
Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1361

Distributed Data and Programs Slicing

Mohamed A. El-Zawawy1,2

1College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh, Kingdom of Saudi Arabia

2Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
maelzawawy@cu.edu.eg

Abstract: This paper presents a new technique for data slicing of distributed programs running on a hierarchy of
machines. Data slicing can be realized as a program transformation that partitions heaps of machines in a hierarchy
into independent regions. Inside each region of each machine, pointers preserve the original pointer structures in the
original heap hierarchy. Each heap component of the base type (e.g., the integer type) goes only to a region of one of
the heaps. The proposed technique has the shape of a system of inference rules. In addition, this paper presents a
simply structure type system to decide type soundness of distributed programs. Using this type system, a
mathematical proof that the proposed slicing technique preserves typing properties is outlined in this paper as well.
[El-Zawawy MA. Distributed Data and Programs Slicing. Life Sci J 2013;10(4):1361-1369]. (ISSN: 1097-8135).
http://www.lifesciencesite.com. 180

Keywords: Distributed data; distributed Programs; data slicing; programs slicing; type systems; program
transformation.

1. Introduction
 Breaking down a large distributed program
into smaller pieces or minimizing its size is essential
for many software analysis techniques such as
parallelization [19], debugging [22], program
comprehension [14], testing [16], downsizing, and
restructuring. Introduced by Mark Weiser [20], data
and program slicing [3] are applicable techniques for
narrowing the focus of a program to a certain region
of the memory. Interesting enough, data slicing was
motivated by the desire of guiding students through
debugging programs. A program slice can be defined
as an executable subset of the program that simulates
the original program on a certain data slice (region of
the memory). Data slicing is useful when compilers
need to modify data structures in the program being
compiled without breaching pre-compiled
assumptions about data layout.
 Distributed systems [15] are typically
constructed on hierarchical memory structure (Local
stores and caches of processors, such as cell game
processor, are organized in a hierarchal fashion). This
memory system equips each process with explicitly
controlled local caches or stores. Distributed
computations and their hierarchy models of
memories have been the focus of much research
activities. This is partially justified by the existence
of low-cost processors facilitating building such
distributed systems. Rather than distributed systems
of a number of processors create immunity against
different sorts of failures, they also have incremental
growth capabilities and high throughput. One
example of memory hierarchy is to partition memory
into computational grids consisting of clusters

partitioned into nodes including program threads.
Practically, memories of most distributed
programming languages have a two level abstraction.
The model of distributed systems used in this paper is
the single program multi data (SPMD) model [15].
 Type systems [13] are theoretical means for
proving type soundness which amounts to the
absence of method-not-found and field-not-found
errors. For distributed programming languages, like
�ℒ��� of this paper, a type system guaranties that
every use of a location considers its predefined type.
Proving this property is, however, not easy due to the
potential intervention of executing the program on
different machines of hierarchy.
 This paper presents a new technique for
slicing distributed programs running on hierarchal
memories. The proposed technique has the form of
inference rules which are simply structured. The new
technique is illustrated using a simple, however rich,
model of distributed programming language (�ℒ���
- Figure 2). The paper also presents a type system
that checks type soundness of programs of �ℒ���
and programs resulting from the proposed slicing
technique. A prove that prosperity of type soundness
of a program is preserved by the slicing technique is
also presented in this paper.
 Rather than the traditional algorithmic way,
using a system of inference rules [4–6] to achieve
static analyses and transformations of distributed
programs has recently proved to be a good choice.
This is so as derivations in the system of rules work
as simply-structured correctness proofs for results of
the system. Such proofs are required by many
applications like proof-carrying code [9].

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1362

Fig. 1. A motivating example for distributed data and

program slicing.

Motivation
 Suppose a distributed system including two
machines �� and �� each of them has two memory
regions �� and ��. On this system, suppose also a
distributed program defining the following types:
���� �� = ������
{��: ����

�, ��: ����
�, ��: ����

�, ��: ���(��, {��,��})};
���� �� = ������
{��: ���(��, {��}), ��: ���(��, {��,��})};
 The left-hand-side of Figure 1 illustrates how
these data types will be allocated on memories of
machines �� and �� . The right-hand-side of the
figure explains distributed data slicing effects on the
two machines into the two regions. Annotations are
used in integer fields of data structures to determine
regions of machines that will host these fields. The
slicing includes inserting shapes of original data
structures in each region of each machine. However
such a shape of a region typically contains only
relevant data and necessary pointers.
 The aim of this paper is to provide formal
techniques to transform memories of �� and �� into
that on the right-hand-side Figure 1. Moreover the
proposed technique is required to slice the program
that includes the type definitions into slices each
works on the data of a certain region.
Contributions
 Contributions of this paper include:

1. A new type system for checking type
soundness of distributed programs.

2. A novel and sound technique for slinging
distributed data and programs running on
hierarchal systems of memories.

3. A mathematical proof that the proposed
slicing technique preserves typing
properties.

Organization
 The organization in the rest of the paper is as
following. The syntax of the target language and a
system of inference rules for type checking of the
language constructs are presented in Section 2.
Section 3 introduces the new technique for slicing of
distributed programs running on hierarchal machines.
The type system of Section 2 is used in Section 3 to
prove that the proposed slicing technique preserves
type-soundness of sliced programs. Related work is
reviewed in Section 4.

2. Target Language �ℒ���: Syntax and Type
Checking
 This section presents the syntax of the target
language and a system of inference rules for type
checking of the language constructs. The syntax of
the target programming language, �ℒ���, is
presented in Figure 2. We assume an arbitrary
hierarchy of machines. In term of parallel programs,
a single execution thread resembles a machine. A
countably infinite collection of variables (machine-
private) is used in the language and denoted by ����
with typical elements �, �. Sets of finite arithmetic
and Boolean operations are denoted by ��� and ���,

respectively. The set of machine identifiers is
denoted by ℳ. The types of the language are integer,
pointer, structure, and named types (�). The empty
structure, struct{}, is denoted by void as a shorthand.
It is noted that base types (integer types) are
quantified (Similar type quantification can be found
in [3]) with pairs of a region and a set of machines.

 ��� � ∈ � ⊆ℳ
� ∈ ����� ∶≔ ���(��, �) ∣ ����� ∣ �

∣ ������{��: ��,… , ��: ��}.
� ∈ ���� ∶≔ ���� � = � ∣ ���� ∣ �.
� ∈ ����� ∶≔ � ∣ �. � ∣∗ �.

� ∈ ����� ∶≔ ���� ∣ � ≔ � ∣ ������� � �� �
∣ ��; �� ∣ �� � �ℎ�� ������ ��
∣ �ℎ��� � �� ��.

� ∈ ����� ∶≔ ��

�, � ∈ ����, � ∈ ℤ, ��� ∈ ���, ��� ��� ∈ ���,

� ∈ ���� ∶≔ � ∣ �� ��� �� ∣ &� ∣ ��� � ∣

������ −�(�,�) ∣ ������� � �� � ∣ ���� <

����� → ���(��, �) > � ∣ ���� < ������,��� →

���(��, ��) > �.

Fig. 2. The programming language model, �ℒang.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1363

Fig. 3. Typing rules for expression.

Γ ⊨� �: �

 Γ ⊨� �: �
(��)

Γ ⊨� ��: ��� (��,�) Γ ⊨� ��: ��� (��,�)

 Γ ⊨� �� ��� ��: ��� (�� , �)
���� ��� ���

�
�

� ∈ ℳ
Γ ⊨� ��� �: ���

� �
(����)

Γ ⊨� �: �

Γ ⊨� � ∶ ���
� �

(&��)
Γ ⊨� e: τ

� τ′ ⊆ τ

Γ ⊨� e ∶ τ
(⊆�)

����ℎ − �(�) = �� Γ ⊨� �: ���
��
 �

Γ ⊨�: modify − w (e, m) ∶ ptr� �
(������ −��)

Γ ⊨� e: τ

Γ ⊨� compute e at m: τ
(�����)

Γ ⊨� �: ������,���

Γ ⊨� cast < ����r�, M�� ↪ ���(��,��) > �: ���(��,��)
(�����

�)

Γ ⊨� e: ptr
�τ(��,�) ℎ�� � ���� ����ℎ���� ���� �

Γ ⊨� ���� < ����� ↪ ���(��,�) > �: ���(��,�)
(�����

�)

This is so to determine the locations of the data of
these types. The language programs are executed on a
distributed system of � machines with identifiers ��
through��. Each machine has � regions named ��
through��.The set of all the regions is denoted by ℜ.
�ℒ��� can be realized as a generalization of the
language in [10].
 The hierarchy level hosting the smallest
common ancestor of two machines is the distance
between the two machines. The number of levels in
the machines hierarchy is dubbed the depth of the
hierarchy. The width of a pointer on a machine is the
distance between the machine hosting the pointer and
the machine hosting the location pointed-at by the
pointer. We assume a function width-f that assigns
each pointer its width. The symbol h denotes the
height of the machine hierarchy. Therefore the set of
widths of pointers is {1,… , ℎ}and the pointer type is
parameterized by the machine �� of the location it
points-at.
 Expressions (�) and l-expressions (�) are
inspired by that of �. Binary operations (arithmetic
and boolean) are only applicable to integers in the
same region of possibly different machines.
Expressions include:

 ��� �: allocates a memory location of type
� and returns the allocated address.

 ������ −�(�,�) : changes the pointer
width. More specifically, it changes the
machine the expression points-at. Hence the
type of � becomes the reference �����,

rather than ����
�
�.

 ������� � �� �: computes the expression �
on the machine � and distributes the value
to other machines.

 ���� < ����� → ���(��,�) > �: casts
from pointers to integers in different regions
of different machines.

 ���� < ������,��� → ���(��, ��) > �: casts
between integers in different regions of
different machines.
The statement ������� � �� � executes the

statement � on the machine �. A �ℒ��� program is
a sequence of type definitions followed by a
statement.
Remark 1. Primitive values such as Boolean values
and integers are not incorporated in the
language �ℒ���. It is straightforward to include
them as an extension. Although the language �ℒ���
is SPMD, the proposed data-slicing technique is
easily extendable to other parallelism models.
However these extensions are not considered in this
paper.
 A system of inference rules for type
checking of components of �ℒ��� is presented in
Figures 3 and 4. A context, Γ, is a map from variables
and type names to types. A program is well-typed
(WT) if its body, �, is well-typed with initial
environment Γ� . In the allocation rule(����) , the
expression generates a pointer type ����for all �. As
the allocation takes place on the same machine that is
executing the statement, the width of the created
pointer is 1.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1364

 The modify expression enables modifying the
machine �� that a pointer references. This, of course,
results in changing the top-level expression width.
This way is used to decrease the width of the
expression more often than to increase it. This is so
because of the subtyping rule. After a dynamic
analysis, the modify statement can be used to express
that the expression references data on a machine
closer than initially thought. The inclusion
relationship in the rule (⊆�) applies only on structure
types. The remaining rules are self-explanatory.

3. Data Slicing of �����

 This section presents a new technique for
data slicing [3] of distributed programs [10] running
on hierarchal machines. The type system of the
previous section is used later in this section to prove
that the proposed technique preserves type-soundness
of sliced programs. Data slicing of distributed
programs aims at dividing heaps of hierarchy
(distributed) machines into separate regions. The base
types (only integers in our case) of the input program
of data slicing have to be region-machine-annotated.
The result of the slicing is a new program whose data
structures are split into separate regions of the heaps
of hierarchy machines. Of course the new and
original programs have to be semantically equivalent.
Data must be contained in regions of machine
hierarchy according to data annotations; adding new
pointers to do so is allowed. However complete
independence of regions is assumed; cross-region
boundaries pointers are not allowed.
 As a result of data slicing, every machine
region reflects the original structure of heaps in
machine hierarchy (for an example see Figure 1).

Hence if, for example, the data of a liked list in the
original heap hierarchy are annotated with different
regions of different machines, then every region on
each machine will include a similar linked list with
only the list data for this region. Hence whereas base
fields will be divided among regions of different
machines in the hierarchy according to their
annotations, the same pointer maybe replicated into
many regions as necessary. Therefore in data slicing
base fields are separated and pointers are replicated.

Example: Consider applying the slicing technique on
the statement compute:

������� ∗ �. �� �� ��,
where the type of � is ������ and �� is the type
defined in the motivating example illustrated by
Figure 1. The result of the slicing will be the
statement:

������� ∗ �.(��, ��). �� �� ��.
This amounts to returning the value of �� of structure
� hosted by region �� of machine ��.
 A simple structure induction, on structure of
type's τ, proves Lemma 1 reasoning about type
transformations of Figure 5.
Lemma 1. Suppose that � ⇝(�,�)

� �′. Then (�′ ≠

����) implies � and ��are of the same type.
 Using Lemma1, it is not hard to prove
Corollary 1, describing transformations of Figure 6.
Corollary 1. Suppose that � ⇝(�,�)

� ��. Then � and

�� define equivalent types.
 Figures 5, 6, and 7 present the proposed
slicing technique. Inference rules for slicing types
over regions and machines of a distributed system are
shown in Figure 5. The main notation in this figure is

Γ ⊨� �:�� (��)
Γ(t) = τ

 Γ ⊨t type � = �: ��
(��)

Γ ⊨t d1: WT Γ ⊨t d2: WT

 Γ ⊨t d1 d2: WT
(��)

� ∈ ���(Γ)

Γ ⊨� �: Γ(�)
(��

�)
� ∈ ���(Γ)

Γ ⊨� �. (��,�): Γ(�)
(��

�)
Γ ⊨� y: τ� {y: τ�} ⊆ τ�

Γ ⊨� l. y: τ�
(�. ��)

Γ ⊨� �: ���
��

Γ ⊨� ∗ e: τ
(∗ ��) Γ ⊨� ����:�� (�����)

Γ ⊨� l: τ Γ ⊨� e: τ

Γ ⊨� l ≔ e ∶ WT
(≔�)

Γ ⊨� S: WT

Γ ⊨� compute S at n: WT
(��������)

Γ ⊨� S�: WT Γ ⊨� S�:WT

Γ ⊨� S�S� ∶ WT
(����)

Γ ⊨� e: int(r�,M) Γ ⊨� S�:WT Γ ⊨� S�:WT

Γ ⊨� �� � �ℎ�� �� ���� ��: ��
(���)

Γ ⊨� e: int(r�,M) Γ ⊨� S�:WT

Γ ⊨� �ℎ��� � �� ��: ��
(����)

Fig. 4. Typing rules for type definitions, left expressions, statements, and programs.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1365

� ⇝(�,�)
� �� meaning that the type �� is the slice of

the original type � on the region �� of the machine �.
The rules (����

�) and (����
�) express that the slice of

region �� of machine � includes only integers
annotated with the pair (�, �) . The rules (���

1
�) ,

(����
�) , and (����) for pointers, and structures

recursively invoke the inference rules of the figure.
For a machine m, the rule (����) calculates the slices
of a type � on the regions of the machine.

 Figure 6 shows rules for slicing definitions
over regions of machines. The rule (�����) is the
basic one for definition slicing. In this rule, the right-
hand-side of a type definition is sliced over different
regions of a machine � transforming the original
definition statement into � statements on �.
 Inference rules for expression slicing over
regions are included in Figure 7. The rule (�����

�)
recursively uses expression rules to compute an
integer in region �� . This integer is then casted into
this region. Clearly the assumption that inter-region
pointers are not allowed is preserved by this rule as

the rule only involves moving a single integer
between regions. On the other side, as clarified by the
rule (�����

�), the transformation of an expression of
pointer casting is affected by the casting being
region-specific. Rules for slicing over machines of
left expression, statement, and program are presented
in figure 8. According to the rule (��) slicing a
reference to a variable amounts to selecting the
element of the variable belonging to the addressed
region. A key rule in the proposed technique is that of

assignment (:=�). The main idea behind this rule is to
achieve, if the assigned type is not void, the
corresponding assignment in every region of every
machine.
Remark 2. The fact that assignments are done
separately in different regions of different machines
is the reason that most of the inference rules on the
proposed technique rules are region-oriented. This is
done assuming the existence of the expression sliced-
type in the addressed region.
 The following results prove that the
proposed data slicing technique preserves type-
checking properties of distributed programs.

� ⇝(�,�)
� �� (�

�)
� = � � ∈ �

���(��,�) ⇝(�,�)
� ���(��,�)

(���1
�)

(� ≠ �) ∨ (� ∉ �)

���(��,�) ⇝(�,�)
� ����

(���2
�)

� ⇝(�,�)
� �′ �� ≠ ����

���� � ⇝(�,�)
� ���� �′

(����
�)

 (� ≠ ��) ∨ (� ⇝(�,�)
� ����)

����′ � ⇝(�,�)
� ����

(����
�)

�� ⇝(�,�)
� ��

′

������ {�
1
:�1;… ; �

�
:��} ⇝(�,�)

� ������ {�
1
: �1

′ ;… ; �
�
: ��

′ }
(����)

∀� ∈ ℜ.� ⇝(�,�)
� ��

 � ⇝(�,�)
� ������ {�1:�1;… ; ��: ��}

(����)

Fig. 5. Types slicing over regions and machines.

ϵ ⇝(�,�)
� � (��)

∀ i. τ⇝(�,�)
� τi

 type t = τ ⇝(�,�)
� type t1 = τ1; … ; type tα = τα

(�����)

�1 ⇝(�,�)

�
d�
� �2 ⇝(�,�)

�
d�
�

�1�2 ⇝(�,�)
�

d�
� d�

�
(����

�)

Fig. 6. Definitions slicing over machines.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1366

Lemma 2. Suppose that � ⇝(�,�)
� �� and Γ ⊨� l: τ.

Then Γ ⊨� l′: τ.
Proof. The proof is by structure induction on the
structure of left expressions, �, as follows.

 The case � = �: in this case �� = �. (��,�).
By rules (��

�) and (��
�) , Γ ⊨� �: Γ(�) and

Γ ⊨� �
�: Γ(�). Hence the required is

satisfied.
 The case � = �. �: in this case �′ = �′. �. By

the rule (��), it is true that ⇝(�,�)
� �� . Now

since Γ ⊨� �. �: �, then by rule (�. ��) there
exists �� such that Γ ⊨� �: �� and {�: ��} ⊆
� . By induction hypothesis, Γ ⊨� �

�: ��.
Therefore by the rule (�. ��), Γ ⊨� �′. �: �
as required.

 The case � =∗ �: in this case �′ =∗ �′. By the
rule (∗ ��), it is true that � ⇝(�,�)

� ��. Now

sinceΓ ⊨� ∗ �: �, then by rule (∗ ��) there
exists �� such that Γ ⊨� �: �� and �� =
 ����� . By Lemma 3, Γ ⊨� �

�: �����.
Therefore by the rule (∗ ��), Γ ⊨� ∗ �′. �: �
as required.

Lemma 3. Suppose that � ⇝(�,�)
� �� and Γ ⊨� �: �.

Then Γ ⊨� �
�: �.

Proof. The proof is by structure induction on the
structure of expressions, �.
Some cases are shown below.

 The case � = �: in this case, by the rule (��),
� ⇝(�,�)

� �� and �′ = �′ . By Lemma 2,

Γ ⊨� �: � impliesΓ ⊨� �′: �. Hence by the
rule (��), Γ ⊨� �

�: � as required.
 The case � = �� ��� ��: in this case, by the

rule ���� ��� ���
�
� , � = ��� (��, �).

Moreover Γ ⊨� ��: ��� (��, �) and
Γ ⊨� ��: ��� (��, �) . Also by the rule

(��� ������
�
) , we have �� ⇝(�,�)

� �1
′ and

�� ⇝(�,�)
� �2

′ . Hence by induction

hypothesis Γ ⊨� �1
′ ∶ ��� (�� ,�) and

Γ ⊨� �2
′ : ��� (��, �) . Therefore by the rule

���� ��� ���
�
� , Γ ⊨� �1

′ ��� �2
′ : ��� (�� ,�) =

�, as required.
 The case � = ������ − � (�, �) : in this

case, by the rule (������ −��) , �� =
������ −�(��, �) and � ⇝(�,�)

� ��. By the

rule (������ −��) , it is true that

Γ ⊨� �: ���
��
 �. Hence by induction

hypothesis Γ ⊨� �
�: ����

�
 �. Therefore

Γ ⊨� ������ −�(��, �): �, by the rule
(������ −��) as required for this case.

 The case � = ���� < ������,��� →

���(��, ��) > � : in this case, by the

rule (����1
�) , �� = ���� < ������,��� →

���(��, ��) > �� and � ⇝(�,�)
� �� . By the

rule �����1
� �, it is true

that Γ ⊨� �: ���(��, ��). Hence by induction

� ⇝(�,�)
� �′

� ⇝(�,�)
� �′

(��)
�1 ⇝(�,�)

� ��
� �2 ⇝(�,�)

� ��
�

�1 ��� �2 ⇝(�,�)

�
��
� ��� ��

�
(���������

�
)

� ⇝(�,�)
� �′

��� � ⇝(�,�)
� ��� �′

(����)
 � ⇝(�,�)

� �′

& � ⇝(�,�)
� & �′

(&��)

� ⇝(�,�)
� �′

������ −�(�,�) ⇝(�,�)
� ������ −���′ , ��

(������−��)

� ⇝(�,�)
� �′

������� � �� � ⇝(�,�)
� ������� �′ �� �

(�����)

� ⇝(�,�)
� �′

���� < ������,��� → ���(��,��) > � ⇝(�,�)
� ���� < ������,��� → ���(��,��) > �′

(����1
�)

� ⇝(�,�)
� �′ � ⇝(�,�)

� �′

���� < ����� → ���(��,�) > � ⇝(�,�)
� ���� < �����′ → ���(��,�) > �′

(����2
�)

Fig. 7. Expression slicing over regions.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1367

hypothesis Γ ⊨� �
�: ������,���.

Therefore Γ ⊨� ���� < ������, ��� →

���(��, ��) > ��: ���(��, ��) , by the

rule �����1
� �. This completes the proof for

this case.

 Corollary 2 results directly from Lemma 3.
Corollary 2. Suppose that � ⇝(�,�)

� ��.

Then ����ℎ − �(�) = ����ℎ − �(�′).

Theorem 1. Suppose that � ⇝(�,�)

� �′ and

Γ ⊨� S: WT. Then Γ ⊨� S′: WT.
Proof. The proof is by structure induction on
structure of statements, �. some cases are shown
below.

 The case � = � ≔ �: in this case, by the rule
(:=�) , �� = �� ≔ �′ . Moreover

� ⇝(�,�)
� �� and � ⇝(�,�)

� �� . Also since

Γ ⊨� l ≔ e: WT, it is true that Γ ⊨� e: τ and
Γ ⊨� l: τ for some τ, by the rule (:=�). Now
by Lemmas 2 and 3, we conclude Γ ⊨� e′: τ
and Γ ⊨� l′: τ. Hence by (:=�) , Γ ⊨� l′ ≔

e′: WT, as required.
 The case � = ������� � �� �: in this case,

by the rule (��������) ,

� = ������� �′ �� � and � ⇝(�,�)
� �′. Also

since Γ ⊨� ������� � �� n: WT, it is true
that Γ ⊨� � ∶ WT, by the rule ����������.
Now by induction hypothesis, we
conclude Γ ⊨� �′ ∶ WT . Hence by
����������, Γ ⊨� ������� �′ �� n: WT.
This completes the proof for this case.

 The case � = ��; ��: in this case, by the rule
(����) , �� = ��

�; ��
� , �� ⇝(�,�)

� ��
� , and

�� ⇝(�,�)
� ��

� . Also since Γ ⊨� �1; �2: WT, it

is true that Γ ⊨� �1: WT and Γ ⊨� �2: WT, by
the rule (����). Now by induction

hypothesis, we conclude Γ ⊨� �1
′ : WT and

Γ ⊨� �2
′ : WT. Hence by (����),

Γ ⊨� �1
′ ; �2

′
: WT which completes the proof

for this case.
 Using Theorem 1 and Corollary 1, it is
straightforward to conclude Corollary 3.
Corollary 3. (Soundness of program slicing) Suppose
that ��⇝(�,�)

�
 �′�′ and Γ ⊨� dS: WT.

Then Γ ⊨p d′S′: WT.

Remark 3. The type system of Section 2 can be
realized as static semantics of the language �ℒ���.
The proofs of Lemma 2 and 3 appear to rely on each
other. This is absolutely true as expressions of a
program are finite. The source of this sort of

� ⇝(�,�)
� �. (��,�) (�

�)
� ⇝(�,�)

� ��

�. � ⇝(�,�)
� ��. �

(��)
� ⇝(�,�)

� ��

∗ � ⇝(�,�)
� ∗ ��

(∗ ��)

���� ⇝(�,�)
� ���� (��)

� ⇝(�,�)
� �� � ⇝(�,�)

� ��

� ≔ � ⇝(�,�)
� �� ≔ �′

(: =�)

� ⇝(�,�)
� �′

������� � �� � ⇝(�,�)
� ������� �′ �� �

(��������)

�1 ⇝(�,�)
� �1

′ �2 ⇝(�,�)
� �2

′

�1; �2 ⇝(�,�)
� �1

′ ; �2
′

(����)

� ⇝(�,�)
� �′ �

�
⇝(�,�)

� ��
′
 �� ⇝(�,�)

� ��
′

 �� � �ℎ�� �� ���� �� ⇝(�,�)

� �� �′ �ℎ�� ��
′ ���� ��

′
�����

� ⇝(�,�)
� �′ �

�
⇝(�,�)

� ��
′

 �ℎ��� � �� �� ⇝(�,�)
� �ℎ��� �′ �� ��′

(�ℎ����)

� ⇝(�,�)
� �′ � ⇝(�,�)

� �′

 ��⇝(�,�)
�

 �′�′
(�����)

Fig. 8. Left expression, statement, and program slicing over machines.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1368

recursion is the syntactic structures of expressions
and left expressions (Figure 2).
4. Related Work

 Program slicing [23, 3] is a technique that
enables a method to focus on certain part of a
program. At a specific program point and with
reference to a group of certain variables, a slice is an
executable collection of program statements that
maintain the original program behavior. Program
slicing has many applications like parallelization
[19], debugging [22], program comprehension [14],
testing [16], downsizing, and restructuring.
Statements deletions are the bases of the original
concept [21] of program slice. However, there are
many variants of this notion such as quasi static
slicing [1, 17], dynamic slicing [22], conditioned
slicing [18], and simultaneous dynamic slicing [7].
Other concepts [8] of slicing are based on generic
notions of transformation such as simple statement
deletion.
 Typically, a slice is built on slicing criterion
concept which is a pair < �, � > of a program point
and � is a collection of variables. Hence at a program
point p and with reference to �, a slice that is based
on < �,� > is an executable collection of program
statements that maintain the original program
behavior. The maintainability here means that values
of variables of � are the same for the slice and the
original program at the program point �. The concept
of static slicing referees to maintaining the behavior
of the original program on any input. However other
forms of slicing maintain the behavior for a subset of
program inputs.

 Quasi static slicing [1, 17] is a hybrid
technique for slicing that associates static and
dynamic slicing [7]. Such hybrid techniques are
required when analyzing programs that have fixed
input variables and varying input values. Therefore
on a set of potential program inputs, a quasi slice
keeps the program behavior w.r.t. slicing variables.
Potential value combinations assumed by
unconstrained input variables specify the set of
potential program inputs. Interestingly, the quasi
static slice amounts to a static slice when all variables
are unconstrained.
 An alternative slicing approach is dynamic
slicing [12, 11]. In this technique a dynamic analysis
is used to find statements affected by a certain set of
variables, on a specific anomalous execution path.
This approach results in a considerable reduction in
the size of the slice, and hence facilities bugs
allocation. Moreover, dynamic slicing treats pointer
variables and arrays in a practical way (in terms of
run-time). Rather than treating every use (definition)
of an array element as a use (definition) of the full
array [2], dynamic slicing separately treats every

array element. Equivalently, all along the execution
of a program, dynamic slicing recognizes objects
referenced by pointer variables. Interestingly, the
quasi static slice amounts to a dynamic slice if all
variable inputs are fixed.
 A general version of slicing based on
statement deletion is conditioned slicing [18]. This
approach uses a slicing pattern for a collection of
program executions to represent the original program
behavior using only a collection of program
statements. On the input, the first order logic is hence
used to describe initial states of the program that
specify these program executions.
 Simultaneous dynamic program slicing [7,
23] constructs slices with reference to a collection of
program executions. This approach is an extension of
dynamic slicing in the form of a simultaneous
application of dynamic slicing to a group of test
cases, instead of only one case. However, on a group
of test cases, a simultaneous program slice does not
amount to applying dynamic slicing on the concerned
test cases. Moreover, this multi-application of
dynamic slicing is unsound in the sense that the
simultaneous validity is not maintained on all the
inputs. Simultaneous dynamic slicing is typically
achieved iteratively, beginning with a group of
statements. Hence simultaneous dynamic slices are
built incrementally, via computations in each
iteration.

Acknowledgements:

Foundation item: Al Imam University
(IMSIU) Project (No.: 330917). Author is grateful to
Al Imam University (IMSIU), KSA for financial
support to carry out this work.

References

[1] Hakam W. Alomari, Michael L. Collard, and
Jonathan I. Maletic. A very efficient and
scalable forward static slicing approach. In
WCRE, pages 425–434. IEEE Computer
Society, 2012.

[2] Omar Chebaro, Nikolai Kosmatov, Alain
Giorgetti, and Jacques Julliand. The santé tool:
Value analysis, program slicing and test
generation for c program debugging. In Martin
Gogolla and Burkhart Wolff, editors, TAP,
volume 6706 of Lecture Notes in Computer
Science, pages 78–83. Springer, 2011.

[3] Jeremy Condit and George C. Necula. Data
slicing: Separating the heap into independent
regions. In Rastislav Bod´ık, editor, CC,
volume 3443 of Lecture Notes in Computer
Science, pages 172–187. Springer, 2005.

Life Science Journal 2013;10(4) http://www.lifesciencesite.com

 1369

[4] Mohamed A. El-Zawawy. Probabilistic
pointer analysis for multithreaded programs.
Science Asia, 37(4):344–354, December 2011.

[5] MohamedA. El-Zawawy. Detection of
probabilistic dangling references in multi-core
programs using proof-supported tools. In
Beniamino Murgante, Sanjay Misra, Maurizio
Carlini, Carmelo Mario Torre, Hong-Quang
Nguyen, David Taniar, Bernady O. Apduhan,
and Osvaldo Gervasi, editors, ICCSA (5),
volume 7975 of Lecture Notes in Computer
Science, pages 516–530. Springer, 2013.

[6] Mohamed A. El-Zawawy. Frequent statement
and de-reference elimination for distributed
programs. In Beniamino Murgante, Sanjay
Misra, Maurizio Carlini, Carmelo Mario
Torre, Hong-Quang Nguyen, David Taniar,
Bernady O. Apduhan, and Osvaldo Gervasi,
editors, ICCSA (3), volume 7973 of Lecture
Notes in Computer Science, pages 82–97.
Springer, 2013.

[7] Robert J. Hall. Automatic extraction of
executable program subsets by simultaneous
dynamic program slicing. Autom. Softw. Eng.,
2(1):33–53, 1995.

[8] Paritosh Jain and Nitish Garg. A novel
approach for slicing of object oriented
programs. ACM SIGSOFT Software
Engineering Notes, 38(4):1–4, 2013.

[9] Romain Jobredeaux, Heber Herencia-Zapana,
Natasha A. Neogi, and Eric Feron. Developing
proof carrying code to formally assure
termination in fault tolerant distributed
controls systems. In CDC, pages 1816–1821.
IEEE, 2012.

[10] Amir Kamil and Katherine A. Yelick.
Hierarchical pointer analysis for distributed
programs. In Hanne Riis Nielson and Gilberto
Fil´e, editors, SAS, volume 4634 of Lecture
Notes in Computer Science, pages 281–297.
Springer, 2007.

[11] Bogdan Korel and JanuszW. Laski. Dynamic
slicing of computer programs. Journal of
Systems and Software, 13(3):187–195, 1990.

[12] Vijay Nagarajan, Dennis Jeffrey, Rajiv Gupta,
and Neelam Gupta. A system for debugging

via online tracing and dynamic slicing. Softw.,
Pract. Exper., 42(8):995–1014, 2012.

[13] Benjamin C. Pierce. Types and Programming
Languages. The MIT Press, 2002. 1 edition
(February 1, 2002).

[14] Juergen Rilling and Sudhir P. Mudur. 3d
visualization techniques to support
slicingbased program comprehension.
Computers & Graphics, 29(3):311–329, 2005.

[15] A. Udaya Shankar. Distributed Programming
- Theory and Practice. Springer, 2013.

[16] Vivekananda M. Vedula, Jacob A. Abraham,
Jayanta Bhadra, and Raghuram S. Tupuri. A
hierarchical test generation approach using
program slicing techniques on hardware
description languages. J. Electronic Testing,
19(2):149–160, 2003.

[17] G. A. Venkatesh. The semantic approach to
program slicing. In David S. Wise, editor,
PLDI, pages 107–119. ACM, 1991.

[18] Gustavo Villavicencio. Formal program
reversing by conditioned slicing. In CSMR,
pages 368–378. IEEE Computer Society,
2003.

[19] Cheng Wang, Youfeng Wu, Edson Borin,
Shiliang Hu, Wei Liu, Dave Sager, Tin fook
Ngai, and Jesse Fang. Dynamic parallelization
of single-threaded binary programs using
speculative slicing. In Michael Gschwind,
Alexandru Nicolau, Valentina Salapura, and
Jos´e E. Moreira, editors, ICS, pages 158–168.
ACM, 2009.

[20] Mark Weiser. Program slicing. In Seymour
Jeffrey and Leon G. Stucki, editors, ICSE,
pages 439–449. IEEE Computer Society,
1981.

[21] Mark Weiser. Program slicing. IEEE Trans.
Software Eng., 10(4):352–357, 1984.

[22] Franz Wotawa. On the use of constraints in
dynamic slicing for program debugging. In
ICST Workshops, pages 624–633. IEEE
Computer Society, 2011.

[23] Baowen Xu, Ju Qian, Xiaofang Zhang,
Zhongqiang Wu, and Lin Chen. Abrief survey
of program slicing. ACM SIGSOFT Software
Engineering Notes, 30(2):1–36, 2005.

4/3/2013

