t1 = τ1; … ; type  tα = τα

(�����)     

  
�1 ⇝(�,�)

�
d�
�               �2 ⇝(�,�)

�
d�
�

�1�2 ⇝(�,�)
�

d�
� d�

�  
(����

�) 

 
 

 

 
Fig. 6. Definitions slicing over machines. 
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Lemma 2. Suppose that � ⇝(�,�)
� �� and Γ ⊨�  l: τ.  

Then Γ ⊨�  l′: τ. 
Proof. The proof is by structure induction on the 
structure of left expressions, �, as follows.  

 The case � = �: in this case �� = �. (��,�). 
By rules (��

�)  and (��
�) , Γ ⊨�  �: Γ(�) and 

Γ ⊨�   �
�: Γ(�).  Hence the required is 

satisfied.  
 The case � = �. �: in this case �′ = �′. �. By 

the rule (��), it is true that ⇝(�,�)
� �� . Now 

since Γ ⊨�   �. �: �, then by rule (�. ��) there 
exists ��  such that Γ ⊨�  �: ��  and {�: ��} ⊆
� . By induction hypothesis, Γ ⊨�  �

�: ��. 
Therefore by the rule (�. ��), Γ ⊨�   �′. �: � 
as required.  

 The case � =∗ �: in this case �′ =∗ �′. By the 
rule (∗ ��), it is true that � ⇝(�,�)

� ��. Now 

sinceΓ ⊨� ∗ �: �, then by rule (∗ ��)  there 
exists �� such that Γ ⊨�  �: ��  and �� =
 ����� . By Lemma 3, Γ ⊨�  �

�: �����. 
Therefore by the rule (∗ ��), Γ ⊨� ∗ �′. �: � 
as required. 
 

Lemma 3. Suppose that � ⇝(�,�)
� �� and Γ ⊨�  �: �. 

Then Γ ⊨�  �
�: �.  

Proof. The proof is by structure induction on the 
structure of expressions, �. 
Some cases are shown below. 

 The case  � = �: in this case, by the rule (��), 
� ⇝(�,�)

� ��  and �′ = �′ . By Lemma 2, 

Γ ⊨�   �: � impliesΓ ⊨�   �′: �. Hence by the 
rule (��), Γ ⊨�  �

�: �  as required.  
 The case  � = �� ��� ��: in this case, by the 

rule ���� ��� ���
�
� ,         � =  ��� (��, �). 

Moreover Γ ⊨�  ��: ��� (��, �) and 
Γ ⊨� ��: ��� (��, �) . Also by the rule 

(��� ������
�
) , we have �� ⇝(�,�)

� �1
′  and 

�� ⇝(�,�)
� �2

′ .  Hence by induction 

hypothesis  Γ ⊨�  �1
′ ∶ ��� (�� ,�)  and 

Γ ⊨� �2
′ : ��� (��, �) . Therefore by the rule 

���� ��� ���
�
� , Γ ⊨�  �1

′  ��� �2
′ : ��� (�� ,�) =

�, as required.  
 The case � = ������ − � (�, �) : in this 

case, by the rule (������ −��) , �� =
������ −�(��, �) and  � ⇝(�,�)

� ��. By the 

rule (������ −��) , it is true that 

Γ ⊨�  �: ���
��
 �. Hence by induction 

hypothesis Γ ⊨�  �
�: ����

�
 �.  Therefore 

Γ ⊨�  ������ −�(��, �): �, by the rule 
(������ −��) as required for this case.  

 The case � = ���� < ������,��� →

���(��, ��) > � : in this case, by the 

rule (����1
�) , �� =  ���� < ������,��� →

���(��, ��) > ��  and � ⇝(�,�)
� �� . By the 

rule �����1
� �,  it is true 

that  Γ ⊨�  �: ���(��, ��). Hence by induction 

� ⇝(�,�)
� �′

� ⇝(�,�)
� �′

(��)         
�1 ⇝(�,�)

� ��
�       �2 ⇝(�,�)

� ��
�

�1 ��� �2 ⇝(�,�)

�
��
�  ���  ��

�
(���������

�
) 

� ⇝(�,�)
� �′        

��� �  ⇝(�,�)
�  ���  �′

(����)          
  � ⇝(�,�)

� �′

& � ⇝(�,�)
� & �′

(&��) 

� ⇝(�,�)
� �′       

������ −�(�,�) ⇝(�,�)
�  ������ −���′ , ��

(������−��) 
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Fig. 7. Expression slicing over regions. 
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hypothesis Γ ⊨�  �
�: ������,���. 

Therefore Γ ⊨�  ���� < ������, ��� → 

���(��, ��) > ��: ���(��, ��) , by the 

rule �����1
� �. This completes the proof for 

this case. 
 

             Corollary 2 results directly from Lemma 3. 
Corollary 2. Suppose that � ⇝(�,�)

� ��. 

Then ����ℎ − �(�) = ����ℎ − �(�′).  
 

 
Theorem 1. Suppose that � ⇝(�,�)

� �′  and 

Γ ⊨�  S:  WT. Then Γ ⊨�  S′:  WT. 
Proof. The proof is by structure induction on 
structure of statements, �.  some cases are shown 
below. 

 The case � = � ≔ �: in this case, by the rule 
(:=�) , �� = �� ≔ �′ .  Moreover 

� ⇝(�,�)
� �� and  � ⇝(�,�)

� �� . Also since 

Γ ⊨�  l ≔ e:  WT, it is true that Γ ⊨�  e:  τ and 
Γ ⊨� l:  τ for some τ, by the rule (:=�). Now 
by Lemmas 2 and 3, we conclude Γ ⊨�  e′:  τ 
and Γ ⊨� l′:  τ. Hence by (:=�) , Γ ⊨�  l′ ≔

e′:  WT, as required.  
 The case � = ������� � �� �: in this case, 

by the rule (��������) , 

� = ������� �′ �� � and � ⇝(�,�)
� �′. Also 

since Γ ⊨� ������� � �� n:  WT, it is true 
that Γ ⊨� � ∶  WT, by the rule ����������. 
Now by induction hypothesis, we 
conclude Γ ⊨� �′ ∶  WT . Hence by 
����������,  Γ ⊨� ������� �′ �� n:  WT. 
This completes the proof for this case.  

 The case � = ��; ��: in this case, by the rule 
(����) , �� = ��

�; ��
� , �� ⇝(�,�)

� ��
� , and   

�� ⇝(�,�)
� ��

� . Also since Γ ⊨� �1; �2:  WT, it 

is true that Γ ⊨� �1:  WT and Γ ⊨� �2:  WT, by 
the rule (����). Now by induction 

hypothesis, we conclude Γ ⊨� �1
′ :  WT and 

Γ ⊨� �2
′ :  WT.  Hence by (����), 

Γ ⊨� �1
′ ; �2

′
:  WT which completes the proof 

for this case. 
             Using Theorem 1 and Corollary 1, it is 
straightforward to conclude Corollary 3. 
Corollary 3. (Soundness of program slicing) Suppose 
that  ��⇝(�,�)

�
 �′�′  and Γ ⊨�  dS:  WT. 

Then Γ ⊨p  d′S′:  WT. 

Remark 3. The type system of Section 2 can be 
realized as static semantics of the language �ℒ���. 
The proofs of Lemma 2 and 3 appear to rely on each 
other. This is absolutely true as expressions of a 
program are finite. The source of this sort of 
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� �. (��,�) (�

�)       
� ⇝(�,�)

� ��

�. � ⇝(�,�)
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� ��                � ⇝(�,�)

� ��

� ≔ � ⇝(�,�)
� �� ≔ �′

(: =�)           

� ⇝(�,�)
� �′       

������� � �� � ⇝(�,�)
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Fig. 8. Left expression, statement, and program slicing over machines. 
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recursion is the syntactic structures of expressions 
and left expressions (Figure 2). 
4. Related Work 

             Program slicing [23, 3] is a technique that 
enables a method to focus on certain part of a 
program. At a specific program point and with 
reference to a group of certain variables, a slice is an 
executable collection of program statements that 
maintain the original program behavior. Program 
slicing has many applications like parallelization 
[19], debugging [22], program comprehension [14], 
testing [16], downsizing, and restructuring. 
Statements deletions are the bases of the original 
concept [21] of program slice. However, there are 
many variants of this notion such as quasi static 
slicing [1, 17], dynamic slicing [22], conditioned 
slicing [18], and simultaneous dynamic slicing [7]. 
Other concepts [8] of slicing are based on generic 
notions of transformation such as simple statement 
deletion. 
             Typically, a slice is built on slicing criterion 
concept which is a pair < �, � > of a program point 
and � is a collection of variables. Hence at a program 
point p and with reference to �, a slice that is based 
on < �,� > is an executable collection of program 
statements that maintain the original program 
behavior. The maintainability here means that values 
of variables of � are the same for the slice and the 
original program at the program point �. The concept 
of static slicing referees to maintaining the behavior 
of the original program on any input. However other 
forms of slicing maintain the behavior for a subset of 
program inputs. 

          Quasi static slicing [1, 17] is a hybrid 
technique for slicing that associates static and 
dynamic slicing [7]. Such hybrid techniques are 
required when analyzing programs that have fixed 
input variables and varying input values. Therefore 
on a set of potential program inputs, a quasi slice 
keeps the program behavior w.r.t. slicing variables. 
Potential value combinations assumed by 
unconstrained input variables specify the set of 
potential program inputs. Interestingly, the quasi 
static slice amounts to a static slice when all variables 
are unconstrained. 
             An alternative slicing approach is dynamic 
slicing [12, 11]. In this technique a dynamic analysis 
is used to find statements affected by a certain set of 
variables, on a specific anomalous execution path. 
This approach results in a considerable reduction in 
the size of the slice, and hence facilities bugs 
allocation. Moreover, dynamic slicing treats pointer 
variables and arrays in a practical way (in terms of 
run-time). Rather than treating every use (definition) 
of an array element as a use (definition) of the full 
array [2], dynamic slicing separately treats every 

array element. Equivalently, all along the execution 
of a program, dynamic slicing recognizes objects 
referenced by pointer variables. Interestingly, the 
quasi static slice amounts to a dynamic slice if all 
variable inputs are fixed. 
             A general version of slicing based on 
statement deletion is conditioned slicing [18]. This 
approach uses a slicing pattern for a collection of 
program executions to represent the original program 
behavior using only a collection of program 
statements. On the input, the first order logic is hence 
used to describe initial states of the program that 
specify these program executions. 
             Simultaneous dynamic program slicing [7, 
23] constructs slices with reference to a collection of 
program executions. This approach is an extension of 
dynamic slicing in the form of a simultaneous 
application of dynamic slicing to a group of test 
cases, instead of only one case. However, on a group 
of test cases, a simultaneous program slice does not 
amount to applying dynamic slicing on the concerned 
test cases. Moreover, this multi-application of 
dynamic slicing is unsound in the sense that the 
simultaneous validity is not maintained on all the 
inputs. Simultaneous dynamic slicing is typically 
achieved iteratively, beginning with a group of 
statements. Hence simultaneous dynamic slices are 
built incrementally, via computations in each 
iteration.  
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