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Abstract: In this paper, we consider an epidemic model of leptospirosis with nonlinear incidences by applying the 

optimal control techniques  and time delay. First, we formulate the model, with optimal control and time delay. 

After the formulation of the model we find the existence of the control model. We completely charactrises the 

optimal control problem by using the Pontryagin’s maximum principle. Our naim is to to minimize the infection in 

the host population, to do this we use three control variables. The numerical simulation of both the system solved by 

using the backward RungeKutta order four schemes for the solution of the problem. Finally, the numerical results 

are presented for justification purpose. 
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1. Introduction 

     Mathematical modeling of infectious disease is one 

of the important research area now-a-days. The basic 

and important concern for mathematical models in 

epidemiology is qualitative analysis, the persistence, 

performance, asymptotic stability and the existence 

and uniqueness for the models. Many influential 

results related to this area have been established and 

can be found in many articles and books. The first 

epidemic model for the spread of infectious disease 

was introduced by [12]. They divided the population 

in three classes the Susceptible, infected and 

recovered. They assumed that the susceptible 

population in a fixed population become infected by 

contact with infected individuals, infected individuals 

either die or recover at a constant rate. Their models 

consist of three differential equations of ODE's which 

represent the rate of change in their respective 

population. 

               In recent years, some mathematical models 

incorporating delayed effects have been studied. 

Smith in [24] and Thieme [25] in (1990) derived a 

scalar delay differential equation for the population of 

immature and mature age classes. The maturation 

period is regarded as a time delay. Using the same 

idea, a system of delayed differential equations for 

mature population in a patchy environment has been 

proposed in So et al [26]. More recent studies consider 

an epidemic model with density dependence to 

describe disease transmission in variable population  

size, which can be found in Cooke et al [6,8,28]. 

Zaman et al [21] studied an SIR epidemic model with 

control strategies and using the delay. Zaman et al. 

[11,32] Studied the stability and optimal vaccination 

of a controlled SIR epidemic model without time 

delays and their dynamical behavior. Many 

mathematical models have been proposed to study the 

optimal control and delay such as 

[3,5,10,29,30,8,9,11]. For more work, [33-38]. 

   In this paper, we consider a leptospirosis epidemic 

model [31]  with time delay to prevent the spread of 

disease by using optimal treatment strategies. In order 

to do this, we first introduce a control variable 

representing the optimal treatment for infectious host 

and set an optimal control for our model. Moreover, 

we show the existence of an optimal control problem. 

For reducing the infection in a community, we use the 

control variables. We also analyzed the optimal 

control and optimality system using optimal control 

techniques. For the numerical simulation we use the 

real data of Thailand.Our aim is to maximize the 

population of susceptibles and recovered and 

minimize the infection in the infected individuals. 

         The paper is organized as follows. In Section 2 

we study the basic model and applying the optimal 

control and time delay. Find the Jacobian and 

Hamiltonian to show the existence of the proposed 

model. Numerical Simulation of the model with the 

complete description of the parameters is discussed in 

Section 3. In the last Section 4 we wind up our work 

with the conclusion and references. 
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Optimal Control Techniques in Delay Model 

 

    To begin the optimal control procedure, it is 

necessary to have a model which describes the 

population dynamics. Youshida and Hara [27] 

considered an SIR model with time delay. We use an 

epidemic model of leptospirosis disease model to set 

our optimal control model. We have a population 

which consists of five differential equations. The 

system has two categories, Human and Vector. The 

human population consists of three sub-classes 

Susceptible
hS Infected 

hI and Recovered hR . The 

human population is denoted by N1 with 

1 h h hN S I R   . The vector population is 

denoted by N2 consists of two classes that is 

susceptible vS  and infected vI , and 2 v vN S I  . 

The model consists of a system of non-linear 

differential equation is given in the following. 
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1
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3
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( )

( )
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h h h h

h h h v
h h h h

h
h h h h h
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v v h
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b S R

dt N t N t

dI S I t S I t
I t
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dS S I t
b S

dt N t

dI S I t

dt N t
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 ( ) ,v v vI  

 

Here 1b is the birth rate of human population, 

1, 2 3,   respectively represent the transmission 

Coefficient between human, susceptible human and 

infected vector and susceptible vector and infected 

human.Natural mortality rate of human population is 

represented by .h  h  is constant of proportionality 

where the infected human becomes susceptible again. 

The disease death rate of human population is denoted 

by .h the natural mortality rate of vector population 

is shown by .v v  is the disease death rate of the 

vector. 1 The parameter measure inhibitory effect on 

human vector population and 2  the parameter 

measure inhibitory effect of human population. 2b  is 

the birth rate for vector population. 

The total dynamics of human population are 

represented by hN given by, 

1 1 ,          (2)h h h hN b N I     

and the total dynamics of vector population is denoted 

by hN ,  given by, 

2 .              (3)v v v v vN b N I     

Next we apply the optimal control and delay to our 

proposed model (1), we will derive an optimal control 

model to fit our control strategy. The theoretical 

foundation of optimal control models with underlying 

dynamics given by ordinary differential equations was 

developed by Pontragin and his co-worker in Moscow 

in 1950 [9]. So by Pontryagin's Maximum principle, 

its extensions and appropriate numerical methods we 

will set an optimal control problem in the time 

delayed model of leptospirosis disease. Our main goal 

is to investigate an effective treatment strategy to 

control infection diseases. We can make an epidemic 

model which satisfy that the number of infected 

individuals is not larger than the susceptible 

population and want to increase the recovered 

individuals from the infection. The definition of the 

control variables 1u and 2u is given by, 

 1( )u t  Represents (cover all cuts, water dry, full-

cover boots, shoes and long sleeve shirts when 

handling animals ). 

 2 ( )u t   Represents (wash hands thoroughly on a 

regular basis and shower after work). 

To do this, we set an optimal control problem, with 

the control set defined by 
2

1 2 1 2{( ( ), ( )) (0, ) : 0 ( ), ( ) 1,

0 }.      (4)

U u t u t L T u t u t

t T

   

 

Where 1 2( ), ( )u t u t is Lebesgue measurable 

and called a control variable. 
2 2

0 1 2 1 1 2 2
0

1
( ) [( ) ( )] .     (5)

2

T

h v vJ u A I A I A S u u dt      
 

Subject to the control system 

 
dS β S I(t-h) β S I (t-h) wu (t)I (t)v1 2 1h h h h=b -μ S - - + +λ R ,

1 h h h hdt N (t-h) N (t-h) N (t)
1 1 1

dI β S I(t-h) β S I (t-h) u (t)I (t)v1 2 1h h h h= + -(μ +δ +γ )I (t)- ,
h h h hdt N (t-h) N (t-h) N (t)

1 1 1
dR (1-w)u (t)I (t) 

1h h=γ I (t)-(μ +λ )R + ,      
h h h h hdt N (t)

1

 (6)

β S I (t-h)dS v3v h=b -γ S - - u (t)S (t),v v v2 1 2dt N (t-h)
2

β S I (t-h)dI v3v h= -(γ -δ )I - u (t)I (t),v v v v2 2dt N (t-h)
2





 

(0) 0, (0) 0, (0) 0,

(0) 0, (0) 0.                  (7)

h h h

v v

S I R

S I

  

 
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  Here 1 2,   are the positive constants to keep  

balanced of the sized of infected human individuals, 

infected vector individuals, susceptible vector 

individuals, , ,h v vI I S at time t and [0,1]w and 

1 and 
2

are positive constants. In epidemic 

dynamics, stability, existence and optimal control 

theory are important research area. At first we will 

show the existence of solutions for the control system 

(6). In this control problem , we assume the restriction 

on the control variables such that 1 20 , 1u u  , 

where 1 2( , ) 0u u  for all [0, ].t T  The total 

population of host individuals is shown by 1N , and 

2N the populations of vector. Susceptible individuals 

acquire infection at a per capita 

1 1 2 1( ) ( ), ( ) ( ).h vI t h N t h I t h N t h     In our 

model the incidence rate is 

1 1( ) ( )h hS I t h N t h   and 2 1( ) ( )vI t h N t h    

and 
3

2

( )
.

( )

v hS I t h

N t h

 


 This incidence rate seems more 

reasonable than 

1 1 2 1( ) ( ), ( ) ( )h vI t N t I t N t  because the force of 

infection is proportional to 

1

( )

( )

hI t h

N t h




with time 

delay. Note that in some epidemic models, bilinear 

incidence rate 1 ( ) ( )h hS t I t and standard incidence 

rate 1 ( ) ( ) /h hS t I t N  are frequently used. Actually 

the infection probability per contact is likely 

influenced  by the number of infected individuals 

because more infected individuals can increase 

infection risk. For instance, during SARS outbreak in 

2003. The Chinese government did a lot of protection 

measures and control polices: closing schools, closing 

restaurants, postponing conferences, isolating 

infection etc. These actions greatly reduced the 

contact number per unit time. Then we write the 

control system (6) in the following form: 

( )
( ( ))    (8)

dW t
AW F W t

dt
   

Where 

( )

( )

( ) ( ) ,

( )

( )

h

h

h

v

v

S t

I t

W t R t

S t
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 
 
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( )

( )
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0 0 0
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h

v

P
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u
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The second term on the right hand side of equation (8) 

satisfies, 

1 2 1 1 2 2 1 2

3 1 2 4 1 2

5 1 2

1 2 1 2 1 2

1 2 1

| ( ) ( ) | (| ( ( ) ( )) | | ( ( ) ( )) |

| ( ( ) ( )) | | ( ( ) ( )) |

| ( ( ) ( )) |),

(| ( ( ) ( )) | | ( ( ) ( )) | | ( ( ) ( )) |

| ( ( ) ( )) | | ( ( )

h h h h

h h v v

v v

h h h h h h

v v v

F W F W C S t S t C I t I t

C R t R t C S t S t

C I t I t

C S t S t I t I t R t R t

S t S t I t

    

   

 

     

    2 ( )) |),vI t

 

Where the positive constant 

1 2 3 4 5max( , , , , )C C C C C C  is independent of the 

state variables . Also we have 

1 2 1 2| ( ) ( ) | | |,G W G W C W W   where 

1 2 3 4 5 .C C C C C C M      ‖ ‖ So, it 

follows that the function G is uniformly Lipschitz 

continuous. From the definition of control variables 

and non-negative initial conditions we can see that a 

solution of the system (5) exists see [19]. Now, we 

consider the control system (6) with the initial 

conditions (7) to show the existence of the control 

problem. Note that for bounded Lebesgue measurable 

controls and non-negative initial conditions, non-

negative bounded solutions to the state system exists 

[19]. In order to find an optimal 

control pair, we consider the optimal control problem 

(6-7). First we have to find the Lagrangian   and 

Hamiltonian for the optimal control problem (6-7). 

The Lagrangian of the control problem is given by, 

2 2

1 2 0 1 2 1 1 2 2

1
( , , , , ) ( ) ( ).

2
h v v h v vL I I S u u A I A I A S u u       

We seek for the minimum value of the Lagrangian and 

the Hamiltonian for the control system is given by 
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1 2 1 2

3 4 5

( , , , , )

.           (9)

h h
h v v

h v v

dS dI
H L I S I u u

dt dt

dR dS dI

dt dt dt

 

  

  

  

 

 

In order to find an optimal control pair, we consider 

the optimal control problem (6-7).  First we have to 

find the Lagrangian and Hamiltonian for the optimal 

control problem  (6-7). 

The conditions of the methods of optimal control with 

delay. 

The state equations, 
'

1( ) ( , , , )( ),hx t H x x u t   

The optamility conditions 

0 ( , , , )( ),u hH x x u t     (10) 

and the adjoint equations, 
'

1( ) ( , , , )( ) ( ) ( , , , )( )
hx h x ht H x x u t t h H x x u t        

 Actually, the Lagrangian of the optimal control 

problem is given by 

Theorem: Let 
* * * *( ), ( ), ( ), ( )h h h vS t I t R t S t  and 

*( )vI t be the state variables with associated optimal 

solutions with the corresponding optimal control 

variables 
* *

1 2( ), ( )u t u t for the optimal control problem 

(4-6). Then there exist adjoint variables 

,  1,2...5.i i   satisfying 

* * **( ) ( ) ( )( )
1 11 2( )( )

1 * * * 2( ) ( ) ( ( ))
1 1 1

* * **( ) ( ) ( )( )
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2 * * * 2( ) ( ) ( ( ))
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A
h

d
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With the transversality or boundary conditions 

( ) 0, 1,2...5.i T i                       (11) 

And the optimal control variables are given as 

 
*

1

* * *

1 2 3

* * *

1 1 1

1

( ) max(min

( ) ( ) (1 ) ( )

( ) ( ) ( )
,1,0( ) (12)

h h h

u t

wI t I t w I t

N t N t N t

  





 
 

*

2

* *

5 1 2 4

2

( ) max(min

( ) ( )
( ,1),0 .  (13)( )v v

u t

S t I t 





  

Proof: To prove the above result, i.e the adjoint 

equation and the transversallity conditions, we use the 

Hamiltonian  (9). The adjoint system was obtained by 

by using the adjoint equation  (10). 

'
( ) ( ) ( ) ( ),

1 1* *

'
( ) ( ) ( ) ( ),

2 2* *

t H t t h H t
S S
h hh

t H t t h H t
I I
h hh

 

 

   

   

 

'
( ) ( ) ( ) ( ),

3 3* *
t H t t h H t

R R
h hh

      
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'
( ) ( ) ( ) ( ),

4 4* *
t H t t h H t

S Sv vv

      

'
( ) ( ) ( ) ( ),5 5* *
t H t t h H t

I Iv vv

      

With ( ) 0.i T  To obtain the required 

characterization of the optimal control given by (12-

13),  solving the equations, 

0,    0

1 2

H H
and

u u

 
 

 
In the interior of the 

control set and by the control space U, we  derive the 

equation (10-13).  Substituting the corresponding 

derivatives in the above equations and after the 

arrangement we get the adjoint equations (10-13). In 

addition, the second derivative of the Lagrangian with 

respect to 
* *

1 2,u u is positive, which shows that the 

optimal problem is minimum at control 
* *

1 2,u u . By 

substituting the value of 
* *

1 2,u u  in the control system 

(6) we get the 

followingsystem

 
Figure 3. Represents the comparison of recovered 

human in  both the system without control and with 

control. 

 
Figure .4. Represents the comparison of susceptible 

vector in  both the system without control and with  

control. 

 

Figure 5. Represents the comparison of infected 

vector in  both the system without control and  with 

control. 
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Numerical Simulation and Summary 

In this section, we present the numerical simulations 

of the proposed model (1) and the delay control model 

(6) by using Runge-Kutta method. We solve first the 

model (1) and then solving the proposed model (6).  
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Then we solve the adjoint equation (10) with the 

boundary conditions (11)  numerically by Runge-kutta 

order four backward scheme. The constants used in 

the objective functional with their numerical values 

we assumed in the numerical simulation is 

2 3 1 20.001, 0.002, 0.7, 0.3A A       and 

2 0.0031 . The values of parameters used in the 

numerical simulations are presented in Table 1. 

In this simulation the bold line shows the system with 

no control and the dashed line shows the system with 

control throughout Figure 1 to Figure 5. Figure 6 and 

Figure 7 represents the control variable 
1u  and 

2u  

respectively. The aim of this paper is to control the 

infection in the host population by using the control 

variables in the form of treatment or prevention or 

educational compaign. The control shows in the 

Figure 1, the population of susceptible human 

increases and Figure 2 the infection in the host  

decreases.  Figure 3 shows the recovered individuals 

of human population which increases. Also the 

population of susceptible vector and infected vector 

and susceptible vector also decreases in Figure 4 and 

Figure 5. 

 
Figure 1. Represents the comparison of susceptible 

human in both the system without control and with 

control. 

 
Figure .2. Represents the comparison of infected 

human in  both the system without control and  with 

control. 

In this paper, we have presented an epidemic model 

by applying the optical control and time delay. First 

we have obtained the formulatation of the model and 

then we applied the time delay and optimal control 

with control variables 1 2, .u u  Then we have proved 

the existence of the control system and obtained the 

numerical solution of the both the system without 

control and  with control. Finally, we conclude our 

work by references. 

 
Figure .6. Represents the  the contro variable  u1 

 
Figure .7. Represents the  the control variable  u2. 

Table 1. Parameters  value used in the numerical 

simulation of the optimal control problem. 
.Notat
ion 

Parameters  Description Value 

1b  
Recruitment rate for human   population 13 

1  
Transmission rate for human population 0.01 

2  
Transmission rate for vector  population 0.95 

0.09 

3  Transmission rate for vS and hI  
 

h  
Natural mortality rate of human   

population 

0.000

01 

h  
Proportionality constant 0.02 

h  Disease death rate for human population 0.051 

v  
Natural mortality rate of vector 

population 

0.051 

v  
Disease death rate for vector population 0.051 

2b  
Recruitment rate for vector population 3 
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