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1.  Introduction 

              In recent years fractional derivatives have 

attracted much attention in a variety of field in the 

area of applied sciences. They accuracy in predicting 

evolution of complex systems have led several 

scientists to explore their solvability. The theoretical 

research on fractional diffusion equation models has 

received considerable success in physical modeling 

and experimental result analysis in the last decade [4-

14]]. Nevertheless, numerical methods for solving 

fractional diffusion equations are still unripe for 

practical processes in which the spatial behavior is 

not homogeneous. The major problem is that 

fractional derivatives fail to obey local rules due to 

the fact that they are global in nature as compare to 

continuity and differentiability in the usual sense that 

are local operations [1-3]. A relatively complete set 

of one-dimensional analytical solutions for fractional 

diffusion-convection equations was recently 

published by Atangana and Kilicman [1].   Here we 

shall consider a case with nonlocal diffusion 

convection and space-time fractional derivatives.  

The evolution equation reads   

                                     

 

                                    (1.1) 

, 

                   

where ,  and are real coefficients and 

furthermore we have   and   

 This paper is structured as follows: 

section 2 gives a brief overview of fractional 

derivatives, section 3 discusses the solvability of the 

evolution equation, section a covers numerical 

simulations and section 5 is devoted to the 

conclusion. Since the concepts of fractional (or non-

integer) order derivatives is not widely known, we 

will give a brief description of the concept in the next 

section and highlight some relevant properties.  

 

2 . Fractional order derivatives [1] 

The concept of fractional calculus is believed to have 

stemmed from a question raised in the year 1695 by 

Marquis de L Hospital (1661-1704) to Gottfried 

Wilhelm Leibniz (1646-1716), which sought the 

meaning of Leibniz’s currently popular notation  

for derivative of order  

when .  In his reply, dated 30 September 1695, 

Leibniz wrote to L’ Hospital as follows: “ This is an 

apparent paradox from which, one day, useful 

consequences  will be drawn…..”. It  has emerged 

that the concept of fractional order derivatives for a 

function, say  is based on a generalization of the 

Abel integral: (2.1) 

 

 where n is a non-zero positive integer,  the 

Gamma function [2]. This represents an integral of 

order n for the continuous function , whenever  

and all its derivatives vanish at the origin, 

. This result can be extended to the concept of 

an integral of arbitrary order  , defined as: 

 
where  is a positive real number and   an integer 

such that . 

Let  now be the least positive integer larger than  

such that ; . Equation 

(2.1) can then be used to define the derivative of 
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(positive) fractional order, say , of a function  

 as:                                (2.2) 

 
Note that these results, like Abel’s integral, are only 

valid subject to the condition that  

for  

Properties of the differential operator can be found in 

[3] [4], we mention only the following: 

 

For  and  

   

;  

 

 

3. Formulation of space-time fractional derivative 

of  heat convection equation 

In order to include the noise due to the metal 

diffusivity, the heat convection    is 

replaced by the Riemann-Liouville fractional 

derivatives of order ,  and in the same 

way,  is replaced by   and 

 is replaced by    

This leads to the problem 

                                     

 

             
subject to the initial condition         

, 

where  is a nonnegative continuous function. 

 

Theoretically the above initial value problem is 

mathematically well-posed (existence of a unique 

solution that is stable), however the fractional 

integro-differentiability nature of the problem makes 

it difficult to obtain an explicit solution. In this work 

we will first transform the homogeneous problem 

into a fractional heat transfer problem by using a well 

known change of variables  

 
where  and   are constants depending on ,  and 

. This enables us to reduce the corresponding 

homogeneous problem to the fractional problem                    

                   , 

subject to the initial condition  

. The idea is to get the 

solution of the homogeneous fractional heat problem 

without its initial condition, then use the method of 

undetermined coefficients or the method of variation 

of parameters to get the solution to the full non-

homogeneous problem, then to apply the initial 

condition to get the unique exact solution of the 

whole system. In what follows, we proceed as in [1] 

to deal with the fractional heat problem in order to 

solve for . We will then explore both 

fractional derivative in the Riemann-Liouville sense 

and fractional derivatives in the Caputo sense. 

 

4. Analytical solution 

4.1  Fractional derivative in Riemann-Liouville 

sense 

Applying Laplace transform to 

 subject to its initial 

condition  , we get  

, 

where we have assumed  .  Setting 

,  this equation becomes  

. 

Applying this time around Laplace transform to the 

spatial variable, the equation takes the form 

 
where  is the Laplace variable for  the space 

component and   .  

For  and  , we have the 

following expression  can be writing in 

form of series as follows: 
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and hence substituting  the following representation 

yields 

                                                         

 
The above expression can then simplified as  

 
where 

 
and  

 
 

Thus the series solution of equation can be now given 

by applying the inverse Laplace operator on   

to have                                                                                                       

 
 Since the inverse Laplace operator is a linear 

operator it follows that                                                                                                                                               

 

 
                          

Since 

 
we have that  

 
 

and  

   

 
 

 
 

The coefficients , of  

 

 
are obtained by applying the initial conditions 

prescribed to the problem. 

 

Example 1 

We consider the scenario whereby  

and , and    The coefficient 

 and    We 

obtain  

and  

   

 
 

4.2  Fractional derivative in Caputo sense 

The Riemann-Liouville derivative has smooth 

properties that can be used to solve regular problems, 

but it shows certain disadvantages when trying to 

model singularly perturbed phenomena with 

fractional differential equations [6]. In what follows 

we will use Caputo fractional derivative ti investigate 

the same problem and compare the properties of the 

solutions obtained. 

The Laplace transform for the Caputo derivative is  

based on the formula 

 
with  

. 

Thus applying the Laplace transform in both side of  

our main equation on the component of time, and 

applying again the Laplace transform on the 

component of space yields :                    
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 For , 

 

 
Following the same trend as the discussion presented 

earlier for the case of Riemann-Liouville, we have 

the following  

 
Hence for , we have  

 

and                                                                                                                                                                                             

 

Thus from the above expression we derive the 

following solution to the space-time Caputo 

fractional derivative of our heat convection equation. 

It follows that  

 

where  

 

and                                                                                                                                                                                             

 

 As in the previous subsection, the coefficients  are 

found by applying the initial and boundary conditions 

on   .  

. 

Example 2 

We consider the scenario whereby  and 

, and The coefficient 

 and     

This time around instead of using Riemann-Liouville 

derivative, we make use of the Caputo derivative.  

The analytical solution of space-time fractional 

derivative heat convection equation obtained is given 

below: 

and                                                                                                                                             

Note that these solutions are linearly independent and 

constitute the fundamental system of solution of the 

evolution equation describing heat convection with 

lateral loss. Next we present some graphical 

representation of the solutions obtained the Riemann-

Liouville derivative and the Caputo derivative. These 

solutions are linearly independent and they provide 

the fundamental system of solutions to space-time 

Caputo fractional derivative of hydrodynamic 

advection-dispersion equation. An approximation of 

this series is given below for possible simulation 

 

5. Numerical simulation 

We use the software Mathematica to compute our 

values and plot the graphs. In entering the codes, the 

integral parts had to be broken into summations and 

the derivatives computed as difference equations. The 

speed of the process was proportional to the order of 

the fractional derivatives.  

 

 

Example 1 

We consider the scenario whereby  

and , and    The coefficient 

 and    
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                                                      Figure. 1 

 

Example 2 

We consider the scenario whereby  and 

, and The coefficient 

 and , 

                                                      Figure. 2 

 

6. Conclusion 

In this paper, the fractional heat convection 

equation with lateral heat loss was analysed via the  

Riemann-Liouville derivative and the Caputo 

derivative. Laplace transform was considered in 

various instances to enable the solvability of our 

equations. We showed that the two solutions that 

satisfied the fractional equation both for space-time 

Caputo and Riemann-Liouville fractional derivative 

generated fundamentals solutions of the evolution 

problem. We highlighted the effects of the order of 

the fractional derivative by emphasizing on the fact 

that our solution did not only depend on the space 

and time variable, but also on the fractional 

derivatives. The figure 1 and 2 show that the order of 

the derivative can be used to simulate chaotic world 

problem  and  they suggest that these methods could 

be used to describe with accuracy complex problems 

in mathematics and engineering.  
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