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Abstract: In this paper, we investigate the dynamical behavior of a virus infection model with antibody immune
response and distributed intracellular delays. The incidence rate of the infection is given by Beddington-DeAngelis
functional response. Two types of distributed time delays have been incorporated into the model to describe the time
needed for infection of uninfected cell and virus replication. Using the method of Lyapunov functional, we have
established that the global stability of the model is completely determined by two threshold numbers, the basic

reproduction number Ro and the antibody immune response reproduction number R, . We have proven that if

Ry<1 , then the uninfected steady state is globally asymptotically stable (GAS), if R <I<R, , then the infected

steady state without antibody immune response is GAS, and if B>l

immune response is GAS.
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, then the infected steady state with antibody
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1. Introduction
Recently, the study of population dynamics of
infectious diseases has attracted the interest of many

where x(0), y(£):v(2) and 2(0) are the populations of
the uninfected target cells, infected cells, viruses and

mathematicians. Several mathematical models have antibody immune cells at time , respectively; 4 and d
been proposed to describe the viral infection process are the birth rate and death rate constants of
such as human immunodeficiency virus (HIV), uninfected cells, respectively; s is the infection rate
hepatitis B virus (HBV), hepatitis C virus (HCV), and constant; N is the number of free virus produced

human T-cell leukemia virus type I (HTLV-I), [1]-
[25]. These models can capture some essential
features of the immune system and are able to produce
a variety of immune responses, many of which are

during the average infected cell life span; S is the
death rate constant of infected cells; ¢ is the death rate
constant of the virus. The viruses are cleared by

observed experimentally and clinically. Mathematical antibodies with rate "7() The antibody immune
models can also be used to guide the development of cells are proliferated at a rate ") and die at rate
efficient antiviral drug therapies. B cells, cytokines, 1e(f)

natural killer cells, and T cells are essential : i .
components of a normal immune response to a virus. . Model (1)-(4) is based on the assumption that the
The antibody immune response is an important part of infection could occur and the viruses are produced
the immune system. The B cells create the antibodies from infected cells instantaneously, —once the
which clear antigens circulating in blood and lymph. uninfected cells are contacted by the virus particles.
The antibody immune is more effective than the cell- Othqr accurat§ models Incorporate the delay between
mediated immune in some discases like in malaria the time the viral entry into the uninfected cell and the
infection [26]. Mathematical models for virus tirpe th.e produ(;tion of new Vims .particles., modeled
dynamics with the antibody immune response have with discrete time delay or distributed time delay
been developed in [27]-[37]. The basic virus dynamics using functional differential equations (see e.g. [9]-
model with antibody immune response was introduced [16]). In theS? papers, the VH..al 1nfect19n moqels are
by Murase et. al. [28] as: pre;ented . without taking into consideration the
2(t) = A —dx(t) — Pr(0)v(n), ) antibody immune response. In [32] anq [37]., the
$(1) = Br(t)v(t) - Sv(0), @) global stability of viral infectiop modells with antibody
P(t) = Noy(t)— ev(t) - qv(t)=(0), 3) immune response and with discrete-time delays has

. been studied.
() =rmv()z(t) — uz(1), 4)
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In model (1)-(4), the infection rate is assumed to
be bilinear in x and v. However, the actual incidence
rate is probably not linear over the entire range of x
and v [38], [39], [41]. In [36] and [37], a virus
infection model with antibody immune response and

with saturated infection rate of the form prv/(1+av) s
was suggested where ¢ is a positive constant.
However, the time delay was not considered in [36]
and [37]. Huang and Takeuchi [40] investigated a
viral infection model with Beddington-DeAngelis

Lxv/(I+yx +av)

functional response, where ¢

and 7 are positive constants. However, the antibody
immune response was not included.

Our primary goal is to propose a virus infection
model with antibody immune response. The infection
rate is given by Beddington-DeAngelis functional
response. We incorporate two types of distributed
delays into the model to account the time delay
between the time that uninfected cells are contacted by
the virus particle and the time the emission of
infectious (matures) virus particles. The global
stability of the model is established using Lyapunov
functionals, which is similar in nature to those used in
[41]-[42]. We prove that the global dynamics of the
model is determined by the basic reproduction number

Ro and the antibody immune response reproduction

number Ry . We have proven that if Ry Sl, then the
uninfected steady state is globally asymptotically

stable (GAS), if Ry <I<R, , then the infected steady
state without antibody immune response is GAS, and

if B>l , then the infected steady state with antibody
immune response is GAS.
2. The model

In this section, we propose a mathematical model
of wviral infection with Beddington-DeAngelis
functional response which describes the interaction of
the virus with the uninfected cells, taking into account
the antibody immune response.

Pr()v()

x(t) = A—dx(1) O’ (5)
h

. _ —mt ﬂx(t - Z')V(f - T) _

30 = ! O e T30 ©

V(1) = N5J‘g(f)ef'”y(f —r)dr—cv(t)—qv()z(1), (7
0

z(1) = rv(0)z(1) - (1), ®)
where @ and 7 are positive constants, and all the
variables and other parameters of the model have the
same meanings as given in (1)-(4). To account for the
time lag between viral contacting the uninfected cell

696

and the production of new virus particles, two types of
distributed intracellular delays are introduced. It
assumed that, the target cells are contacted by the

virus particles at time /=7  becomes infected cells
at time where 7 is a random variable with a

probability distribution f(@ over the interval
[0 ] and is limit superior of this delay. The

factor € account for the probability of surviving
the time period of delay, where is the death rate
of infected cells but not yet virus producer cells. On
the other hand, it is assumed that, a cell infected at

time / =7  starts to yield new infectious virus at time
where 7  is distributed according to a
probability distribution g(@) over the interval

[0

factor € accounts for the probability of surviving
during the time period of delay, where ”* is a
constant. The probability distribution functions

f@ and g(7) are assumed to satisfy f(@)>0 and
g(r)>0

] and is limit superior of this delay. The

and

jif(r)dr = Tg(r)dr =1
0 0

h @
J.f(u)e‘”'du < oo, J.g(u)e‘”’du <o, §>0
0 0

Let
h w

F =J.f (re™™dr, G =J.g(r)e””dr
0 0
Then,0<FS1’ O<Gsl'

The initial conditions for system (5)-(8) take the
form

x (0)=¢,(0), y(0)=4¢,(0),

v(0) =¢,(0), z(0)=4¢,(0),

$,(6)>0, 0ec[-p,0),j =1,.4
$,(0)>0, j=1,.4 (9)

Where £ = maxt{h, o},
(©,(0),..,0,(0)) C (-p,0L,R})
4
C([=p.0LR)), is the Banach space of
mapping the interval

where
continuous
[-£.0), jngo R -
Proposition 1. Let (X(:y@:v(1).2(1). pe any
solution of system (5)-(8) satisfying the initial

conditions (9), then (s Y(D:v(1) ang 2() are all non-
t>0

functions

negative for >and ultimately bounded.
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Proof. The poof is similar to the Proposition 1 in [34].
3. Steady states
We de.ne the basic reproduction number for
system (5)-(8) as:
_ NFG px,

c(l+yx,)
It is clear that, system (5)-(8) has an uninfected

E,(x,,0,0,0) where X0 =A/d

steady state In

addition to

£ , the system has an infected steady state
without immune response E\(x1p15v1,0) where
. - (NFGaA+c)x,
' NFGaAd+c+c(+yx )R, -1)
_ NF’G fAx, a- b
Y T SINFGai+e +e(l+7x )R, -1 R,
. N’F’G’pix, a- b
' C[NFGad+c+c(+yx, ) (R,~D]" R,
Moreover, the system has an infected steady state with
immune response Ey(x0y5v0,2,) define as:
=2_17/(_Z+\/Zz +ayx,(1+av,))
yz:é‘[lf)fcii;vz]’ szgz P
where - OH‘ P (Hevy) =y and R is the

antibody immune response reproduction number
which is given by:
NFG px,

c(l+yx,+av,)

1 =

It is clear that *2>0.52>0 gpq4 v2>0
moreover, if Ri>1 then Z:>0 Since
0<% <Xand V2> 0 then

__ NFGpx,  _ NFGpy, _
ey tavy) T elemg)

From above we have the following:

1 If Ry > 1; then there exists a positive steady

state El(xl’ylavlao) .

(ii) If &> 1; then there exists a positive steady
state Ez(xzayzavzazz) .
4. Global stability

In this section, we prove the global stability of
the steady states of system (5)-(8) employing the
method of Lyapunov functional which is used in [42]
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)

for SIR epidemic model with distributed delay. Next

we shall use the following notation: * = “(): | for any

ue{x,y,v,z}.

We also define function

H:(0,0) > [0,0) 5o H(u)=u—-1-

a
Inu. 1t js clear
that 720 for any >0 and H has the global
minimum 7 (1) =0.

Theorem 1.1f %o <1 then £ is GAS.

Proof. Define a Lyapunov functional

X)L,
Xq F

x(t—=0)v(t-0)
1+ m(t-0)+av(t—-0)

W, as follows:

W, = NFG
(1+70fo)

ﬁi f@en j

+Fi£g(r)e'”}[y(t—ﬂ)dﬂdr:l-#v-#zz.

dodr

(10)

The time derivative of W,

f (5)-(8) satisfies:
W, NFG[ [17)“—0](/171#7
) x
x(t—7)v(t—1)

l+m(t-7t)+av(t—1)

along the trajectories

Xo
T+,

Pxv ]

1+ ;x+av

S5
dr ——
Fy

XV

h
B rieme -
+F-([‘f(r)e (1+yx+av

+F‘;£g<r)e”’(y—y<z—r))dr}

x(t—-7)v(t—-1)
I+t -1)+av(t—1)

Jor

+N§jg(r)e Tyt - r)dr—cv—qu+qu—ﬂz a1n
0
Collecting terms of (11) we get:
AWy el A= x) Sy
d (I+px)x  (+ )1+ yx+av)
Bxyv P ey IH
I+l +m+av) l+m+av ro
2 2
- {NFGd (x= %) cav’Ry +‘“‘z} +ev(Ry —1). (12)
(I+mg)x (I+m+av) r
From Eq. (12) we can see that if Ry =1 then
daw,
dt for all *">2> 0 One can casily show that
aw,
dt if and only if
X =x,,y =0y =0z =0 From LaSalle's

Invariance Principle, o is GAS.

Theorem 2. If X1 <1< R0 then i is GAS.

Proof. We construct the following Lyapunov
functional
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I x,(I+ym +av),

W, = NFG | x -
n(l+ px + avy)

B

F @+ }/xl +av,)s
j‘ -0yt -0)1+yx +av)
0 xvil+ mx(t-0)+ av(t - 0))

[ H [y(’ ]dadr}le[V}qz.
0 Y Vi r

The time derivative of ¥ along the trajectories
of (5)-(8) satisfies
Pxv ]
1+ +av

dWl:NFG 1_M A —dx —
dt x(1+ ) +avy)

jf(r)e'"”

]d&dr

h

1 - -mt x(t—7)v(t—1) B
- f'(l ){ﬂj._f(r)e 1+;/x(t—r)+av(t—r)dr §y]
+£jlf(r)s xv x(t—7)v(t—1)

FU 1+;/x+av l+px(t-1)+av(t-1)

X1Vy In x(t—7r)v(t—7)1+ ypx+av) dr

I+ + av, xw(l+m(t-r)+av(t—r1))

+%£g(r)e’“[y—y(r—r)+y11n[y(y”jj }

+ (I_W)[N(yj.g(r)e’”y(t—r)dr— v — qu]
v
0

+qu—ﬂz
r

Using the steady state conditions for Ei we obtain:

dw, x(l+m+av)
dt x(L+ px +avy)

= NFG l:f d(x —x )[1

Bxivi _
A+ +avy)
_ Bxivy
I+ + avy) V1(1+7X1 +avy)
1 Sxivi
F 1+ +av))

Bxivi

I+ +avy) x(1+ ) + avy)

x (14 + avy)

v(l+ px+ avy)

—me Nx( -t - D)+ + avy)
J-f(r)e yx vy (1+ m(t—1)+ av(t 71))

+L fx v J‘f(T)e,m,ln[x(t7T)v(tfr)(1+yx+av)]dr
F (1+}/xl Jraw)l o xv(l+ px(t —7)+av(t — 1))

jg(r) Wln[y(z r)] 6ylj (e D=0 }
y

—cv+oev) — qu+qvlz+qufﬂz
 NFG dx-x) (+av) S a(l+m)(v—v)?
x(L+pmx; +avy) F vil+m+av)(1+m+av)

—@H x 1+ m+avy)
F x(1+px; +avy)
Pxivi

(T4 0y +av)) vi(1+ @) +avy)

—@H 1+ m+av
F I+ +av,

v(l+ x + avy)

h
N mmr | MXE =D — ) A+ gy +avy)
F I_f(r)c H[ yxlvl(lJr w(t—7)+av(t— r)) ]dr

=l g(r)a”’H[W’)]dr} atvi =)z,
Wi

Similar to the proof of Theorem 2 of [35] we can
y < £_ V.

show that if R <l , then r Hence, if

698

dw,

R < — =
Ro>1 ien x.00v> 0 ; and if Ry _1, then df

dw, _
<0

for all *:7»¥>0_ One can easily show that

E,.

at
LaSalle's Invariance Principle implies global

stability of £1

Theorem 3. IfR >1 , then £, is GAS.
Proof. We construct the following Lyapunov
functional

dn +—H
n(l+yx, +av,)

.
W, = NFG {v—xz—j

/3 X,V, f . —mr
F (1+;ﬂc7 +av,)-[f(r)€

Xo(1+yp +avy) 1 [ j
Vs

jH x(t—0)v(t—0)1+yx, +av,)
x,v, (L+ x(t— 0) + av(t — 0))

’”I”[w_mjd"df}
Va2

jd@dr

0

FG
0
+V2H[Lj+izzﬁ[ : j
v,y r Z,

The time derivative of 72 along the trajectories
of (5)-(8) satisfies

dWZ:NFG 17x2(1+7x+av2) A —dv — Pxv
x(1+ x5 +avy) 1+ mx+av

h
g2 (£ Ye T x(t—7)v(t-1) e
+f(1 B )[ﬁj;f(T)e 1+7x(l—r)+av(l—r)dT by}

+£jlf(r)ef””[ xv B x(t—7)v(t—1)
F0 l+mw+av l+m(t-7)+av(t—-r1)

X5V, ]n[x(l—r)v(l—T)(l+7x+av)]]dr

1+, +av, xw(l+m;x(t—7)+av(t—1))

+%£g(r>e*“[y—y(z—r)+yzln[y(‘y ’)]] }

+ (1 _ "Zj[Ngjg(r)e”’y(z -7)d7r—cv— qu}
v

+ (1 - Z—zj(qu —sz
z r

Using the steady state conditions for

aw, - x(+mtavy)
dt x(1+pmy +av,)

E3 we obtain:

= NFG {—d(x—xz)[l

Bxyvy Xy (L+x+avy)
I+ my+avy) A+, +avy) x(1+px, +av,)
B Px,v, v(l+px+av,)
I+, +avy) vi(l+ yxy +avy)

Bxyvy

1 Bxyv,
F (1+pm, +av,)

h
. —mr Yax(t—T)v(t —7)(1+ pxy + avy)
Vzl.[f(r)e vt -t ravi—n) "

h
. mr x(t—r)v(t-r)1+m+av)
Vz.l[f(r)e ln[xv(l+;/x(t—r)+av(t—r)) de

1 Bxyvy
4 P2
F (1 + X, + avz)

o
+éV2 g(@)e " In yi-1) dr— é‘ZJ. ()" Vz)’(t_f)dr
FG y FG vy,
—cvH eV, —qvz + qvaz+qvz —qvz, —(1—’le-¢—(1—‘tlz2
r r
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Cdx-x) (+avy) &, a(l+m)-v,)’
F vy(l+mx+av)(1+px+av,)

x(1+ pxy +avy)

_%H(x2(1+yx+av2)]_5yiz[_1(

I+ +av
x(1+ pxy +avy) F

I+ ;x+av,

o j Feye e 2z M D rav))
F ’ yx2v2(1+yx(t—r)+av(t—r))

—%J.g(r)e””H Yppt=7) dr |.
FG ’ vy,

Hence, if Ry >1 then *2-¥2>¥2-%2>0 . and if Ry >1 ,
aw, _

then dr  for all ©Y:V>9 One can easily show
vy

that d ~ at £2- LaSalle's Invariance Principle

implies global stability of E,,
5. Conclusion

In this paper, we have proposed a virus infection
model describing the interaction of the virus with
uninfected cell taking into account the Beddington-
DeAngelis infection rate. Two types of distributed
time delays describing time needed for infection of
target cell and virus replication have been
incorporated into the model. Using the method of
Lyapunov functional, we have establish that the global
dynamics are determined be two threshold parameters

Ry ang B
infection Ry determines whether a chronic infection

can be established, and the basic reproduction number

R for B cells response determines whether a
persistent B cells response can be established. If

Ry<l1 , the uninfected steady state By 5 GAS, and
R <1<R,

. The basic reproduction number viral

the viruses are cleared. If , the infected

steady state without B cells response £ is GAS, and
the infection becomes chronic but with no persistent B

cells response. If B> 1, the infected steady state with

B cells response 2 is GAS, and the infection is
chronic with persistent B cells response.
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