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Abstract: We construct some two-step simultaneous methods for finding all the real and complex roots of a non-
linear equation. The convergence analysis of these methods is also discussed. The methods are then compared
numerically. It was found that the methods are very effective, efficient and provide good numerical results.
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1 Introduction
Consider the non-linear equation

f(x)=0 M

The methods for finding simultaneously all the zeros
of non-linear equations are very attractive as
compared to finding the single root at a time. These
methods are more stable, have wider region of
stability and can be implemented for the parallel
computing see [1-3,5-14].

2 Two-step Simultaneous Methods for Finding
Distinct Roots
In this section, we develop two-step iterative methods
for the simultaneous approximation of all the zeros of
a non-linear equation
Error! Reference source not found..
Let us consider the methods which are derived from
integral inequalities by Mir and Naila [1]
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for determining zeros of single variable non-linear
equation Error! Reference source not found..
Let

f &)

W.(x,)= T (Weierstrass'Correction).
J#i (xi —X j)
j=l1
)

Then, replacing (x )/f , (x ) by W, (xl.) in the

methods (1), (2), (3) and (4), we get the followinf!)
two-step methods for determining simultaneously all
real and complex zeros of a non-linear equation
Error! Reference source not found.:

Yi=X; _Wi(xi)’

Z; =X, _Wi(xi)

f(x)=-r () )

Yi=X; _Wi(xi)’
f)+f ) O
f(x)) ,

Z; =X, _W[(x[)
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Yi zxi_VVi(xi)a
LI (x)+ ()

z, =y, W(x,) 5 . ,
I e e )3 )
9)

and
yi zxi _VVi(xj)a
F ) (x)+ (), a0

=V _VVj(xj}

S ()= (1)

where W, (x ) is given by (5).

2.1 Convergence Analysis

In this section, we prove that the two-step
simultaneous methods described by the equations (6),
(7), Error! Reference source not found. and
Error! Reference source not found. have cubic

convergence.
Theorem 1.

Let n be the number of distinct roots &,&,,...,&,
of a non linear equation
Error! Reference source not found. . If
X,X,,...,X, are the initial approximations of the

roots respectively, then, for sufficiently close initial
approximations, the order of convergence of (6)
equals three.

We denote: ¢ =x,—-&, & =y, —¢& and

& =z, —& . Considering the first equation of (7)

1

,we have

=€i(1—AI,), (11)
where
y _w, (x’)—H_” x; =&
l : P4\ x, —x

Now, if é‘l is a simple root, then for small enough

&, |x;, —x j‘ is bounded away from zero, and so
X, — =G
EEARERA T
X, —X X, —X .
i Jj i J
and
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m & =<)

J#i
j=1 (xi _xj)

=1+(n-1)0(&) +..=1+0(¢),

(1+0(8))

This implies,

A =1+0(¢).
Hence

A, -1=0(¢). (12)
Thus, (8) gives

g, =0(52). (13)

Now, considering second equation of (6), we have

(14)

Now, [ (y ) can be written as

fi)= ,¢,1 e s?,-)=(y,-—é)_’}i,i(y -$&)

=(x, -, 5),¢, (x; =W, =¢;)

=(& W, ),i, (x,-W.,=&) (15
=&, (1-4,),, (x, W, &) (8)
This implies "
1-4, W,
f(yi)zg( )]il (x; SZ)
S (=) (x &)
I (x, W, _é:j)
( )]ﬂ i_é:j)
=(1_Ai)Gi’ (16)

where
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_ =H.” (xi _Wi _égj)
A (=g

Using (11) in (9), we get

1-(1-4,)G,
giAi (I_Ai )Gi
1-(1-4,)G,

=5,(1-4,)-¢,(1-4,)

=g —cA —

A,G,
1-(1-4,)G,

:gi(l_Ai){l_L}
1-(1-4,)G,
- gi(l_Ai)(l_G[)' (17)
1-(1-4,)G,
It is easy to verify that
Hn
. =W, =&
(1-4,G,]=1- BIgE -S (x; =W, =¢;)
NG =X, )i (0 =8))
j=1
H” (x;, W, _égj)
fﬁll ()CI- _xj)
=1-G, =0 (¢). (18)

Hence, using Error! Reference source not found.
and (13) in (12), gives

. £0(£)0(¢) ,
5 =80E)0E) gy,
1-0 (¢)G,

which proves the theorem.
Theorem 2.
Let n be the number of distinct roots &,&,,...,&,
of a non linear equation
Error! Reference source not found. . If
X,X,,...,X, are the initial approximations of the

roots respectively, then, for sufficiently close initial

approximations, the order of convergence of (7)
equals three.

Proof.

We denote: ¢ =x,—-&, & =y, —¢&  and

E =z ; —ggl.. Now, second equation of (7) can be

1

written as,
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zZ; =)y _Wi(xi)(l"'f (yi)J

S (x)
z,=x,-W,(x,)-W, (xl.)(lwt;%j. (19)

Using (8) and (11) in (14), we get

2, =x, W, (x,) =W, (x)(1+(1-4,)G,)
& =¢ -4, (1+(1-4,)G,)
=¢ (1-4,)[1-4,G, ] (20)

Using Error! Reference source not found. and (13)
in Error! Reference source not found., we have:

& =¢0(£)0(e)=0 (6’3),
which proves the theorem.
Theorem 3.
Let n be the number of distinct roots &,&,,...,&,

(12)

of a non linear equation
Error! Reference source not found. . If
X,X,,...,X, are the initial approximations of the

roots respectively, then for sufficiently close initial
approximations, the order of convergence of
Error! Reference source not found. equals three.
Proof.

We denote: ¢ =x,-&, & =y, —¢ ar(1f13)
g =z,—&. Now, second equation of

Error! Reference source not found. can be written

relie)
(y,)j
f(x))

fi)_ [
1_
f(x)
Using (8) and (11) in (15), we get
- _ 2,42
z, =x, W, W, (1-4,)G, +(1 Ai)GZi 2
1_(1_Ai)Gi_3(1_A,-)Gl—

_Wi (xi) (15)

Z; =Yy

_ 242
é‘i =g —81.141. —8I.Al. (1 A")Gi +(1 Ai) Gzi -
[=(1-4,)G, ~3(1-4,)G,

A,G, +4,(1-4,)G}

=& (1-4)-¢ (1-4,)— (1-4,)G, -3(1-4,)’G?
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— 2
=& (1-4;) 1= 4,6, +4,1 Ai)Gl'z 2
1-(1-4,)G, =3(1-4,)°G;
= (I—A[)P—(l_A" )G, —3(1-4, G ~AG, ~4,(1-4, )G}
1-(1-4,)G. —3(1-4,7G

:g"(l_A"){ 1-(1-4,)G, -3(1-4,)°G}

(16)
Using Error! Reference source not found. and (13)
in (16), we have:

0(£)-3(0(¢)) G?~4,0(¢)

1-0(¢)-3(0(e))

& =¢£0(¢)* G}

1-30 (£)G} -4,G?

mar0le)ole 1-0(¢)G, -3(0(¢)) G}

=0 (53 ),

which proves the theorem.

Theorem 4.

Let n be the number of distinct roots &,&,,...,&,
of a non linear equation
Error! Reference source not found. If

X,X,,...,X, are the initial approximations of the

roots respectively, then, for sufficiently close initial
approximations, the order of convergence of
Error! Reference source not found. equals three.
Proof.

We denote: ¢ =x,—-&, & =y, —¢& and

& =z, — é’ . From equation

1

Error! Reference source not found., we have

g =0 (52 )
Now, second equation of
Error! Reference source not found. can be written
as,
L0
f) ()
=yi_Wi(xi) l ’ (17)

)
f(x,)
Using (8), Error! Reference source not found. in
(17), we get

f(xi)l_
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z =x, W, W, (1-4,)G, TU=4)G,
1_(1_Ai)G,-
&= (1-4) -5, (1-4,)x4,G, 200
1-(1-4,)G,
_ 2
— e (1-4,) 1_AI-G1- +4,(1-4,)G;
1_(1_A1)G1
2
=$,.(1—A[){1_(1—A,~)G,. -A,G, —A,(1-4,)G; }
1_(1_A5)G,~

=g (1-4,) 1-(1-4,)G, (1+4,G,)-A4,G, }

1-(1-4,)G,

=5,(1-4,)

[(1-4,G,)-(1-4,)G, (1+ 4,G,)
I 1-(1-4,)G,

(18)
From (13), we have the following form of (18),

5 =50/(2) 0(£)-0(£)G,0 (5)(1+AiGi)}

1-0 (¢)G,

g =0 (83 ),
which proves the theorem
2.2 Numerical Results

We give here some numerical results in order to
present the performance of our third order two-step

methods, (6), (N,
Error! Reference source not found. and
Error! Reference source not found. namely

NM1,NM 2, NM 3, and NM 4 respectively.
We compare our methods with Zhang et al. method
[13] (abbreviated as ZPH method) of order five. All
the computations are performed using Maple 10.0,
with 64 digits floating point arithmetic. We take

g =107 as tolerance and use the following

stopping criteria for estimating the zeros:
(n +1) —z l(n)

i

z

e, = <g, foreachi,

where e; represents the absolute error and it ,

number of iterations.
Numerical examples are also taken from [13].
Example 1:
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Consider

f(z)=z4—l,

with the exact zeros

él =1’§2 =_1’§3 =ia§4 =—i.

Take initial approximations as:

20 =0.5+050, 20 =

-1.36+0.42i,

2 =-025+1.28i,z" =0.46-1.37i.

The numerical comparisons is given in the table 1

Table 1. Present and Literature Results of Example 1

Methods it e e, e, e,

NM'1 5 0.105061e ™" | 0.235849¢™" | 770448 0.803483¢ "

NM 2 6 014693427 | 0.610141e° | 0.777496e° | 0.475622¢ >

ZPH 4 0.100000¢"7 | 0.0 0.154240¢™"® | 0.100000e "

NM 3 6 0.343138¢ > | 0.852370e > | 0.237760e>* | 0.18881le "

NM 4 13 0.136148¢ 7 | 0.17239% % 0.111343¢™® | 0.108202¢
Example 2: z¥=1.66+023i,z” =1.36-0.31i ,z” =-0.76 + 0.18i,
Consider

f(z)=z7+25—1024—z3—z +10,

with the exact zeros

é:] =2a§2 =1’§3 =_1’

£ =i, & =i & =—14+2i,& =—1-2i.

Take initial approximations as:

z¥"=-035+1.17i,z” =0.29-1.37i,z " =-0.75+2.36i,

2 =-1.27-1.62i.

The numerical comparison is shown in the table 2.

Table 2 Present and Literature Results of Example 2
Methods NM1 NM 2 ZPH NM 3 NM 4
Iteration 6 6 3 8 7
-39 =25 -5 =25 24
e, 0.103036e 0.593378¢ 0.163337¢ 0.262624¢ 0.212406e
e, 0272431 | 0.190635¢ ° | 0.232441e” | 0.150380e > | 0.608994¢ °
e, 0421318¢ | 0.540219¢ ¢ | 0.0 0.879347¢ 2 | 0.205031e >
e, 0.376408¢ ¥ | 0.82025¢ 0.509990e "* | 0.642865¢ > | 0.326272¢
e, 0.838318¢ * | 0.675336e " | 0.454933¢° | 0.329247¢ ' | 0.267003¢
e, 0.119473¢* | 0.313808¢ > | 00 0.101475¢ | 0.322004¢
e, 0.889241e ™ | 0.216807¢ > | 00 0.922604¢ ' | 0.533404¢
Example 3: & =-5¢=-2,&=2.
Consider

f(z)=z3+522—4z -20

+cos(z” +5z° —4z —20)—1,
with the exact zeros

http://www.lifesciencesite.com

Take initial approximations as:
0 — ©0) — 0) —

z, ==52,z, =-14,z;" =24,

The numerical comparison is shown in the table 3.
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Table 3 Present and Literature Results of Example 3

Methods iterations e, e, e,
NM 1 5 0.176358¢ * 0.703298¢ ' 0.344328¢ **
NM 2 5 0.125647¢ 0.243345¢ 7 0.151340e "
ZPH 8 0.0 0.1e* 0.9¢ ”*
NM 3 5 0.384662¢ 0.0 0.105770¢ >
NM 4 5 0.414932¢-29 0.1368906 0.428373¢-26

3 Conclusions

We have developed and extended here three
iterative methods for determining single root at a
time of a single variable non-linear equations to three
simultaneous iterative methods for finding all the
roots of a non-linear equation, each of convergence
order three. From the tables 1 to 3, we observe that
although our methods are of convergence order three
but are very effective, efficient and more accurate in
terms of accuracy as compared to fifth order
simultaneous method of X. Zhang, et al. method [13].
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