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Abstract: The gradient based algorithms are the most basic independent component analysis (ICA) algorithms, used 
in Blind signal separation (BSS). Because these algorithms adopt fixed step size, the choice of step size affects the 
performance and the convergence speed of the algorithm. In this paper, we propose a new algorithm SCG-ICA for 
blind signal separation. The new algorithm significantly improves the convergence rate of gradient-based blind 
source separation. The proposed algorithm is based on the Scaled Conjugate Gradient method, which used to 
optimize the kurtosis contrast function in order to estimate the demixing matrix. The algorithm is robust to local 
extrema and shows a very high convergence speed in terms of the computational cost required to reach a given 
source extraction quality, particularly for short data records. The simulations have proved the efficiency and 
effectiveness of the proposed algorithm. 
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1. Introduction 

Blind Signal Separation (BSS) has been used 
in the field of communications, audio signal 
processing, radar target detection fields, etc [1,2]. The 
core of blind separation problem is getting separation 
matrix. We address the signal separation problem. 
Making some assumptions on the statistics of the 
signals we use higher order statistics to separate mixed 
signals. Standard BSS methods use cost functions 
based on second- and higher-order statistics and 
maximization of likelihood and entropy [3] .To better 
facilitate the modeling of real-world systems, noisy 
environments and post-nonlinear mixtures have been 
recently studied in real domain algorithms [4]. 

The use of higher-order statistics is not new 
to the source separation problem [5]. Since Comon’s 
seminal work [6], many contrast functions for ICA 
have been proposed in the literature, mainly based on 
information theoretical principles such as maximum 
likelihood, mutual information, marginal entropy and 
negentropy, as well as related non-Gaussianity 
measures [3]. Among them, the kurtosis (normalized 
fourth-order marginal cumulant) is arguably the most 
common statistics used in ICA, even if skewness has 
also been proposed [7]. The use of kurtosis dates back 
to the work of Wiggins [8], Donoho [9], and Shalvi-
Weinstein [10] on blind deconvolution of seismic 
signals and blind equalization of single-input–single-
output (SISO) digital communication channels, two 
problems that can be related to BSS/ICA. One of the 
main benefits of kurtosis lies in the absence of 

spurious local extrema for infinite sample size when 
the noiseless observation model is fulfilled. 

This attractive feature leads to globally 
convergent source extraction algorithms, from which 
full source separation can be performed by using some 
form of deflation procedure [11] even in the 
convolutive multiple-input and multiple-output 
(MIMO) case [12]. Although the adequacy of kurtosis 
as a contrast may be objected on the basis of statistical 
efficiency and robustness against outliers [13], its 
widespread use is justified by mathematical 
tractability, computational convenience, and 
robustness to finite sample effects. Theoretical 
evidence for its finite-sample robustness has been 
gathered by previous works. In [14], the sample 
kurtosis yields an estimate with less variance than the 
fourth-order moment and the fourth-order cumulant 
for all distributions tested, including sub-Gaussian and 
super-Gaussian densities. As an extension of these 
results, using the full expression of the fourth-order 
cumulant instead of the simplified form employed, 
e.g., in the FastICA algorithm [13], is shown to 
improve extraction performance. The computational 
convenience and finite sample robustness of kurtosis 
can be further improved by the optimal step-size 
iterative search proposed in this paper. In the presence 
of outliers, the performance of the conventional 
kurtosis estimate based on sample moments can be 
enhanced by means of more robust alternative 
estimates available in the literature see, e.g., [15]. 
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The remaining of this paper is organized as 
follows. Problem formulation is introduced in 
section2. In section 3 the SCG-ICA algorithm is 
discussed. Section 4 presents the results of our 
algorithm of source separation in various settings. 
Conclusions are drawn in section 5. 
 
2. Problem formulation 

By definition, independent component 
analysis (ICA) is the statistical method that searches 
for a linear transformation, which can effectively 
minimize the statistical dependence between its 
components [13,21,22]. Under the physically plausible 
assumption of mutual statistical independence between 
these components, the most applications of ICA are 
blind signal separation (BSS). In its simplest form, 
BSS aims to recover a set of unknown signals, the so-
called original sources �(�) = [��(�),… ��(�)]

� ∈ ��  , 
by relying exclusively on information that can be 
extracted from their linear and instantaneous mixtures 
�(�) = [��(�),… �� (�)]

� ∈ �� , given by: 
 
�(�) = ��(�) + �                                                          (1) 

Where � ∈ �� ×�  is an unknown mixing 
matrix of full rank and � ≥ �. In doing so, BSS 
remains truly (blind) in the sense that very little to 
almost nothing be known a priori for the mixing 
matrix or the original source signals. Often sources are 
assumed to be zero-mean and unit-variance signals 
with at most one having a Gaussian distribution. The 
problem of source separation then boils down to 
determining the unmixing matrix � ∈ ��×�  such that 
the linear transformation of the sensor observation is 
 
�(�) = ��(�)                                                                 (2) 

 
Where �(�) = [��(�),… ��(�)]

� ∈ �� , yield 
an estimate of vector �(�)  corresponding to the 
original or true sources. In general, the majority of 
BSS approaches perform ICA, by essentially 
optimizing the objective function with respect to the 
unmixing matrix �  ,A widely used contrast is the 
kurtosis, which is defined as the normalized fourth-
order marginal cumulant, kurtosis is one of the classic 
measures used for estimation of non-Gaussianity of 
random variable for ICA. Kurtosis can be expressed 
as: 

ℊ(�)
= �{|�|�}
− 2��{|�|�}                                                   (3) 

To derive the updates of the demixing vector 
�, we apply the standard gradient descent method to 
ℊ(�) , which given by: 

 
�

=�
+ �∇�ℊ(�)                                                                         (4)  
 
where 
 

∇�ℊ(�) =
−|�(�)|�{�∗�}

(�{|�|�})�
 

+
����(�(�))(�{|�|��∗�}− 2�{�∗�}�{|�|�}− ���∗

�
��{��})     

(�{|�|�})�
 (5) 

 
The kurtosis maximization criterion based on 

contrast (3) is quite general in that it does not require 
the observations to be prewhitened and can be applied 
to real- or complex-valued sources without any 
modification.  

Most of the optimization methods used to 
minimize functions are based on the same strategy. 
The minimization is a local iterative process in which 
an approximation to the function in a neighborhood of 
the current point in weight space is minimized. 
Determining the next current point in this iterative 
process involves two independent steps. First a search 
direction has to be determined, i.e, in what direction in 
weight space do we want to go in the search for a new 
current point [23,24,25]. Once the search direction has 
been found we have to decide how far to go in the 
specified search direction, i.e, a step size has to be 
determined. If the search direction �� is set to the 

negative gradient – �′(�) and the step size � to a 
constant �, then the algorithm becomes the gradient 
descent algorithm [16]. But this algorithm suffers from 
local minimum point; the Newton’s method solves this 
by using positive definite Hessian matrix in which 
Newton's method has global convergence. 
 
Newton Method 

Newton method is an efficient tool of 
unconstrained optimization. It often converges fast and 
provides quadratic rate of convergence. However, its 
iteration may be costly, because of the necessity to 
compute the Hessian matrix and solve the 
corresponding system of equations, other methods like 
natural gradient is linearly convergent, while Newton 
method is quadratically convergent [26,27]. Amari [3] 
derived a Newton-based method for optimization of a 
single ICA model in his stability analysis of the ICA 
problem. Taking the derivative of (4), we find, 
Hessian matrix are evaluated as 
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∇�
� ℊ(�) = ∇�|�(�)|∇�

1

(�{|�|�})�

+ |�(�)|∇�
�

1

(�{|�|�})�
 

+∇�
1

(�{|�|�})�
 ∇�|�(�)|

1

(�{|�|�})�
∇�
� |�(�)|                (6) 

 
Where the second derivatives are given in 

appendix A, then the update equation is given by : 
�

=�
+ (∇�

� ℊ(�) )��∇�ℊ(�)                                                  (7) 
Unfortunately is it not desirable to calculate 

the Hessian matrix explicitly, because of the 
calculation complexity and memory usage involved; 
actually calculating the Hessian would demand O(��) 
memory usage and O(��) in calculation complexity 
(where �  is the number of sources). To solve this 
problem we describe the Scaled Conjugate Gradient 
(SCG) algorithm [17,28,29] as illustrated in the 
following section. 
 
3. SCG-ICA algorithm 

The SCG-ICA algorithm is a gradient based 
algorithm for blind signal separation, the algorithm 
uses the SCG to optimize the kurtosis to maximize the 
non-Gaussianity of the sources. The SCG is a variation 
of a conjugate gradient, which avoids the line-search 
per learning iteration by using a Levenberg-Marquardt 
approach [17] in order to scale the step size. SCG 
chooses the search direction and the step size more 
carefully by using information from the second order 
approximation of the objective function. Compared to 
other gradient descent algorithms, the SCG has the 
advantage of requiring virtually no parameter tuning. 
Second-order information (the Hessian) is 
approximated using the gradient only as 

�"(�)� =
�′(� + ��) − �′(�)

�
   ,      0 < �

< 1                          (8) 

Where �  is the descent vector to �(�) , the 
algorithm of SCG-ICA is described in algorithm1 : 
 

algorithm 1: 

   
      Input: �"(�) ,  �′(�) , and the Mixures X. 
      Output: �. 

1. Initiate the demixing matrix ��  and scalars � 
> 0 and �̅� = 0. 

2. Set ��  = ��  = – �′(��), k = 1 and success = 
true. 

3. If success = true then calculate second order 
information: 

�� =
�

|��|
 

 �� =
�′(w� + ����) − ��′(��)

��|
 

 �� = ��
���. 

4. Scale �� : 
�� = �� + (�� − �̅�)�� 

 
�� = �� + (�� − �̅�) ǀ�� ǀ �. 

5. If  �� ≤ 0  then make the Hessian matrix 
positive definite: 

 

�� = �� + (�� − 2
��

ǀ��ǀ �
)�� 

 

�̅� = 2(�� −
�

 ǀ�� ǀ �
) 

�� = −�� + �� ǀ�� ǀ �,     �� = �̅�  
 

6. Calculate step size : 

�� = ��
���  ,�� =

��
��
 

Calculate the comparison parameter : 

Δ� =
2��[�(��) − �(�� + ����)]

��
�  

7. If  Δ�  0 then a successful reduction in error 

can be made : 
���� = �� + ����, 

���� = −Ε′(����) , 
 

                            �̅�=0, success=true. 
 

7a.   If   k mod  N=0 then restart algorithm:  ���� =
���� 

                   else create new conjugate direction: 

�� =
ǀ  ����ǀ� − ������

��
, 

���� = ���� + ���� . 
 

7b.   If    Δ�  0.75 then reduce the scale 

parameter:�� =
�

�
�� . 

        else are duction in error is not possible: 

�̅� = ��,  success=false. 

8. If Δ�˂0.25 then increase the scale parameter 
:�� = 4�� 
 

9. If the steepest descent direction  �� ≠ 0 then 
set k=k+1 and go to 2 

                    else terminate and return ���� as the 
desired minimum 

10. Compute the estimated signals � = �� 
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4. Results and Analysis 

The performance of separation is evaluated 
with the BSS EVAL toolbox, which is based on the 
criteria proposed in [18], using time-invariant filters of 
1024 taps to represent the family of allowed 
distortions. The source-to-interferences ratio (SIR) is 
evaluated using the whole separated signals.  
This experiment was performed using the mixture 
generation, from a group of speakers (male and 
female) were selected from the TIMIT speech 
database [19]. All mixtures are sampled at 16 kHz, in 
which there are a fixed number of sensors and sources 
that are used here, the mixing matrices are randomly 
chosen. Figures 1,2 show the time domain of the 
original sources and the mixtures of sources 
respectively. Figures 3,4 show the final recovered 
time-domain sources of our method and Newton 
method respectively. 

To further analyses the performance of all the 
above methods in separating the mixed signal where 
the time domain of the each recovered source has been 
plotted in Figures 3,4. The Figures 3,4 denote the 
recovered sources by using the SCG-ICA and 
Newton’s algorithm, respectively. In particular, it is 
noted that both algorithms exhibit good reconstruction. 
However, the Newton-ICA algorithm fails to identify 
several missing components as indicated in the red 
box marked area in Figure 4, Hence, less accuracy is 
obtained in the estimation of the sources as compared 
with the our algorithm which has successfully 
estimated sources with high accuracy. Table 1 also 
shows that, the proposed algorithm is better in speed 
of convergence measured in terms of number of 
iterations and has a higher SIR than Netwon method, 
which implies that SCG-ICA algorithm is faster and 
accurate than the Newton method based FASTICA . 
 
Table 1:Comparsion between SCG-ICA and Newton-

ICA. 

Alg. Performance  S1 S2 S3 
Itera-
tion 

 
Original 
kurtosis 

5.072 3.9 -0.55571  

SCG -
ICA 

SIR 39.2412 27.9913 26.8942 

10 
Estimated 
kurtosis 

5.0734 3.9149 -0.55288 

Newton-
ICA 

SIR 7.5623 23.5919 14.9611 

46 
Estimated 
kurtosis 

5.2746 3.8222 0.5702 

 

 
Figure 1. Original of three sources  

 
 

 
Figure 2. mixture of sources 
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Figure 3. Estimated by SCG-ICA 

 

 
Figure 4. Estimated source by Newton-ICA 
 

In routinely recorded ECG many types of 
noise and artifacts are presented. Noise is defined to be 
part of the signal that confuses analysis (muscle 
movements), an artifact is defined to be any distortion 
of the signal caused by the recording process, such as 
electrode movement. In this example we used dataset 
that found in [20] where Figure5 shows the original 
sources and their mixtures .Figure 6 shows the 
estimated sources after applying the SCG-ICA ,Figure 
7 Shows the estimated sources by Newton-ICA. 

 
Figure 5. original source and the mixtures of these 

sources 
 

 
Figure 6. Estimated sources by using SCG-ICA  
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Figure 7. Estimated Sources by Newton-ICA  

 

Table 1: Comparsion between SCG-ICA and Newton-
ICA for ECG 

Alg.  S1 S2 S3 S4 
Itera- 
tion 

 
Original 
kurtosis 

17.9901 -0.55209 -0.4708 0.12693  

Newton-
ICA 

SIR 4.6909 6.2522 6.6095 7.0444 
51 Estimated 

kurtosis 
46.6102 -0.66686 -0.36766 0.2264 

SCG-
ICA 

SIR 16.8190 24.7950 9.9524 10.5371 
14 Estimated 

kurtosis 
18.1588 -0.7125 -0.4856 0.17111 

 
5- Conclusion 

Blind source separation of signals based on 

the degree of non-Gaussianity and from noisy 

mixtures has been addressed. A cost function based on 

the normalized kurtosis is utilized to perform the blind 

separation, and the corresponding Scaled Conjugate 

Gradient algorithm (SCG-ICA) has been derived. The 

algorithm is shown to be convergent and variable step-

size variants of to the algorithm have been discussed. 

It has been shown. Simulations in noise-free and noisy 

environments illustrate the performance of the 

algorithm for the successful separation of speech 

signals. 

APPENDIX A: 
In this Appendix, we provide a detailed 

derivation of the gradient vector.  
 

∇�ℊ(�) = |�(�)|∇�
1

(�{|�|�})�

+
1

(�{|�|�})�
 ∇�|�(�)|              

            

= −
2|�(�)|

(�{|�|�})�
∇��{|�|

�}

+
����(|�(�)|)

(�{|�|�})�
 ∇�|�(�)|          (8) 

Where 
 ∇��{|�|

�}= 2�{�∗�}                                     (9)  
and 
 ∇�|�(�)|= �4�{|�|��∗�}− 8�{�∗�}�{|�|�}−

4��∗2���   (10) 

Combining (9) and (10), we obtained the 
gradient vector as in (5) of Section 1. 
The second derivatives of ℊ(�): 

∇�
� ℊ(�) = ∇�|�(�)|∇�

1

(�{|�|�})�

+ |�(�)|∇�
�

1

(�{|�|�})�
 

+∇�
1

(�{|�|�})�
 ∇�|�(�)|

+
1

(�{|�|�})�
∇�
� |�(�)|            (11) 

where  
∇�
� |�(�)|= ∇�(4�{[ �

�����]����}
− 8 [���{ ���}�] �{ ���}� 

−4�{ ���}�∗�� �{ �∗��}�)                                            (12) 
   

∇� �{[ �
�����]����}

= (�{|�|�|�|�}
+ 2�{���∗�})                          (13) 

  
∇�[�

��{ ���}�] �{ ���}�
= 2(�{��∗})�

+ �{|�|�|�|�}                      (14) 
∇��{ ��

�}�∗�� �{ �∗��}�
= 2�{��}�{�� �∗}                        (15) 
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