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Abstract: Many biological, biochemical and biomedical phenomena exhibit fractal patterns. Moreover, these 
phenomena can be modeled by treating them as multiplicative random processes. These features attribute to wavelet 
analysis, which is mainly based on scale invariance and self-similarity properties. Wavelet methods have unique 
ability to reveal structural properties of the multiplicative processes resulted in such biological phenomena; that 
makes the wavelets a versatile tool in analyzing the bio-informatics data. Among other biological branches, 
molecular biology alone contributes greatly to bioinformatics. Central to many problems in molecular biology is to 
understand the structural organization of genomic sequences. The genomic sequences are characterized by random 
processes and also exhibit fractal patterns. We therefore confine our discussion to genomic sequences treating them 
as random processes. In our present work, we propose a wavelet based mathematical tool to analyze genomic 
structures in stochastic framework laying emphasis on its randomized feature. The robustness of the method is 
justified due to the probabilistic approach adopted throughout in the formulation of the method.  
[Bharat Bhosale, Bouthina S. Ahmed, Anjan Biswas. Wavelet Based Analysis in Bio-informatics. Life Sci J 
2013;10(2):853-859] (ISSN: 1097-8135). http://www.lifesciencesite.com. 120 
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1. Introduction 

Recently, digital signal processing 
application to Bioinformatics has gained much 
importance and much attention is received to the 
genomic sequence analysis; that provided a new 
insight in problems like detecting coding regions, 
periodicities, finding diverse signals and studying 
protein structures. With the accomplishment of 
considerable knowledge of human genome, a new 
subject-bioinformatics has been emerged as a vital 
discipline. The study of structure and function of 
membrane protein is one of the important subjects in 
the field of bioinformatics.  

Growth and form in biology are often 
associated with some level of fractals; especially, 
anatomical growth processes lead to structures that 
exhibit fractal statistics. For example, vasculature of 
brain, where fractal like pattern can be identified in 
tree structures of arteries. The wavelets, which are 
based on scale invariance and self similarity-fractal 
patterns, are therefore the most suitable technique 
employed to study the biomedical and other texture 
images. Being a versatile tool especially for the 
analysis of quasi-chaotic signals, noisy images, 
wavelets have got applications in all branches of 
medicine, biology, computer tomology, analysis of 
ECG, brain wave studies. Apart from its versatility 
and potentiality in diverse fields, wavelet analysis can 
be productively applied to many different signals in 
bioinformatics. Recently, there has been a growing 

interest in employing wavelet based techniques in the 
analysis of biological sequences and molecular 
biology-related signals. Particularly, in biological 
systems, introducing stochastic 'noise' has been found 
helpful in improving the signal strength of the internal 
feedback loops for balance and other vestibular 
communication. It has been found helpful to diabetic 
and stroke patients with balance control.  

In literature, among others, Lio [15], 
summarized the potential of state of the art wavelets, 
and in particular wavelet statistical methodology, in 
different areas of molecular biology such as genome 
sequence, protein structure and microarray data 
analysis. In our earlier works, we studied the wavelet 
interaction with solitons arising as the solutions of 
nonlinear partial differential equations viz. Non-linear 
Schrodinger Equation, Sine-Gordon equation, 
Korteweg-de Vries equation [6, 9]. Also, we studied 
extensively the strong relationships existing between 
wavelets, solitons and probability distributions [7]. 
Moreover, we studied the wavelet interaction to 
random processes [8]. In [11] developed a wavelet 
multi-component decomposition algorithm for 
processing data from micro-Raman spectroscopy (μ-
RS) of biological tissue using data from μ-RS 
measurements performed in vitro on animal (pig and 
chicken) tissue samples and, in a preliminary form, on 
human skin and oral tissue biopsy from normal 
subjects. Yu and Zang in their research paper [22], 
carried out extensively the wavelet analysis of the 
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Kyte-Doolittle hydrophobicity profile of a protein 
signal by employing discrete wavelet transform to 
predict the number and location trans-membrane 
helical segments (TMHs). In the genome data, a large 
portion (about 20%-30%) of proteins in a genome 
encodes membrane protein, the proportion of such 
shows the importance of membrane protein in biology. 
Membrane protein, especially trans-membrane protein 
has very important function in organism, such as 
photosynthesis, respiration, neural signaling, immune 
response, nutrient absorption and so on, and it is also 
the important drug target. Of the drug target known 
and being researched is about 70% of the membrane 
protein. 

One of the significant features of many 
biological and biochemical phenomena is randomness. 
These phenomena can be represented by random 
processes and can be analyzed in stochastic 
framework by employing wavelet methods. For 
example gene expression, has a stochastic component 
through the molecular collisions. In [14] investigated 
the role of wavelet transformation in the study of 
random/stochastic processes. Moreover, the 
Electrocardiogram (ECG) signal also represents a 
random process and the signal has strong cyclic 
recurrence of standard regions of interest named 
waves, complexes and segments [10]. ECG signals 
measure the change in electrical potential over time 
[4]. Moreover, ECG signals are processed to extract 
morphological features. The resulting time series can 
be eventually analyzed using wavelet transform 
methods.  

 One of the challenging problems in 
molecular biology is to understand the structural 
organization of genetic sequences which are also 
characterized by random processes. The several 
investigations pertaining to genomic sequence 
analysis through digital signal processing techniques 
using different digital representations of genomic 
sequences have been reported. However, it is noticed 
that these approaches have suffered from one or the 
other deficiencies, especially the one that the 
normalized probabilistic behavior of the randomized 
processes characterizing such structures has not been 
exploited adequately. It was shown in number of 
studies that the distribution of nucleotides in a DNA 
chain is a fractal distribution. Many such biological 
processes can be described by probability models such 
as normal distribution and its associated statistics. 
More importantly, the sum of random processes with 
arbitrary distributions results in a random variable 
with normal probability distribution. This feature has 
led us to undertake the present study in which we lay 
emphasis on the normalized probabilistic behavior of 
the biological random processes in general and 
genomic sequences in particular. In this work, we 

proposed a generalized wavelet based stochastic 
model for analyzing genomic sequences employing 
appropriate form of the Gaussian wavelet 
representation of the normal probability distribution of 
the random variate representing the digital sequence 
as the generic/basic function. We exploited the ability 
of wavelet analysis to reveal structure properties of the 
multiplicative processes resulted in genomic/DNA 
sequence, by studying the correlations of wavelet 
coefficients of different scales.  

The paper is organized in four sections 
besides introduction. Introduction carries survey of 
literature and the relevant results reported leading to 
the present study. First section briefs the notations and 
terminologies used in sequel, second section 
elaborates on the different representations of the 
genomic sequence, the third section is devoted to the 
mathematical analysis comprised of formulation of 
genomic sequence in randomized form, selection and 
appropriate formulation of generic wavelet suitable for 
the transform and application of wavelet transform 
with both continuous and discrete form. Conclusions 
are given in the last section.  
2. Notations and Terminologies 
Random variable or stochastic variate: 

A random variable � assigns a real number 
�(�) to each outcome � of the experiment. Let  is a 

sample space, that is, the set of all possible outcomes 
of random experiment � and � is a σ-field of subsets 
of . 

A function �: Ω → � is called a random variable if the 
inverse image under � of all semi-closed intervals of 
the form(−∞, �], where � ∈ � are events in �, that is, 
 ���(−∞, �] = {� ∈ Ω: �(�) ≤ �} ∈ �. 
 
Random process: 

 Random process can be thought of as a 
sequence of random variables. More specifically, a 
random process �: �(�, �) assigns a real function of 
time � to each outcome � of the random experiment. 
Using symbolic representation of the random process 
makes it easy to simulate its behavior, estimate 
parameters from data and compute state probabilities 
at different times. (Ω, �, �) denotes the probability 
space and � = � (�, �); � ∈ �, � ∈Ω , a random 
process. 
Normal probability distribution:  
 A continuous random variable � , denoted by 
�~� (�, ��),  with parameters �  and � , where 
−∞ ≤ � ≤ ∞  and � > 0 , is said to have a normal 
probability distribution if its probability density 
function is given by  
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�(�; �, �) =
�

�√��
�

�
(���)�

���  , where −∞ < � < ∞ 

With the transformation � =
���

�
, we can obtain the 

standard normal variate. This implies that the standard 
normal variable �  has mean �� = 0  and variance 
�� = 1 , having, the probability density function , 
called standard normal density 

�(�) =
�

√��
�

���

�  , where −∞ < � < ∞.  

The normal probability integral or the area 
under the normal curve that gives the probability � for 
the interval from the mean to the value � is,  

 � =
�

�√��
∫ �

�
(���)�

��� ��
�

�
=

�

√��
∫ ��

��

� ��
�

�
 

Continuous Wavelet Transform  
The continuous wavelet transform (CWT) is 

a decomposition of a function, �(�), with respect to a 
basic wavelet �(�) , given by the convolution of a 
function with a scaled and translated version of �(�)  

��[�(�)](�, �) =

|�|�� �⁄  ∫ �(�)�∗ �
���

�
� �� = 〈�,

�

�|�|
� �

���

�
�〉    (1)  

 = 〈�, ��,�〉  = 〈�, �(�, �)�〉 = ���(�, �), 〈. , . 〉  
is the inner product.  
where, �, � ∈ �� , the square integrable functions. and 
� satisfies the admissibility condition 

 �� = ∫
��� (�)� � 

|�| 
�� < ∞

 

 
.  

Subscript ‘*’ denotes complex conjugation, 
‘�’ is the scale parameter, � > 0, ‘�’ is the translation 

parameter. The term 1 �|�|⁄  is the energy 
conservative term that keeps energy of the scaled 
mother wavelet equal to the energy of the original 
wavelet [21]. 
Discrete Wavelet Transform 

Discrete wavelet transform (DWT) is 
conveniently used for numerical implementation of 
the transform. Discretization is done either of the 
transform domain parameters- scale and translation 
variables or of the independent variable of the 
function to be transformed. In each case, DWT yields 
a countable set of coefficients in the transform domain 
that corresponds to points on a two dimensional grid 
or lattice � × �  of discrete points in the scale-
translation domain. With �  and � as scale and 
translation parameters, taking scale �: � = � �

� and the 
translation � : � = � � ���

� , where ��  and ��  are the 
discrete scale and translation step sizes, respectively, 
the DWT is given by [21],  

��[�(�)](�, �) =
�

√��
� ∫ �(�)� �

�������
�

��
� �

∞

�∞
��  

           =
�

√��
� ∫ �(�)�(��

��� − ���)
∞

�∞
��  

           =< �, � �,� > 
            =< �, � (��

�, �����
�)� >.           (2)  

3. Genomic Sequence Formulations  

The analysis of complex genomic structure or 
the nucleotide sequence of DNA and RNA chains is 
one of the most important problems in molecular 
biology. Central to the problem is to represent the 
genomic information in sequence form. In literature, 
we find several ways of representing genomic 
information in sequence form. The DNA chains can 
be considered as an ordered symbolic sequence 
written in four alphabet (ATCG), representing four 
nucleotides A: Adenine, C: Cytosine, T: Thymine, G: 
Guanine. They are classified by their chemical 
structures: A and G are purines, T and C are 
pyrimidines. The DNA macromolecules consists of 
two complimentary strands binded to each other by 
hydrogen bonds between (A, T) and (C,G), 
respectively.  

The first approach to convert genomic 
information in numerical sequences was given by 
Voss [20], as binary sequences for each base, where 1 
at position k indicates the presence of the base at the 
position, and 0 its absence. In [3], genomic sequence 
is represented by a mapping in which the complex 
numbers and their conjugates are assigned to each 
base of the nucleotide sequence: � = 1 + �, � = 1 −
�, � = −1 − �, � = −1 + �  where �, �, �, �  are the 
numbers assigned respectively to the bases �, �, �, �. 
Other relevant criteria to select the numerical values to 
represent genomic sequence are discussed in 
[1].Rushdi and Tuqan [18] proposed a genomic matrix 
based framework that comprises most of the mappings 
reported in literature as special cases and can allow a 
number of potential new mappings is proposed. 

In functional sense, the regions of the DNA 
sequences can be classified as coding (exons) and 
non-coding (introns), that is, those carry the 
information for protein structures, and those that do 
not. It was shown in recent studies that the distribution 
of nucleotides �, �, �, �  in a real DNA chain is a 
fractal distribution. Thus the fractal and multi-fractal 
tools like wavelet analysis can be applied effectively. 
It is reported with relevant details that the scaling in 
DNA chains does exist and this scaling is of a multi-
fractal nature rather than a global one [12]. Long 
sequences of nucleotides look like random. The long-
range correlations in DNA sequences were discovered 
in 1992 [13]. This inspired a lot of applications of 
multi-fractal and wavelet analysis to the nucleic acids 
primary structures. 

The occurrence of a certain nucleotide in a 
certain portion of the DNA chain, labeled by a length 
parameter � , can be described as a random process 
�(�, . ) [2]. Thus, for the four letter ordered sequence, 
we deal with a probability space (Ω, �, �) , with 
Ω = {�, �, �, �}  and a family of four random 
processes �� = {��(�, �); ���, ��Ω}, such that 
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 �� = � 1 if � = �,
0 otherwise

� 

We, in our work, rather adopt the generalized 
approach to digitalize the genomic information into a 
randomized sequence that will unify all the earlier 
representations and develop a wavelet based 
mathematical tool to analyze it in stochastic 
framework. 
4. Mathematical Analysis 

We start with symbolizing a genomic 
sequence of DNA chain of length �� as 
 � = {�[�]; � = 1,2, … , ��}.  
Assign the values, �� = +1 , if purine is present or 
�� = −1 , if pyrimidine is present, for some position � 
in the proposed sequence. Also, as in [5], obtain a 
random sequence corresponding to the DNA chain of 
the same length:  
� = {�[�]; � = 1,2, … , ��},  
where for any position �, 1 ≤ � ≤ �  ,  
�[�] = ∑ �[�]�

��� ,  
is a cumulative sum of the �[�].  
From [16], we get to know that for a completely 
random sequence, the path mapping gives a Brownian 
motion type signal constructed as 
�(�) = ∑ �(�)�

��� ,  

where �(�) = �
1 ������

−1 ����������
� 

Note that this random sequence has equal 
probability of 1 4⁄  for all the four nucleotides 
positioned on DNA chain and also that the distribution 
of nucleotides �, �, �, � in a real DNA chain has a 
fractal pattern. Further, the occurrence of a certain 
nucleotide in a certain portion of the DNA chain, 
labeled by a length parameter ��, can be described as 
a random process �(��, . )  defined on a probability 
space, say, (Ω, �, �), with Ω = {�, �, �, �} . 

In addition, we introduce a measure known to 
be the Entropy measure that determines the 
randomness of the sequence. The first definition of 
entropy of a discrete information source 
 (Producing a discrete sequence) was introduced by 
Shannon [19], as (�) = − ∑ �� log ��

�
���  , where �� are 

the probabilities of the set of values that can take the 
sequence representing the DNA chain 
�: {��. ��, … , ��}. 

Another definition frequently used is the 
Renzy entropy [17], given by 

 �∝(�) =
�

��∝
log ∑ ��

∝�
���   

Here �∝(�) is the Renzi entropy of order ∝, 
where ∝≥ 0  and {��} are the signal probabilities as 
defined before. With the help this measure, we can 
detect the coding regions of genomic sequence.  

With these formulations, we can proceed to 
give a wavelet treatment to the digitalized DNA 
sequence characterized by a random process. 

From the definition, wavelet transform is a 
convolution of functions �(�) ∈ ��(�)  with certain 
locally supported function �(�)  shifted and dilated, 
called analyzing wavelet. The choice of the analyzing 
wavelet is of vital importance as it dictates the 
representation and properties of the wavelet transform. 
Thus, the choice depends on the factors like the kind 
of data to be analyzed. 

We have at hand a random process/sequence 
representing the DNA chain. It is reported that for a 
stationary random process �(�), for which the mean 
value is independent of time and the auto-correlation 
depends only on time difference, its probability 
function is given by 

��(�) =
�

�����
�

∫ ��� �−
�

���
� (� − ��)�� ��

∞

�∞
      (3)    

More importantly, as noted earlier, the sum 
of random processes with arbitrary distributions 
results in a random variable with normal probability 
distribution. 

The integral at (3) represents the normal 
probability distribution, which determines the 
probability that a random value of normal variate � 
will fall within some specified interval, say, � − � <
� < � + �: 
 �[� − � < � < � + �] 

      =  
�

�����
�

∫ ��� �−
�

���
� (� − ��)�� ��

���

���
    (4)    

Or for the standard normal variate � , 
obtained by the transformation, 

 � =
���

�
, 

 �[−1 < � < 1] =
�

√��
∫ ��

��

� ��
�

��
.               (5)   

The corresponding probability density function for the 
random variable, �, will be therefore  

�(�; �, �) =
�

�√��
�

�
(���)�

���                               (6)    

where −∞ < � < ∞ , and the parameters �  and � , 
−∞ ≤ � ≤ ∞ and � > 0. 
Consequently, the probability density function for the 
standard normal variate representing the given random 
process �, will be  

   �(�) =
�

√��
�

���

�                                        (7)   

where −∞ < � < ∞.         
We immediately see that as � → ∞, �(�) =

�

√��
����

�� → 0. This ensures that �(�) representing a 

normal distribution, quickly decays to zero, thus, 
meeting one of the requirements for being a wavelet. 
We know that the normal probability distribution itself 
is a Gaussian function. But, the Gaussian itself cannot 
be used as an analyzing wavelet. However, since the 
derivatives of Gaussian functions belong to the space 
of square- integrable functions or �� functions, they 
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can be the candidates for being employed 
appropriately as the generic or the analyzing function 
in wavelet transform. 

We give further rigorous justification below. 
We observe that �(�) which represents the normal 
probability distribution for the standard normal variate 
�, is a non-negative function satisfying the conditions 

∫ �(�)��
∞

�∞
= 1,   

� ��(�)��
∞

�∞

= 0,  

 ∫ ���(�)��
∞

�∞
= 1     

Moreover, �(�)  is at least n-times differentiable 
(� ≥ 1) and its (� − 1)�ℎ derivative satisfies 
 ����→±∞ �(���)(�) = 0 . 
We can therefore obtain the first �  derivatives of 
�(�) . In particular, the first and the second 
derivatives are  

��(�) = � ′(�) =
�

√��
��

��

� ,  

��(�) = � ′′(�) =
(����)

√��
��

��

�                        (8)   

 
 ��(�)  and ��(�)  given by the expressions at (8), 
belong to a family of vanishing momenta wavelets of 
the Gaussians:  
 

 ��(�) = (−1) ��� ��

��� ��� (− �� 2⁄ )  

 
for � = 1 ��� � = 2 . These wavelets are analytically 
tested for being employed as analyzing wavelets. 
 
For the family of vanishing momenta wavelets, 
��(�) , the condition ∫ �� ���(�) = 0 , ∀�, 0 ≤
� < �; � ∈ �, holds good. 
 
The Fourier image of this wavelet family is ���(�) =

−√2�(−��)�����
��  and have zeroes of order �  at 

� = 0 . The normalization/admissibility constant ���,  
 

 ��� = 2 ∫
|�� �(�)| � 

|�| 
�� = 2

∞ 

 �
�Г(�) < ∞.  

 
Hence, the admissibility condition for ��(�) being a 
wavelet holds good. 

It is thus justified that either ��(�) or ��(�) 
wavelets engendered from normal probability 
distribution, �(�) , can be judiciously employed as 
analyzing/basic wavelet to wavelet transform the 
genomic sequence represented by a random process. 
 
Wavelet transform of Random processes 

For the given random process � = �(�, �)  
defined on the probability space (Ω, �, �) , for any 
function �: � → �  satisfying the admissibility 

condition, from (1), the continuous wavelet transform 
of the random process � can be obtained as 
 

��[�(�)](�, �) = �
1

√�
�∗ �

� − �

�
�

 

�

�(�, �)��,  

      � ∈ �, � > 0, � ∈ Ω.                          (9)    
 
Thus, to obtain CWT of the DNA sequence � =
{��}�∈� with respect to the generic wavelet �� , (taking 
� for simplicity) , let (Ω, �, �) be a probability space 
and let � = {�(�)}�∈� a second order random process 
representing the DNA sequence for which, 
� ∣ �(�) ∣�= ∫ ∣ �� ∣� 

�
��(�) < ∞, ∀� ∈ �,  

where � denotes the mathematical expectation.    
 
Notice that, � is jointly measurable and ��  is square 
integrable function for each �.  
Thus, the CWT of the DNA sequence � = {��}�∈� 
with respect to the generic wavelet � will be given by 

��[�(�)](�, �) = �
1

√�
�∗ �

� − �

�
�

 

�

����, 

     � ∈ �, � > 0, � ∈ Ω                         (10)     
 
To study the matter quantitatively, we need to 
calculate correlations between wavelet coefficients at 
different scales. For this, we define wavelet 
covariance of the covariance function for all �, 
 ��(�, �) = �� ∗(�)�(�), �, � ∈ �, as 
 

��(�, �, �, �) = ���(�)��(�) 
 

     =   ∫
�

√��
� �

���

�
�

 

�
�∗ �

���

�
� ��(�, �)����   (11)    

 
provided that the condition,  
 

� �∫ �
�

√�
�∗ �

���

�
� �����

 

�
�

�

< ∞, holds good.   

 
That is, 
 
 ��(�, �, � − �) = 〈��(�, �), ��(�, �〉,  
 
where the curly brackets mean the covariance 
 

���(��, ��) = � �
(����(��)(����(��)

����.���
�  

 
where � is the dispersion and �  is the mathematical 
expectation. We should note that for a random 
sequence, wavelet coefficients correlation function 
will coincide with that of random signal; if no, the 
structure of wavelet coefficients correlation function 
will be different. 
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For numerical evaluation of the transform integrl, we 
need to compute the Discrete wavelet transform 
(DWT). This is done by discretizing the expression 
(10) as follows. 
 
Given a generic wavelet � , the DWT of the DNA 
sequence, � = {��}�∈�  with respect to � is defined to 

be the discrete random field � = ����(�, �)�
�,�∈�

, 

where ���(�, �) is defined by  
 
��,� = ���(�, �) = ∫ ����,�(�)��

 

�
                   (12)    

 
provided the path integral is defined with probability 
one. 
 
DWT results in a multi-resolution decomposition, in 
which at each level, the signal is decomposed in 
“approximations” and “details” coefficients.  

In this analysis, a signal or the DNA 
sequence in the instant case, can be described through 
a linear decomposition as 
 
 �(�) = ∑  � ∑ ��,���,� (�)� , �, � ∈ �, 

 
 where ��,�  are the wavelet coefficients of the 

expansion, and ��,� is a set of wavelet functions of �. 

Here, the wavelet coefficients ��,�  constitute a 

discrete set, and the values of the coefficients are 
calculated according to (12)  
 

 ��,� = 〈�(�), ��,�〉 = ∫ �(�)��,�(�)��
∞

�∞
           (13)    

 
The DWT obtains the decomposition of the signal�[�] 
into a set of orthonormal wavelets and their associated 
scaling function ��,�  that constitute a wavelet basis. 

These functions can belong to different wavelet 
families that are expressed by the functions ��,� which 

can be generated by dilation and translation of a basic 
wavelet. These dilations and translations are discrete, 
and the indexes �  and �  are respectively related to 
these processes, that can be expressed as 
 

 ��,�(�) = 2 � �⁄ �(2�� − �): �, � ∈ �.                 (14)   
 
In this expression, the functions ��,� are dilated in a 

dydatic form (in powers of two), when varying the 
value of index � , and in analogous way translated 
when varying the index �. In this process, translation 
is associated with time resolution, and dilation 
provides scaling. Note that the wavelet function must 
satisfy the condition lim�→∞���,�(�)� = 0  implying 

decay and ∫ ��,�(�)�� = 0
∞

�∞
 implying oscillations 

like wave function. 

Further, for being � an analyzing wavelet, in 
descretized set up, it must satisfy the conditions 

 ∑ ���(2��)�
�

= 1�∈� , � ∈ �  
and 
∑  ���2����� ∗2�(� + 2��)) = 0∞

��0 , 

 � ∈ �, � ∈ 2� + 1,and      ‖��‖2 ≥ 1,                (15)    
 
where �� denotes the Fourier transform of �:  
��(�) = ∫ �(�)����� 

�
 ��  

In the instant case, � being the derivatives of normal 
probability function belonging to the Gaussian family 
of vanishing momenta wavelets, indeed satisfies the 
conditions at (15). 
Further, the DWT of �  is a random field on the 
probability space, (Ω, �, �)  that depends on � , we 
must have 

∫ ���(�)��,�(�)��� < ∞
 

�
,      � ∈ Ω                    (16)   

Since, � has a finite second order moments, a generic 
condition which ensures that (13) is well defined and 
is also a second order sequence such that 
 

 ∫ ���(�, �) ��(2�� − �)�
 

�
�� < ∞                  (17)  

    
where ��(�, �) = �(� �, ��

∗), �, � ∈ �.  
 
Thus, the CWT and DWT given by (10) and (12) 
respectively are well defined and can be utilized to 
obtain the wavelet transform of the DNA sequence � ; 
which in turn can be plotted in ��-plane. This will 
reveal the nucleotide pattern and help locating 
periodicities of these patterns in the DNA sequence. 
The actual values can then obtained by plotting 
����(�, �)� over the space-time plane. 
 
5. Conclusions 

Many biological phenomena can be modeled 
by treating them as random processes; which can in 
turn be analyzed by the application of wavelet 
transform. The goal of wavelet analysis is to extract 
structural information from signal in the transform 
domain using appropriate form of Gaussian function 
as analyzing wavelet.  

Transformation of the signal represented by 
the random process yields the wavelet coefficients, 
��[�(�)](�, �)  at a particular scale and translation 

which tells us how well the signal � and the scaled and 
translated analyzing wavelet � match. If the signal is 
similar to the scaled and translated analyzing wavelet, 
then the wavelet coefficient will have big magnitude. 
The wavelet coefficient also represents the degree of 
correlation between two functions at a particular scale 
and translation. It can be inferred that if the sequence 
is random, the wavelet coefficient correlation function 
will coincide with that of random signal, otherwise, 
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the structure of the wavelet correlation function will 
be different. This feature can be used to classify the 
nucleotide sequences and study their functional 
organization.  

Considering the randomness of the signal 
representing genomic sequence, in our wavelet 
treatment, we judiciously employed the generic 
function engendered from normal probability 
distribution, thus, justifies the robustness of the 
proposed wavelet scheme. Moreover, the proposed 
modulated scheme is not case specific, but, can be 
appropriately employed in similar formulations in 
bioinformatics covering wide range of biological 
evolutionary processes. 
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