
Life Science Journal 2013;10(4)                                                          http://www.lifesciencesite.com 

 

 210

Solving Fractional Vibrational Problem Using Restarted Fractional Adomian’s Decomposition Method  
 

Jamshad Ahmad and Syed Tauseef Mohyud-Din 
 

Department of Mathematics, Faculty of Sciences, HITEC University Taxila Cantt Pakistan 
jamshadahmadm@gmail.com 

 
Abstract: In this paper, the proposed Restarted Fractional Adomian’s Decomposition Method (RFADM) is applied 
to obtain the analytical approximate solutions to the time fractional vibration equation. The fractional derivative are 
described in the Modified Remann-Liouville sense. The proposed  method  performs extremely well in terms of 
efficiency and simplicity. The effectiveness and good accuracy of method is verified by the numerical results. 
Numerical results are presented graphically.  
[Jamshad Ahmad and Syed Tauseef Mohyud-Din. Solving Fractional Vibrational Problem Using Restarted 
Fractional Adomian’s Decomposition Method. Life Sci J 2013;10(4):210-216]. (ISSN:1097-8135). 
http://www.lifesciencesite.com. 28 
 
Keywords: Fractional differential equation; Modified Remann-Liouville derivative; Fractional vibration equation; 
wave velocity. 
 
1. Introduction 

In recent years, considerable interest in 
fractional differential equations and analysis of 
fractional differential equations, which are obtained 
from the classical differential equations in 
mathematical physics, engineering, electromagnetics, 
acoustics, viscoelasticity, electrochemistry and material 
science vibration and oscillation by replacing the 
second order time derivative by a fractional derivative 

of order   satisfying 1 <   ≤ 2 , have been a field 
of growing interest as evident from literature survey. 
Fractional derivatives provide an excellent instrument 
for the description of memory and hereditary properties 
of various materials and processes. Analytical methods 
used to solve these equations have very restricted 
applications and the numerical techniques commonly 
used give rise to rounding of errors. Several 
mathematical methods including Adomian’s 
decomposition method [1-3], Modified decomposition 
method [4], variational iteration method [4,5], 
differential transform method [6] and homotopy 
perturbation method [7,8] have been developed to 
obtain exact and approximate analytic solutions to 
differential equations of fractional order.  

For the past three decades, a great interest has 
been focused on the application of Adomian’s 
decomposition method to solve for analytic solutions of 
a wide variety of linear and nonlinear problems. This 
method was first introduced by G. Adomian’s [9, 10] in 
the beginning of the 1980’s and has led to several 
modifications on the method made by various 
researchers in an attempt to improve the accuracy and 
applications. Adomian’s and Rach [11] introduced 
modified Adomian’s polynomials which converge 
slightly faster than the original polynomials and are 
convenient for computer generation. Adomian’s also 
introduced accelerated Adomian’s polynomials [12], 

despite the various types of Adomian’s polynomials 
available; the original Adomian’s polynomials are 
more generally used based on the advantage of a 
convenient algorithm which is easily remembered. 
Recently, F. A. Hendi et al.[13] presented simple 
Mathematica program to compute Adomian’s 
polynomials. Wazwaz [14] used padé approximants to 
the solution obtained using a modified decomposition 
method and found that not only does this improve the 
result, but also that the error decreases with the 
increase of the degree of the padé approximants. 
Another modification to ADM was proposed by 
Wazwaz [15] a reliable modification of the Adomian’s 
decomposition method. In 2005, Wazwaz [16] 
presented another type of modification to the ADM. 
New modification was proposed by Luo [17, 18], this 
variation separates the ADM into two steps and 
therefore is termed the two-step ADM. Another recent 
modification is termed the restarted Adomian’s method 
[19, 20], this method involves repeatedly updating the 
initial term of the series generated. Several other 
researchers have developed modifications to the ADM 
[21,22]. The modifications arise from evaluating 
difficulties specific for the type of problem under 
consideration. The modification usually involves only a 
slight change and is aimed at improving the 
convergence or accuracy of the series solution.  

In this paper, we will consider fractional 
vibration equation by using factional restarted 
Adomian’s decomposition method (FRADM) . This 
fractional vibration equation is obtained by replacing 
the second time derivative term in the corresponding 
vibration equation by a fractional derivative of order 
  with 1 <   ≤ 2. The general response expression 
contains a parameter describing the order of the 
fractional derivative that can be varied to obtain 

various responses. In the case of    = 2, the fractional 
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vibration equation  reduces to the standard vibration 
equation. 
 
2. Preliminaries  

We give some basic definitions and properties 
of the fractional calculus  theory which are used further 
in this paper. 
2.1. Definition  

Assume  xfxRRf  ,:  denote a continuous 

(but not necessarily differentiable) function and let the 

partition 0h in the interval  1,0 . Jumarie’s 

derivative is defined through the fractional difference  
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Where    hxfxFWf  . Then the fractional 

derivative is defined as the following limit. 

      
.

0
lim

0 




h

fxf
f

h





           (2)  

This definition is close to the standard definition of 

derivative, and as a direct result, the th derivative of 

a constant 10  ; is zero. 

 
2.2. Definition  

The Riemann-Liouville fractional integral 

operator of order 0 for a 

function ,1,  Cf is defined as 
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2.3. Definition  
Jumarie's fractional derivative is a mo1dified Riemann-

Liouville derivative for ,10  defined as  
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Some useful formulas and results of Jumarie’s 
modified Riemann–Liouville derivative are 
summarized as  

,0,0   cDx c =constant.                              (5) 

    ,0,   xfcDxcfD xx c =constant.    (6) 
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                   (8)  
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2.4. Definition  
Fractional derivative of compounded functions is 
defined as 

    .10,1   dfxfd         (10) 

2.5. Definition  

The integral with respect to  d is defined as the 

solution of fractional differential equation given by Eq. 
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yxxdxfyd  (11) 
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For example   xxf   in Eq. (12), we have 
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3. Analysis Fractional Adomian’s Decomposition 
Method (M-1)  

The Adomian’s Decomposition Method 
(ADM) is a method for solving wide range of problems 
whose mathematical models yield equation or system 
of equations of algebraic, differential, integral and 
integro-differential equations or system of equations. In 
this method the solution is considered as rapidly 
converging, infinite series. 

In order to elucidate the solution procedure of 
the ADM, we consider the following fractional 
differential equation: 

       ,,,,, txqtxuNtxuRtxuL    (14) 
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    ,0, 1 xfxu      ,0, 2 xfxut   

where 
L is the fractional derivative, N  represents 

general nonlinear differential operator and R  is the 

linear differential operator in ,x  xf and  txq , are 

continuous functions. According to the ADM, we can 
construct relation for Equation (14) as follows 
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Combining Eq. (12) and Eq. (15), we obtained a 
proposed relation  
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                                                             (16)  
The Decomposition method suggests that the solution 

 txu ,  be decomposed into an infinite series of 

components 
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     and the nonlinear function in Eq. (14) is 
decomposed as follows 
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polynomials. Substituting the decomposition series Eq. 
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   
 

    .,

.
1

1
,

0 0

0






dAtxuR

xgtxu

t

n
n

n

 


























                  (19)  

 
From Eq. (19), the iterates are determined by the 
following recursive way 
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The Adomian’s polynomial can be calculated for all the 
types of nonlinearities and are given by 
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where    uFtxuN ,  is the nonlinear function in 

Eq. (19). Finally, we approximate the solution  
by the series 
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4. Restarted Fractional Adomian’s Decomposition 
Method (RFADM) (M-2) 

The restarted ADM was used in [23] as a new 
method based on standard ADM for solving algebraic 
equations. The author in [24] applied the method to 
solve a system of nonlinear Fredholm integral 
equations of the second kind. Basically the RADM has 
the same structure as that of the ADM but the ADM is 
used more than once. In this paper, we propose the 
extension of RADM and test it for Fractional vibration 
equation. If we consider a general nonlinear equation 
of the form (14) and applied ADM to solve it we get 
the recursive relationship (20), we introduce the 
algorithm of restarted Adomian’s method as the 
following. 

Choose small natural numbers .,km   

Apply the Adomian’s method on Equations (6) and 
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Let Z be the proper function which will be determined 

next for
1,:2  jZmj   

,0 Zu   

,01 AZfu   



,2 oAu 
 

,1 kk Au   

....210 k
j uuuu   

The Adomian’s method usually gives sum of the some 
first terms as an approximation of u, in this algorithm 

we can update 0u in each step, but we don’t calculate 

the terms with large index, so m and k are considered 
small. 
 
5. Fractional Vibration Equation 

We consider the fractional calculus version of 
the standard vibration equation in one dimension  as 
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with the initial conditions 
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  2, 0 ,u r r
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which constitute the relation between the radial 

velocity of    tru ,   to the fractional time derivative 

of order    (1 <   ≤ 2)  of   tru ,   and  c  is the 

wave velocity of free vibration. It is easily seen that the 

whole hierarchy of  moments    trM k
k  have 

the same time dependence as for the fractional 
Brownian motion though their statistical features are 
quite different. Now taking the Laplace transform of 
eq. (21), we get 
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where     truLtru ,,  Eq. (22) can be written as 

     
2

2 2
, , , 0,

d d s
r u r s u r s ru r s

dr dr c



   (23) 

 

Taking the series solution of  sru ,  as 
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We finally obtain 
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where A and B are constants. 
Therefore, we have 
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which clearly exhibits the power law decay of u(r,t) 
with   in contrast to the stretched exponential decay 
characteristic generally seen in fractional Brownian 
motion. 
 
6. Application of the Method 
M-1 

According to Eq. (20), the components of the 
decomposition series are 

  ,, 2
0 crtrtru   

 
   

,
21

4
, 1

32

1









 t

r

c
t

c
tru  

 
 

,
22

, 21

3

5

2






 t

r

c
tru  

 
 

,
23

9
, 31

5

7

3






 t

r

c
tru  

 
 

,
24

225
, 41

7

9

4






 t

r

c
tru  

 
 

,
25

11025
, 51

9

11

5






 t

r

c
tru  

and so on, in this manner the rest of components of  the 
series solution can be obtained.     
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Mittag-Leffler function [30]. 
 
M-2 
According to fractional Adomian’s decomposition 
method, the of problem (21) upto first 6 components is 
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According to restarted fractional Adomian’s 

decomposition method, we have 
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Fig. 1.  Plot of  u(r, t) with respect to r and  t at  c = 5 
.2,6.1,3.1  
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(a) 

 

 
(b) 

Fig. 2.  Plot of  u(r, t) with respect to r and  t at  c = 5 
(a) Graph of eq. (28) for ,2   (b) Graph of eq. (29) 

for 2  
 
 
7. Numerical  results  and  discussion 

It is observed from the Fig. 3 and Fig. 4 and 
Fig. 5 that the displacement increases with the increase 
of both r and t with wave velocities.  Numerical results 
coupled with graphical representation explicitly reveal 
the complete reliability of the proposed algorithm. It is 
found that the proposed modification is  valid and give 
results in the form of fast convergent series solution as 
to FADM. 
 
8. Conclusıons 

In this work, we applied the proposed  
modification of Fractional Adomian’s method (FADM) 
called restarted fractional Adomian’s method 
(RFADM) fractional order vibration equation and 
showed that the new algorithm gives better 

approximate solutions than the standard Adomian’s 
method. Restarted fractional Adomian’s method is very 
powerful in finding the solutions for various physical, 
vibration and oscillation problems. The main interest is 
to construct a competitive study of finding numerical 
solutions of vibration equation. It is seen that our 
method is  efficient for finding the solutions in higher 
degree of accuracy. Our method is direct and 
straightforward and it avoids the volume of 
calculations. The present study of solving fractional 
vibration equation for very large membrane constitutes 
a significant change from the usual approach and thus 
will considerably benefitial for the engineers and 
scientist working in this field. 
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