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1. Introduction 

The concept of deformation technique has been 
exploited to a great extent in several fields of 
sciences [1-4, 6, 12]. The deformation technique is 
applied for the hyperbolic and trigonometric 
functions. Recently, this technique has been used 
especially for the continuous hyperbolic secant 
distribution "HS-Distribution" which is symmetric 
about zero with unit variance [8, 9]. This distribution 
has probability density function "pdf" in the form 

HS

1
( ) sech( /2) ; R

2
f x x x   (1) 

and it has some closed forms for some corresponding 
functions (the moments-generating function "mgf", 
characteristic function "cf", cumulants-generating 
function "cgf" and score function "sf") and measures 
[5, 10, 13]. The family of the continuous pq-
deformed hyperbolic secant distributions "{pq-DHS 
distribution}" has been constructed and studied [7]. 
Each pq-DHS distribution has been obtained by 
introducing two positive scalar deformation 
parameters p and q respectively as two factors of the 
exponential growth and decay parts of the hyperbolic 
secant function "HS function" in the HS distribution. 
The pq-DHS distribution is unimodal with unit 
variance. Its pdf is given by  

DHS( ; , ) sech ( / 2) ; R.
2

pq pq

p q
f x p q x x    (2) 

The corresponding mgf, cf, cgf and sf of this 
distribution have closed forms which depend on the 
introduced scalar parameters p  and q . All moments 

of this distribution exist and the mean, the median 
and the mode have equal non-zero values as a 
function of the introduced real valued positive 
parameters p  and q  [7]. 

The main of this paper is to define and study a 
class of p(w)q(w)-deformed hyperbolic secant 

distributions, which is denoted by "p(w) ( )q w -DHS 

distributions", by introducing two real valued positive 
parametric functions p(w) and q(w) (the deformation 
parametric functions). We consider a linear function 
of the mentioned random variable with coefficients as 
functions of a scalar parameter w. In this study, we 
will consider some appropriate assumptions with 
respect to the introduced para-metric functions as 
well as the used coefficients in the mentioned linear 
function of the random variable.  
 
2. The p(w)q(w)-deformed hyperbolic secant 
distribution 

Firstly, we consider the deformation technique 
for which two real valued positive parametric 

functions ( )p w  and ( )q w  are introduced res-

pectively as two factors of the exponential growth 
and decay parts of the HS function in the HS 

distribution. The ( ) ( )p w q w -DHS distribution is 

defined by means of the ( ) ( )p w q w -deformation 

for the hyperbolic functions. Now, we define the 
deformed hyperbolic functions by introducing two 

arbitrary deformation parametric functions ( )p w  

and ( )q w and we explain their properties.  

 

Definition 1. Let ( )p w  and ( )q w  are two 

arbitrary real positive deformation parametric 

differentiable functions of ,w  w R . We define 

the ( ) ( )p w q w -deformed hyperbolic functions to 

be a family of functions ( ) ( )sinh ,p w q w   
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( ) ( )cosh ,p w q w   ( ) ( )tanhp w q w  , ( ) ( )sech p w q w  , 

( ) ( )coth p w q w   and ( ) ( )csch p w q w   as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
sinh , cosh ,

2 2
p w q w p w q w

pw e qw e pw e qw e  
 

   

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

sinh cosh
tanh , coth ,

cosh sinh

p w q w p w q w

p w q w q w

p w q w p w q w

 
 

 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
sech , csch ;

cosh sinh
p w q w p w q w

p w q w p w q w

  
 

  

                                      (3) 
 

where ( , )x w   is a real differentiable function 

of x  and w , and it is a linear function in x with 
positive partial derivative with respect to x , i.e. 

( ) ( )C w x D w  , ( ) (0, )C w    as a 

derivative of   with respect to x , and 

( )D w R .                            
 

Lemma 1. A family of the ( ) ( )p w q w -deformed 

hyperbolic functions satisfies the following relations 
of the first derivatives of 

( ) ( ) ( ) ( ) ( ) ( )sinh , tanh , cosh ,p w q w p w q w p w q w    

( ) ( )sech p w q w   with respect to x : 

( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

(sinh ) ( ) cosh ,

(tanh ) ( ) ( ) ( )sech ,

(cosh ) ( ) sinh ,

(sech ) ( ) sech tanh .

p w q w p w q w

p w q w p w q w

p w q w p w q w

p w q w p w q w p w q w

C w

C w p w q w

C w

C w

 







 

 

 

  

(4) 

 

Furthermore, if ( ) 1p w   or ( ) 1q w   then 

( ) ( )sinh p w q w   is not odd function with respect to 

  and ( ) ( )cosh p w q w   is not even function with 

respect to  , i.e. 

( ) ( ) 1 1

( ) ( )

( ) ( ) 1 1

( ) ( )

sinh ( ) ( ) ( ) sinh ,

cosh ( ) ( ) ( ) cosh .

p w q w

p w q w

p w q w

p w q w

p w q w

p w q w

 

 

 

 
 

Moreover, the following relations are satisfied: 
2 2

2 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

cosh sinh ( ) ( ) ,

tanh 1 ( ) ( ) sech ,

coth ( ) ( ) csch 1 .

p w q w p w q w

p w q w p w q w

p w q w p w q w

p w q w

p w q w

p w q w

 

 

 

 

 

 

 

Proof: Based on [1, 7, 11] and Definition 1, we can 
directly prove this lemma.              
 

The main idea of the suggested deformation 
technique is to generalize the HS-distribution in an 
alternative formula which depends on two real 
positive parametric functions and also to study its 
important corresponding characteristics. Here, we 

extend the random variable X by ( , )X w  , 

where w R . 
As an immediate consequence of previous definition 
and lemma, we can define the pdf of the constructed 

( ) ( )p w q w -DHS distribution as the following. 
 

Definition 2. Let ( ) ( ) DHSp w q wX   be a continuous 

random variable. This variable has a ( ) ( )p w q w -

DHS distribution with two positive real deformation 

parametric functions ( )p w and ( )q w , if its pdf 

given by 

( ) ( ) DHS

( ) ( ) ( )
( ; ( ), ( ))

2
p w q w

C w p w q w
f p w q w   

 
( ) ( )sech ( ); , R ,

2
p w q w x w 

     (5) 

where ( ), ( ) (0, )p w q w   and ( , )x w R   . In 

this case, ( ) ( ) DHSp w q wX   is said to be a 

( ) ( )p w q w -DHS random variable with two 

parametric functions ( )p w and ( )q w , defined 

over R . Furthermore, the corresponding real valued 

cdf named ( ) ( ) DHS( ; ( ), ( ))p w q wF p w q w   is defined 

as 

( ) ( ) DHS

1 1
( ; ( ) , ( )) arctan [

2
p w q wF p w q w  



( ) ( )

1
sinh ( ) ],

2( ) ( )
p w q w

p w q w

 
    (6) 

 

with the inverse cdf (critical value)  

( ) ( ) DHS 2 1
[arcsinh[tan ( ( ))]

. ( ) 2
p w q wx

C w
    


 

 

1 ( ) ( )
ln ] ,

2 ( ) ( )

p w D w

q w C w
        (7) 

where  
 

( ) ( ) DHS
( ) ( ) DHS ( ) ( ) DHS[ ] 1 ( )p w q w

p w q w p w q wP X x F x
      

, (0,1).         
 

Without loss of generality, let ( ) 0D w   and in this 

case the values 
( ) ( ) DHSp w q wx 

  for some different 

values of w and for each fixed pair of the parametric 

functions ( )p w  and ( )q w using (7) can be 

computed. 
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Now, we will next present some important 

properties of this constructed ( ) ( )p w q w -DHS 

distribution. Based on [7-9] and the graphical 
explanation and under some appropriate assumptions 

the exponential tail behavior of the ( ) ( )p w q w -

DHS distribution guarantees the existence of the 

expectation of ( ) ( ) DHSp w q wX   and generally all 

moments. In particular, the expectation of the 

variables ( ) ( ) DHSp w q wX   and also 
2

( ) ( ) DHSp w q wX   

can be derived and given respectively by 

( ) ( ) DHS

2 2
( ) ( ) DHS 2 2 2

2
[ ] ln[ ( )/ ( )] ,

( )

1 4
[ ] (ln[ ( )/ ( )]) .

( ) ( )

p w q w

p w q w

E X q w p w
C w

E X q w p w
C w C w





 

 






(8) 

Moreover, the variance of ( ) ( ) DHSp w q wX   is 

2 21/ ( )C w .  
 

Proposition 1. The ( ) ( )p w q w -DHS distribution 

with two positive real deformation parametric 

functions ( )p w  and ( )q w  is symmetric about 0 

for ( ) ( )p w q w . Moreover, it skewed more to the 

right for ( ) ( )p w q w  and skewed more to the left 

for ( ) ( )p w q w . For all positive real values of 

( )p w  and ( )q w , the kurtosis is always constant.    
     

Based on [7-9], different pdf's for the ( ) ( )p w q w -

DHS distribution with ( ) ( )pw q w  (or ( ) ( )pw qw ) 

for each fixed pair ( ( ), ( ))p w q w  or ( ) ( )p w q w  

for some real values of w can be plotted and 
illustrated in which it obvious graphically that the 
Proposition 1 is valid. Computationally we can also 
find the following results: 

- for fixed value of the parametric function ( )p w , it 

is clear that the mean of ( ) ( )p w q w -DHS 

distribution is inversely proportional with the 

value of the parametric function ( ).q w  

-  for fixed value of the parametric function ( )q w , 

it is clear that the mean of ( ) ( )p w q w -DHS 

distribution is inversely proportional with the 

value of the parametric function ( )p w . 
 

According to the form ( ) ( ) /( )S x pdf pdf   

of the score function "sf", we can derive this function 

for the ( ) ( )p w q w -DHS distribution. 
 

Proposition 2. The score function of the variable 

( ) ( ) DHSp w q wX   with ( ) , ( ) (0 , )p w q w    is 

given by  

( ) ( ) DHS ( ; ( ) , ( ) ) ( )
2

p w q wS p w q w C w 


   

( ) ( )tanh .
2

p w q w
 

     (9) 

 

Setting ( ) ( ) 1p w q w   and ( ) 1C w  , the last 

equation reduces to HS ( ) tanh
2 2

x
S x 

 
, where 

HS( )S x  is the sf of HS distribution. Moreover, when 

( )p w p and ( )q w q  (i.e. parameters) and 

( ) 1C w  , equation (9) reduces to 

DHS( ) tanh
2 2

p q p q

x
S x 

 
 which is the sf of the 

variable DHSp qX   with , (0 , )p q   . 

Proof: By using (5), the form (9) can be obtained 

with the reduced cases HS( )S x  and DHS ( )pqS x  

for ( ) ( ) 1p w q w  , ( ) 1C w   and ( )p w p , 

( )q w q , ( ) 1C w   respectively.       
 

Proposition 3. The ( ) ( )p w q w -DHS distribution is 

unimodal for ( ) , ( ) (0 , )p w q w   .  

Proof: Based on the pdf of ( ) ( ) DHSp w q wX   in (5), we 

aim to show that this function is unimodal for all pair 

of ( )p w and ( )q w . Since this pdf is a 

continuously differentiable function, the only critical 
points for this function satisfy 

( ) ( ) DHS( ; ( ), ( )) 0p w q wf p w q w
   (the derivative 

with respect to x ). Now, we want to prove that the 
last equation has exactly one root, and that this yields 
a relative maximum. Since 

( ) ( ) DHSlim ( ; ( ), ( )) 0p w q wf p w q w





 , 

then if there is one critical point, it must yield the 
absolute maximum, so we need to prove there is 
exactly one root to the derivative equation. After 
simplification, this can be seen to be equivalent to 
proving  

( ) ( ) ( ) ( )(sech ).(tanh ) 0
2 2

p w q w p w q w 
   

 

has exactly one root.  
Set 
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2 ( )
( ; ( ) , ( )) ( ln[ ] )

( )

q w
x p w q w y

p w
 


, the 

last statement is equivalent to showing that the 

equation sech( ) tanh( ) 0y y   has exactly one 

root 0y   in R . This means that the equation 

( ) ( ) DHS ( ; ( ) , ( )) 0p w q wf p w q w
   has only the 

root * *
2 ( )

( , ) ln[ ]
( )

q w
x w

p w
  


 (i.e. 

*
2 ( )

ln[ ]
( ) ( )

q w
x

C w p w



) in R . Since the 2nd 

derivative *
( ) ( ) DHS( ; ( ), ( ))p w q wf p w q w
   with 

respect to x  is less than 0 with * *( , )x w  , then 

the point *x  is the maximum value of the 

( ) ( )p w q w -DHS distribution.  

Based on [7-9], this yields a relative maximum (and 
hence absolute maximum) since the 1st derivative 

( ) ( ) DHS( ; ( ), ( ))p w q wf p w q w
   is positive to the left of 

the root * ,x and negative to the right.  
        
 

Note that, the mode for the ( ) ( )p w q w -DHS 

distribution has the above value of the root *x , 
which equals the obtained mean. 
  

Proposition 4. The mode " ( ) ( )-DHSMode p w q w " and 

the median " ( ) ( )-DHSMedianp w q w " for the ( ) ( )pw qw -

DHS distribution with ( ), ( ) (0, )pw qw    have the 

same value of the mean   in (8).  

Proof: Due to the unimodality of the distribution, the 
previous obtained results and the fact that the median 
of the unimodal distribution lies between the mean 
and the mode of the same distribution, the given 
statement in the proposition is valid.       
 

Note that, in the case when ( )p w p  and ( )q w q  

(where , 0p q  ), ( ) 1Cw  , the pq-DHS distribution 

is recovered and also the case of ( ) ( ) 1p w q w   , 

( ) 1C w  , gives the original HS distribution. 
 

 

Now, we will derive some closed forms for the 

corresponding mgf, cgf and cf of the ( ) ( )p w q w -

DHS distribution. Moreover, we will deduce the 
corresponding moments, skewness and kurtosis 
coefficients of this constructed distribution. 
 

Proposition 5. The mgf of the variable ( ) ( ) DHSp w q wX   

with ( ), ( ) (0, )p w q w    is given by 
 

( ) ( ) DHSM ( ; ( ), ( )) secp w q w t p w q w t   

2 ln[ ( )/ ( )
( )

]

e ,

t q w p w
C w




    (10) 
 

where 
( )

2

C w
t 


. 

In particular, all moments of ( ) ( ) DHSp w q wX   exist. 

Proof: By using the substitutions 
 

2
( ; ( ), ( )) [ ln ( ( ) / ( ))]x p w q w y q w p w 



 and 
2

( )

t
B

C w



, we find that  

e sech sec
yB

y dy t


 

  , where 1.B   

Then the mgf in (10) of ( ) ( ) DHSp w q wX   can be 

directly obtained from the following: 

( ) ( ) DHS

ln[ ( )/ ( ) ]1
M ( ; ( ), ( )) e

e sech , 1.

p w q w

B q w p w

yB

t p w q w

y dy B









 


  

         
 

Proposition 6. The first four non-central moments of 

( ) ( ) DHSp w q wX   with ( ), ( ) (0, )p w q w    are given 

by 

1

2
2 2 2 2

1
ln[ ( )/ ( )] ,

( )

1 1
(ln[ ( ) / ( )]) ,

( ) ( )

q w p w
C w

q w p w
C w C w

 

  







 

3
3 3 3 3

3 1
ln[ ( )/ ( )] (ln[ ( )/ ( )]) ,

( ) ( )
q w p w q w p w

C w C w
  
 

2
4 4 2 4

4

4 4

5 6
(ln [ ( )/ ( )])

( ) ( )

1
(ln [ ( )/ ( )]) .

( )

q w p w
C w C w

q w p w
C w

  








 

 

Proof: The previous forms in this proposition can be 
directly derived by applying the definition of non-
central moment, where the obtained integra-tion can 
be easily worked out with the help of some 
mathematical packages.       
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From the previous results in Proposition 6 we can 
find that the first four central moments of 

( ) ( ) DHSp w q wX   are 

1 2 3 42 4

1 5
0 , , 0 ,

( ) ( )C w C w
       . 

Consequently, the skewness and the excess kurtosis 

are 0  and 2  respectively.  

Using the relation between the cf and mgf, we can 

obtain the cf of the ( ) ( )p w q w -DHS distribution 

in the following closed form: 
 
 

( ) ( ) DHS ( ; ( ), ( )) sechp w q w t p w q w t   

2
ln[ ( )/ ( )

( )
]

e ,

i t
q w p w

C w



    (11) 

 

where 
( )

2

C w
t 


. 

 

The next proposition gives the closed form of the cgf 
and the used closed form to calculate the r-th 

cumulant rk of ( ) ( )p w q w -DHS distribution. 
 
 
 
 

Proposition 7. The corresponding cgf of the variable 

( ) ( ) DHSp w q wX   with ( ), ( ) (0, )p w q w    is given by  

 

( ) ( ) DHSK ( ; ( ), ( )) ln[sec ]p w q w t p w q w t   

2 ( )
ln[ ],

( ) ( )

t q w

C w p w



    (12) 

where 
( )

2

C w
t 


. Moreover, the r-th cumulant 

, 1, 2,3,rk r   , of ( ) DHSq wX   is determined by 

( )
( ) ( ) DH S 0[K ( ; ( ), ( ))] ,r

r p w q w tk t p w q w 

1, 2, 3, ,r        (13) 
 

where the differentiation with respect to t and  
 

(1)
( ) ( ) DHS

2 ( )
K ( ; ( ), ( )) ln[ ]

( ) ( )

tan ,

p w q w

q w
t p w q w

C w p w

t

 





(2) 2
( ) ( ) DHSK ( ; ( ), ( )) 1 tan ,p w q w t p w q w t    

(3) 2
( ) ( ) DHSK ( ; ( ), ( )) 2tan (1 tan ) ,p w q w t p w q w t t    

(4) 2 2
( ) ( ) DHS

2 2

K ( ; ( ), ( )) 2(1 tan )

4tan (1 tan ) ,....

p w q w t p w q w t

t t

  

 
   

 

 

Proof: The form (12) can be derived by applying the 
definition of cgf where the obtained integration can 
be worked out with the help of some mathe-matical 

packages. Similarly, the r-th cumulants rk  of 

( ) ( ) DHSp w q wX   for each value of r  can be directly 

determined.             
 

From the previous results, we find that the moments 

of ( ) ( ) DHSp w q wX   are related with the cumulants, 

i.e. 1 1 2 22

1
, ,

( )
k k

C w
     3 3k , 

2
4 4 24

1
[ 3( ) ]

( )
k k

C w
  , …, and so on. 

 

 

 
 

3. Maximum Likelihood Parameter Estimation 
 

In this section, we will illustrate the ML Method 
to determine a certain value of the parametric 
function that maximizes the probability of the sample 

data from the ( ) ( )p w q w -DHS distribution. To 

obtain the MLE's for the para-metric functions 

( )pw and ( )q w  for the ( ) ( )pw qw -DHS distribution, 

we start with the pdf of the ( ) ( )p w q w -DHS 

distribution which is given in (5).  

Suppose that 1 2, , , nX X X  are an iid random 

sample from the ( ) ( )p w q w -DHS distribution, then 

the likelihood function is given by 
/2

1 2( , , , ( ( ), ( ))) ( )( ( ) ( ))n n
nL x x x pw q w C w pw q w

1

1

[ ( )exp( ) ( )exp( )] ,
2 2

n
i i

i

p w q w




  
 

  (14) 

 

with ( ; )i ix w  . The log-likelihood function is 

2

1

( ) ln( ( ) ( ) ( )) ln[ ( )
2

n

i

n
w C w p w q w p w



    

exp( ) ( )exp( )].
2 2

i iq w  
 

   (15) 

Taking the derivative of ( ) ( ( ), ( ))w p w q w   

with respect to w  and setting it equals 0 yields 
 

( ) ( ) ( )

2 ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( )]

C w p w q w

C w p w q w C w p w q w p w q w   

 ( ) ( )
1

[ tanh ( ) { ( )exp( )
2 2

n
i i

i p w q w
i

p w


  
 

   

( ) ( )( )exp( )}sech ( )] ,
2 2

i i
p w q wq w n  

 
 (16) 
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with ( ) ( )i iC w x D w    . Solving (16) iteratively, 

then the MLE's ˆ ˆ( ) ( )p w p w  and ˆ ˆ( ) ( )q w q w  can 

be obtained. 
 

4. Illustrative Example  
We give an illustrative example of the 

deformed distribution and explain some results. Let 

( ) ( ) DHSp w q wX   be a continuous random variable 

which follows the ( ) ( )p w q w -DHS distribution 

with ( ) 1p w   and ( ) exp( )q w w . We consider 

cosh( ) 3w x  . In this case we can find that 

pdf of ( ) ( ) DHSp w q wX   can be defined by, 

( ) ( ) DHS

( ) ( )

exp( / 2)
( ;1,exp( ))

2sech( )

sech ( ) ; , R ,
2

p w q w

p w q w

w
f w

w

x w

 

 



 
 

and the corresponding cdf of ( ) ( ) DHSp w q wX   is  

( ) ( ) DHS

( ) ( )

1 1
( ;1,exp( )) arctan[

2

exp( / 2) sinh ( )],
2

p w q w

p w q w

F w

w

  






 
 

with the critical value 
 

( ) ( ) DHS 2 1
sech( ) [ (arcsinh[tan( ( )) ]

2

) 3],
2

p w q wx w

w

  

 

  


 where 
( ) ( ) DHS ( ) ( ) DHS

( ) ( ) DHS[ ] 1 ( )

, (0,1).

p w q w p w q w
p w q wP X x F x 

  

 

 

 
   

We can find that, the 1st and 2nd non-central moment 

of ( ) ( ) DHSp w q wX   are given respectively by 

1 s.ech( )
w

w 


 and 
2

2
2 2

sech ( ) [1 ].
w

w  


 

Moreover, the variance is 2 2=sech ( )w . We can 

also find that mgf is given by 

( ) ( ) DHS

sech( )
M ( ;1,exp( )) sec( )exp[ ],p w q w

tw w
t w t 


 

with 
2 sech( )

t
w




. 

Moreover, the 3rd and 4th non-central moments of 

( ) ( ) DHSp w q wX   can be obtained as  

3
3

3 3

3
sech ( ) [ ],

w w
w  

 
   

2 4
4

4 2 4

6
sech ( ) [5 ].

w w
w   

 
 

Thus, the first four central moments of the variable 

( ) ( ) DHSp w q wX   are 
2

1 2 30, sech ( ), 0,w      

4
4 5 sech ( )w  and also 0  and 2 . 

Directly, we can find that cf and cgf are given 
respectively by: 

( ) ( ) DHS

.sech( )
( ;1, exp( )) sech( )exp[ ],p w q w

i t w w
t w t 



( ) ( ) DHS

sech( )
K ( ;1, exp( )) ln[sec( )] ,p w q w

t w w
t w t  



with .
2 sech( )

t
w




 From this form of cgf we 

can find that: 

(1)
( ) ( ) DHS

sech( )
K ( ;1, exp( )) tan( ) ,p w q w

w w
t w t  



and 
( )

( ) ( ) DHSK ( ;1,exp( )), 2,3,4,...,k
p w q w t w k   are 

defined in Proposition 7. Moreover, the moments are 
related with the cumulants, 

1 1 ,k   
2

2 2sech ( ) ,w k  3 3 ,k  

4 2
4 4 2sech ( ) [ 3( ) ]w k k  , ...,  

and so on. 
Finally, by solving the following nonlinear system in 
w iteratively,  

( ) ( )
1

( ) ( )

1
[ sinh( ) tanh ( )

2 tanh( ) 1 2

exp( )sech ( )] ,
2 2

n
i

i p w q w
i

i i
p w q w

x w
w

w n



   






  
 

with cosh( ) 3i iw x   and sinh( )i iw x  , 

1, 2,...,i n , one can obtain ŵ  and thus the MLE 

of ( ) cosh( )q w w is ˆ ˆ( ) cosh( )q w w . 

Different densities for the ( ) ( )p w q w -DHS 

distribution with ( ) 1q w   (i.e exp( ) 1w  ) and 

their corresponding densities with ( ) 1q w   (i.e 

exp( ) 1w  ) for some values of w  can be graphi-

cally illustrated. Moreover, the derivative of the 

unimodal pdf of ( ) ( )p w q w -DHS distributions is 

explained in the following figure: 
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Figure 1: Derivative of the unimodal pdf of ( ) ( )p w q w -DHS 

distributions with ( ( ), ( )) (1, exp( ))p w q w w  
 

5. Conclusions 
This paper discussed the construction of the class 

of ( ) ( )p w q w -DHS distributions which can be 

considered as a corresponding extension of the class 
of pq -DHS distributions. Firstly, we defined the 

( ) ( )pw qw -deformed hyperbolic functions which have 

been implemented by introducing two positive real 

valued parametric functions ( )pw  and ( )q w  as two 

factors of the exponential growth and decay parts of 
the HS distribution. We studied the effect of these 
deformation parametric functions in comparing with 
other previous studies on the HS-distribution. We 
considered a differentiable real valued function 

( , )X w   instead of .X  We assumed that this 

function is linear function in x with positive partial 
derivative with respect to .x  We found that each 

( ) ( )p w q w -DHS distribution of the constructed 

class is unimodal. In general, it has variance with 
value different than unity. We noted also that the 
derived closed forms of the corresponding mgf, cf, 

cgf and sf for the ( ) ( )p w q w -DHS distribution 

depend on ( )p w , ( )q w and the partial derivative of 

  with respect to .x  Furthermore, some important 

properties of the constructed class of deformed 
distributions were discussed. We noted that their 
moments exist. There is unique value of their mean, 
median and mode which still also as a function of 

( )p w , ( )q w  and ( )C w . The skewness and excess 

kurtosis of these constructed distributions are still 

res-pectively equal to 0  and 2. By applying the ML 
method to determine the MLE for the parameters 

( )p w and ( )q w  we obtained a nonlinear system 

which can be solved iteratively by using high 
processing systems of computers. An illustrative 

example of the obtained results has been presented 
und discussed. 
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