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1. Introduction 

Recently, the study of population dynamics of 
infectious diseases has attracted the interest of many 
mathematicians. Several mathematical models have 
been proposed to describe the viral infection process 
such as human immunodeficiency virus (HIV), 
hepatitis B virus (HBV), hepatitis C virus (HCV), and 
human T-cell leukemia virus type I (HTLV-I), [1]-
[25]. These models can capture some essential 
features of the immune system and are able to produce 
a variety of immune responses, many of which are 
observed experimentally and clinically. Mathematical 
models can also be used to guide the development of 
efficient antiviral drug therapies. B cells, cytokines, 
natural killer cells, and T cells are essential 
components of a normal immune response to a virus. 
The antibody immune response is an important part of 
the immune system. The B cells create the antibodies 
which clear antigens circulating in blood and lymph. 
The antibody immune is more effective than the cell-
mediated immune in some diseases like in malaria 
infection [26]. Mathematical models for virus 
dynamics with the antibody immune response have 
been developed in [27]-[37]. The basic virus dynamics 
model with antibody immune response was introduced 
by Murase et. al. [28] as: 
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where )(),(),( tvtytx  and )(tz  are the populations of 
the uninfected target cells, infected cells, viruses and 

antibody immune cells at time t, respectively;   and d 
are the birth rate and death rate constants of 

uninfected cells, respectively;   is the infection rate 
constant; N is the number of free virus produced 

during the average infected cell life span;  is the 
death rate constant of infected cells; c is the death rate 
constant of the virus. The viruses are cleared by 

antibodies with rate )()( tztqv . The antibody immune 

cells are proliferated at a rate )()( tztrv  and die at rate 
)(tz

. 
Model (1)-(4) is based on the assumption that the 

infection could occur and the viruses are produced 
from infected cells instantaneously, once the 
uninfected cells are contacted by the virus particles. 
Other accurate models incorporate the delay between 
the time the viral entry into the uninfected cell and the 
time the production of new virus particles, modeled 
with discrete time delay or distributed time delay 
using functional differential equations (see e.g. [9]-
[16]). In these papers, the viral infection models are 
presented without taking into consideration the 
antibody immune response. In [32] and [37], the 
global stability of viral infection models with antibody 
immune response and with discrete-time delays has 
been studied. 
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In model (1)-(4), the infection rate is assumed to 
be bilinear in x and v. However, the actual incidence 
rate is probably not linear over the entire range of x 
and v [38], [39], [41]. In [36] and [37], a virus 
infection model with antibody immune response and 

with saturated infection rate of the form )1/( vxv   , 
was suggested where  is a positive constant. 
However, the time delay was not considered in [36] 
and [37]. Huang and Takeuchi [40] investigated a 
viral infection model with Beddington-DeAngelis 

functional response, 
/ (1 )xv x v   

 where   

and   are positive constants. However, the antibody 
immune response was not included. 

Our primary goal is to propose a virus infection 
model with antibody immune response. The infection 
rate is given by Beddington-DeAngelis functional 
response. We incorporate two types of distributed 
delays into the model to account the time delay 
between the time that uninfected cells are contacted by 
the virus particle and the time the emission of 
infectious (matures) virus particles. The global 
stability of the model is established using Lyapunov 
functionals, which is similar in nature to those used in 
[41]-[42]. We prove that the global dynamics of the 
model is determined by the basic reproduction number 

0R  and the antibody immune response reproduction 

number 1R . We have proven that if 10 R , then the 
uninfected steady state is globally asymptotically 

stable (GAS), if 01 1 RR  , then the infected steady 
state without antibody immune response is GAS, and 

if 11 R , then the infected steady state with antibody 
immune response is GAS. 
2. The model 

In this section, we propose a mathematical model 
of viral infection with Beddington-DeAngelis 
functional response which describes the interaction of 
the virus with the uninfected cells, taking into account 
the antibody immune response. 
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where   and   are positive constants, and all the 
variables and other parameters of the model have the 
same meanings as given in (1)-(4). To account for the 
time lag between viral contacting the uninfected cell 

and the production of new virus particles, two types of 
distributed intracellular delays are introduced. It 
assumed that, the target cells are contacted by the 

virus particles at time t becomes infected cells 
at time where   is a random variable with a 

probability distribution )(f over the interval 
[0 ] and is limit superior of this delay. The  

factor 
me

account for the probability of surviving 
the time period of delay, where is the death rate 
of infected cells but not yet virus producer cells. On 
the other hand, it is assumed that, a cell infected at 

time t starts to yield new infectious virus at time 
where   is distributed according to a 

probability distribution 
)(g

over the interval 
[0 ] and is limit superior of this delay. The  

factor 
ne

account s for the probability of surviving 
during the time period of delay, where n is a 
constant. The probability distribution functions 

)(f and ( )g  are assumed to satisfy 0)( f and 
0)( g and  
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The initial conditions for system (5)-(8) take the 

form 
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where 
4([ ,0], ),C R 

is the Banach space of 
continuous functions mapping the interval 

],0,[  into
4.R   

Proposition 1. Let )),(),(),(),(( tztvtytx be any 
solution of system (5)-(8) satisfying the initial 

conditions (9), then )(),(),( tvtytx and )(tz are all non-

negative for ,0t and ultimately bounded. 
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Proof. The poof is similar to the Proposition 1 in [34]. 
3. Steady states 

We de.ne the basic reproduction number for 
system (5)-(8) as: 
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It is clear that, system (5)-(8) has an uninfected 

steady state 0 0( ,0,0,0)E x
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addition to 
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antibody immune response reproduction number 
which is given by: 
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From above we have the following: 

(i) If 10 R ; then there exists a positive steady 

state )0,,,( 1111 vyxE . 

(ii) If 11 R ; then there exists a positive steady 

state ),,,( 22222 zvyxE . 
4. Global stability 

In this section, we prove the global stability of 
the steady states of system (5)-(8) employing the 
method of Lyapunov functional which is used in [42] 

for SIR epidemic model with distributed delay. Next 

we shall use the following notation: ),(tuu  , for any 
}.,,,{ zvyxu  We also define a function 

),0[),0(: H as .ln1)( uuuH  It is clear 

that 0)( uH for any 0u and H  has the global 

minimum .0)1( H  

Theorem 1. If 10 R ; then 0E  is GAS. 

Proof. Define a Lyapunov functional 0W as follows: 
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The time derivative of 0W  along the trajectories 
of (5)-(8) satisfies: 
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Collecting terms of (11) we get: 
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From Eq. (12) we can see that if 10 R then 
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for all 0,, zvx . One can easily show that 
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 if and only if 

0 , 0, 0, 0x x y v z   
 From LaSalle's 

Invariance Principle, 0E  is GAS. 

Theorem 2. If 01 1 RR  , then 1E  is GAS. 
Proof. We construct the following Lyapunov 
functional  
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The time derivative of 1W  along the trajectories 
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Using the steady state conditions for 1E we obtain: 
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Similar to the proof of Theorem 2 of [35] we can 

show that if 11 R , then 
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 Hence, if 

10 R  then 0,, 111 vyx ; and if 11 R , then 
01 

dt

dW

 

for all 0,, vyx . One can easily show that 
01 

dt

dW

at 
.1E  LaSalle's Invariance Principle implies global 

stability of 1E . 

Theorem 3. If 1 1R 
, then 2E

 is GAS. 
Proof. We construct the following Lyapunov 
functional 
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Using the steady state conditions for 2E we obtain: 
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Hence, if 11 R  then 0,,, 2222 zvyx ; and if 11 R , 

then 
02 

dt

dW

 for all 0,, vyx . One can easily show 

that 
02 

dt

dW

at .2E  LaSalle's Invariance Principle 

implies global stability of 2E . 
5. Conclusion 

In this paper, we have proposed a virus infection 
model describing the interaction of the virus with 
uninfected cell taking into account the Beddington-
DeAngelis infection rate. Two types of distributed 
time delays describing time needed for infection of 
target cell and virus replication have been 
incorporated into the model. Using the method of 
Lyapunov functional, we have establish that the global 
dynamics are determined be two threshold parameters 

0R and 1R . The basic reproduction number viral 

infection 0R  determines whether a chronic infection 
can be established, and the basic reproduction number 

1R  for B cells response determines whether a 
persistent B cells response can be established. If 

10 R , the uninfected steady state 0E  is GAS, and 

the viruses are cleared. If 01 1 RR  , the infected 

steady state without B cells response 1E  is GAS, and 
the infection becomes chronic but with no persistent B 

cells response. If 11 R , the infected steady state with 

B cells response 2E
 is GAS, and the infection is 

chronic with persistent B cells response. 
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