
Life Science Journal 2013; 10(2)                            http://www.lifesciencesite.com 

 http://www.lifesciencesite.com                    15                          lifesciencej@gmail.com 

Global Analysis of Influencing Forces of Fire Activity: the Threshold Relationships between Vegetation and 

Fire 

 

Ruisen Luo
1, 2

, Yingying Dong
1
, Muye Gan

1
, Dejun Li

2
, Shuli Niu

3, 2
, Amy Oliver

2
, Ke Wang

1
*, Yiqi Luo

2
* 

 
1
College of Environmental & Resources Sciences, Zhejiang University, Hangzhou 310058, China 

2
Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA 

3
Synthesis Research Center of CERN, Key Laboratory of Ecosystem Network Observation and Modeling, Institute 

of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 

kwang@zju.edu.cn; yluo@ou.edu. 

Abstract : Manylarge scale firestudies considered the relationships between fire and its influencing factors as 

smooth.However, the responses of fire activity to influencing factors could be abrupt on the global scale, because 

the hysteretic responses of vegetation to fire and vegetation types are discrete. This study examined the climatic, 

vegetation, anthropogenic, lightning, and topographic factorsdriving variations in global fire density, and 

discussedthe thresholds of vegetation on fire activity. Fire density was developed from 7 years of Moderate 

Resolution Imaging Spectroradiometer (MODIS) active fire data to represent global fire activity, and nine typical 

influencing variables were selected. The random forest regression tree method was used to identify the relative 

importance and relationships between fire and the influencing variables. The patterns of global fire density were 

captured well by the model (78.33% variance was explained), and the related thresholds were identified. Climatic 

factors played a primary role in determining global fire density. Agricultural land use and topographic roughness 

were not identified as the most important factors, probably due to the large scale we considered. Three intervals of 

tree density were identified to have distinct levels of fire density. Intermediate tree density (9%-53%) was related 

with the highest fire density, but both low and high percent of tree cover were associated with low fire density (7.0 

vs. 1.3/0.9 counts per 100 km
2
 per year). This study could provide further insights into understanding of the 

threshold effects of influencing factors on fire activity, and contribute to advances in fire modelingand vegetation 

distribution studies.  
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1.Introduction 

Fire influences global ecosystem patterns 

and processes, e.g., vegetation distribution and 

structure, the carbon cycle (Bowman et al. , 2009). 

Changing fire activity has been observed and 

predicted in the context of global change (Westerling 

et al. , 2006, IPCC, 2007, Flannigan et al. , 2009, 

Bradstock, 2010, Silvestrini et al. , 2011). An 

understanding of the drivers of such changes is 

beneficial to predict shift of fire patterns (Marlon et 

al. , 2008, Archibald et al. , 2009, Krawchuk et al. , 

2009). 

Most previous modeling studies assumed 

smooth response of vegetation to fire 

disturbance(Krawchuk and Moritz, 2011). However, 

therelationships between fire and vegetation could be 

abrupt (threshold responses), due to the hysteresis of 

vegetation responses to fire(Greve et al. , 2011, 

Hirota et al. , 2011, Staver et al. , 2011a, Staver et al. , 

2011b, Loepfe et al. , 2012, Murphy and Bowman, 

2012). In addition, the fire-climate-vegetation 

relationships were commonly investigated via 

continuous vegetation characteristics, e.g., Net 

Primary Production (NPP)(Krawchuk et al. , 2009), 

Normalized Difference Vegetation Index 

(NDVI)(Bastos et al. , 2011). However, the 

vegetation type itself could be an important trait in 

differencing fire activity. For instance, herbaceous 

materials are necessary for the connectivity of surface 

fuels, but forests oftenfunction as barriers to fire 

spread(Prober et al. , 2007, Bradstock, 2010). 

Vegetation types are not continuous, thus challenging 

the commonly used continuous relationships between 

vegetation and fire in biogeochemistry modeling. 

Non-parameter methods such as random forest and 

regression tree would be more suitable for 

quantifying thefire-climate-vegetation relationships, 

because theycould accommodate the abrupt changes 

and identify the thresholds (Flannigan et al. , 1998, 

Westerling and Bryant, 2008, Hoffmann et al. , 2012, 

Pausas and Paula, 2012). Also, the data of percent of 

tree cover (tree density) have been proved to be 

useful in identifying the three distinct attractors for 

vegetation states: treeless, savannas, and forests in 

recent studies (Hirota et al. , 2011, Staver et al. , 

2011b), which might facilitate quantifying the 

non-smooth fire-vegetation relationships.  
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Ice core, tree ring and fire statistics data are 

commonly used to study local fire activity (Price and 

Rind, 1994, Buechling and Baker, 2004, Parisien and 

Moritz, 2009, Eichler et al. , 2011). Nevertheless, 

satellite is probably the most suitable data source for 

fire studies on the global scale (Ichoku et al. , 

2012).Global fire patterns were delineated by several 

studies, e.g., via the Advanced Very High Resolution 

Radiometer (AVHRR) active fire data (Dwyer et al. , 

2000), and Moderate Resolution Imaging 

Spectroradiometer (MODIS) active fire data (Giglio 

et al. , 2006a). In terms of influencing forces analysis, 

groups of fire were compared to factors on the global 

scale to explain the global fire groups(Chuvieco et 

al. , 2008). Krawchuk et al. (2009) identified the 

importance ranking of environmental drivers of 

vegetation fires distribution using statistical models 

(Krawchuk et al. , 2009). However, few studies 

consideratedthe threshold relationships between 

influencing factors and fire activity, let alone 

identified the thresholds trigger it. 

Fire density is the counts of fire pixels (hot 

sources detected in satellite image grid pixels) in a 

unit area and a unit time (Giglio et al. , 2006a, Giglio, 

2010). It has been validated in the previous studies as 

a general indicator for fire activity (Dwyer et al. , 

2000, Csiszar et al. , 2005, Krawchuk et al. , 2009, 

Krawchuk and Moritz, 2011). Fire density is also 

useful for deriving other fire characteristics on the 

large scale, e.g., global burned area (Giglio et al. , 

2006b) and length of fire season (Chuvieco et al. , 

2008). Additionally, it is important for studies of 

biomass combustion (Chuvieco, 2008) and emissions 

(van der Werf et al. , 2010). Fire density is also 

critical to fire management, because management 

agencies could become overwhelmed and fail to take 

effective actions when a large amount of fires occur 

over a short time period. It is during such occasions 

that fires are mostly likely to escape and burn 

extensive regions (Flannigan et al. , 2009).  

The objectives of the study are to: 1. 

Quantify the relative importance of typical climatic, 

vegetation, anthropogenic, lightning, and topographic 

factors forces in explainingglobal fire density. 2. 

Identify whether there are thresholds effects existed 

in modulating climate-vegetation-fire relationships 

on the global scale. 3. Explicitly quantify the 

thresholds, if they exist. Given there are few studies 

that explicitly explored the threshold of influencing 

forces on fire activity on the global scale, this study 

would be of general interest to the macro-ecology 

and biogeography community. 

 

 

2. Materials  

We used fire information from MODIS 

and selected nine variables to represent the climatic, 

ecological, and human influencing factors (Table 1). 

All data were adjusted into the same 0.5°×0.5° 

resolution and accurately registered, in the WGS-84 

geographic coordinate system. Antarctica and 

Greenland were excluded from analysis. 

 

Table 1.Influencing variables for global fire density. 

Name Variables (full name) Units 

Temperature  Mean annual 

temperature  

°C 

Precipitation  Annual precipitation  mm 

Dry month Annual length of dry 

period 

months  

Topo rough Topographic roughness m 

Pop density Population density people 

km-
2
 

Per crop Percent of 

cropland cover 

% 

Per pasture Percent of 

cropland cover 

% 

Lig Lightning density flash 

km
-2

 

year
-1

 

Tree cover Percent of tree cover % 

 

Fire data 

We calculated a metric, - Mean Annual Fire 

Density (MAFD, Formula 1) - to represent global fire 

density, following Giglio et al. (Giglio et al. , 2006a). 

The MAFD was calculated via averaging Terra 

MODIS Collection 5 Monthly Climate Modeling 

Grid (CMG) fire products (MOD14CMH) from 

January, 2001 to December, 2007. The MOD14CMH 

data represent gridded statistical summaries of fire 

information in every pixel, which is suitable for 

global environmental research. The spatial resolution 

is 0.5°×0.5°, and the temporal resolution is one 

calendar month (Giglio, 2010).  

 

,

1 ,                         (1)

n
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t
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i

C

MAFD
A k






 
where,Ci,tis the monthly fire pixel frequency in the 

specific grid cell i, over a calendar month indexed by 

t, and there are n calendar months in k years, total. Ai 

is the area of the specific cell i. This can compensate 

the areal differences among cell areas along with 

latitude changes. The unit for fire density is counts 

per 100 km
2
 per year. Chen et al. (2011) also 

developed a similar metric - fire season severity 

(annual counts in fire season) - to assess deforestation 

and degradation in South America (Chen et al. , 
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2011).  

 

Influencing data 

It is commonly assumed that fire activity 

depends on the coincidence of three elements: fuel 

structure (fuel amount and connectivity), flammable 

conditions, and ignition (Stott, 2000, Meyn et al. , 

2007, Pausas and Paula, 2012).Tree density, annual 

rainfall, and topographic roughness were selected to 

stand for fuel structure. Annual rainfall is closely 

related to the growth of burning materials, thus 

determining accumulation of fuel load. Topographic 

roughness indicates how many natural barriers there 

are in the landscape reducing fuel connectivity 

(Archibald et al. , 2009). In terms of flammable 

conditions, temperature, rainfall, and the distribution 

of rainfall (the length of dry period) could combine to 

determine fuel moisture (Meyn et al. , 2007, 

Flannigan et al. , 2009, Krawchuk et al. , 2009). 

Finally, lightning density was used to capture the 

patterns of ignition. Population density and 

agricultural land use (croplands and pastures) were 

used to represent the suppressionof fire(Aldersley et 

al. , 2011). 

1) Climatic variables. We used temperature 

and precipitation data from Center for Climatic 

Research, University of Delaware (Legates and 

Willmott, 1990b, a)..Dry season length is defined as 

the number of months, when the precipitation is 

lower than 30% of the average monthly rainfall of all 

the study period, following the previous study 

(Archibald et al. , 2009).  

2) Tree cover.We used the Vegetation 

Continuous Fields data in 2004, which contains 

proportional estimates for three vegetative cover 

types: woody vegetation, herbaceous vegetation, and 

bare ground (Hansen et al. , 2003). The product is 

derived from the MODerate-resolution Imaging 

Spectroradiometer (MODIS) sensor onboard NASA's 

Terra satellite.  

3) Biomes. Biomes are identified by 

dominant vegetation type and climatic conditions, 

e.g., temperature and precipitation. 13 terrestrial 

biomes were used in the study, based on Olson et al.‟s 

(2001) classification (Olson et al. , 2001). The map 

ignores many community variations within each 

biome category due to the large scale. Mangroves 

were excluded due to the fact that fire is impossible 

there (Figure 1, Krawchuk et al. , 2011). 

4) Lightning ignition. We assessed lightning 

density, expressed as flash rate density (flash km
-2

 

year
-1

), using the LIS/OTD 0.5 Degree High 

Resolution Full Climatology (HRFC) data (Christian 

et al. , 2003).  

5) Topographic roughness. We used Global 

Multi-resolution Terrain Elevation Data 2010 

available at the U.S. Geological Survey (USGS) and 

the National Geospatial-Intelligence Agency (NGA). 

We used the 30 arc-seconds resolution product, with 

Root Mean Square Error (RMSE) ranges between 25 

and 42 meters (Danielson, 2011). We aggregated it 

into 0.5°×0.5°data to maintain consistency among 

datasets. We calculated topographic roughness as the 

standard deviation within 8×8 block of the 30 

arc-seconds resolution GMTED 2010 product. 

6) Human activities. We used population 

densities grids in year 2000 of Gridded Population of 

the World Version 3 (GPWv3). The time period of 

data is close to fire data years, and we assume that 

the results would not be affected by the time 

difference due to the fact that population density 

usually changes gradually. The 0.5°×0.5°spatial 

resolution data are from Center for International 

Earth Science Information Network (CIESIN), 

Columbia University, and Centro International de 

Agricultura Tropical (CIAT) 

(http://sedac.ciesin.columbia.edu/gpw). Data were 

adjusted to match United Nation totals. 

We used percent of cropland and pasture in 

the year 2000 to study the agricultural land-use 

impacts on global fire activity. Data represents the 

global fraction of cropland cover in every 

0.5°×0.5°cell in the year 2000(Ramankutty et al. , 

2008). We aggregated it into 0.5°×0.5° via 6×6 block 

mean valve neighborhood statistics. 

 

3. Methods 

The correlations among influencing 

variables and the effects between influencing factor 

and fire activity are non-additive and non-smooth. 

Therefore, the regular linear model is not suitable for 

application to such type of relationships. Instead, we 

used a random forest regression tree procedure,which 

is shown to be suitable for modeling such abruptand 

non-additiverelationships(Archibald et al. , 2009, 

Aldersley et al. , 2011, Oliveira et al. , 2012). 

Influencingvariables were prepared in ArcGIS v.9.3 

(ESRI, Redlands, CA, USA) and all analyseswere 

performed in R v. 2.15.1 (http://www.r-project.org/). 
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Figure 1.The 13 terrestrial biomes used in the study, based on Olson et al.‟s (2001) classification (Olson et al. , 

2001). 

 

Random forest 

Random forest algorithm can enhance the 

predictive ability and avoid over-fitting of 

standardregression models. There are two features in 

trees generating: bagging and random sub-setting 

ofvariables. Bagging is one of the ensemble learning 

methods, which generates many sub-models and 

aggregates their results. In addition, each node in 

random forest is split using the best among a random 

subset of predictors, instead of all variables. This 

ensures a high predictive power due to diversity 

among the trees, while keeping the correlation among 

trees to the minimum (Blanche et al. , 2001, 

Archibald et al. , 2009, Aldersley et al. , 2011). 

The relative importance of variables was 

determined by random forest method. In the random 

forest,a large number of regression trees are grown. A 

different subset of predictor variables is selected 

randomly, and a certain percent of data is kept aside, 

i.e., reserved data. The final prediction for each data 

point is the mean of the predicted values from all the 

regression trees. This analysis was undertaken in R 

via the „randomForest‟ package. The measure of 

relative importance is through the total decrease in 

node impurities from splitting on one specific 

variable, averaged over all trees. The node impurity is 

measured by the sum of squared errors of prediction 

(SSE, the residual sum of squares), which is 

ameasure of the discrepancy between data and the 

estimation model. A small SSE indicates a tight fit of 

the model to data. In terms of spatial dependence, 

tree density, and topographic roughness were all 

explicitly included as predictor variables that would 

account for the major geographical gradients. Data 

were subsampled (using 66% each time) in the 

random forest procedure to further reduce the spatial 

dependency of data (Archibald et al. , 2009, 

Aldersley et al. , 2011). 

We constructed the random forest via 500 

regression trees, because additional growth cannot 

improve prediction accuracy significantly. Three 

variables were randomly sampled as candidates at 

each split. The default minimum node size of five 

was used, meaning only nodes with cases more than 

five were split (Breiman, 2001, Archibald et al. , 

2009,Aldersley et al. , 2011).  

 

Regression tree  

Because random forests do not allow the 

interpretation of forest structure, we ran a regression 

tree to get the explicit split conditions. Regression 

trees explain variations of a response variable by 

repeatedly partitioning data into more homogeneous 

subsets (nodes), using combinations of influencing 

variables. The criterion for splitting is the sum of 

squares (De'ath and Fabricius, 2000). This process is 

repeated until a satisfying tree is created or preset 

conditions are met. This analysis was undertaken in R 

via the “rpart” packages. The pre-defined standard is 

controlled by a parameter, “complexity parameter” 

(see R document „rpart.control‟ for an explanation of 

this parameter). Regression trees make no prior 

assumptions concerning the statistical distribution of 

data, and do not require homoscedasticity of 

variances (Rejwan et al. , 1999). They can 

accommodate non-additive and threshold 
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relationships between the dependent and independent 

variables. This allows us to explore the complex 

combinations of controlling factors for fire activity 

(Archibald et al. , 2009, Aldersley et al. , 2011).  

We set the minimum size of terminal nodes 

to 1 and complexity parameter to 0.01,referring to 

previous studies (Archibald et al. , 2009, Aldersley et 

al. , 2011). The split conditions generated from 

regression trees are useful for exploring the 

influencing forces in fire activity variation and the 

specific thresholds between fire density and the 

influencing factors.

 

Table 2.Regression tree analysis of global fire density. 

Split conditions*      
Fire 

density 
Node 

Temperature<19.3 
     

 0.6  1 

      
 

  

Temperature≥19.3 
Tree 
cover<9     

 0.9  2 

 

Tree 

cover≥9 
Dry month<3.2 Tree cover≥66 

  
 0.3  3 

   
Tree cover<66 

  
 1.7  4 

      
 

  

  
Dry month≥3.2 Pop density≥64 

  
 1.4  5 

   
Pop density<64 Lig<11.3 Precipitation<702  1.8  6 

     
Precipitation≥702  3.9  7 

    
Lig≥11.3 Tree cover≥53  1.3  8 

     
Tree cover<53  7.0  9 

* See the Table 1 for meanings and units of variables. 

 

4.Results 

The observed global fire density pattern is 

shown in Figure 2A. The highest fire density was 

predominantly found in the savannas and 

shrublandsalong southern border of the Sahara desert 

and Zambia, Angola, Congo and Mozambique in 

Africa. It also concentrated in central South America 

and northern Australia.

 

 
Figure 2. Observed global fire density (A) and predicted global fire density by the random forest model (B). 

Observed global fire density was represented by the metric, Mean Annual Fire Density (MAFD), which was derived 

from 7 years (Jan 2001 to Dec 2007) MODIS data of fire counts. The unit is counts per 100 km
2
 per year. Antarctica 

and Greenland were excluded from the analysis. Predicted global fire density was generated from the random forest 

model. 

 

Random forest analysis 

The observed fire density patterns were 

predicted well by the random forest model, although 

with slightly underestimation in medium and highfire 

density regions (Figure 2Band 3). Validation via 

reserved samples showed that the variance explained 

by the random forest model was 78.33% (Figure 3). 

The relative importance of the influencing variables 

in fire density was shown in Figure 4.  Temperature 

reduced the sum of squared errors (SSE) most in 

predicting global fire density, and its relative 

importance was taken as 1. The relative importance 
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of other factors was compared with that of the most 

important factor.Precipitation, tree cover, lightning, 

and population density were also identified to be 

influential in explaining fire density pattern, with 

relative importance higher than 0.6.  

Regression tree analysis 

The conditions that resulted in different fire 

densities were identified by running a regression tree 

on the observed fire density and influencing data. 

Although the accuracy of regression tree prediction 

was lower than that of random forest (R
2
=0.42, 

P<0.01), the available split conditions revealed 

additional insights of global fire density pattern 

(Table 2). 

The regression trees results showed that 

climate conditions were important, consistent with 

the random forest analysis. Adequate temperature 

was the primary requirement for high fire density. 

Fire density value was below 1 counts per 100 km
2
 

per yearin zones where mean annual temperature 

were lower than 19.3°C (node 1). Additional factors 

basically influenced fire density in areas where 

temperatures were sufficiently high (above 19.3°C). 

When fuel moisture was high (the annual length of 

dry period less than 3.2 months), fire density tended 

to remain less than 2 counts per 100 km
2
 per 

year(node 3 and 4); however, if there was sufficient 

dry period (the period of dry months longer than 3.2 

months), fire density could increase to 7 counts per 

100 km
2
 per year, interacting with other factors (node 

9). It is consistent with the finding that the highest 

fire activity coincided with intermediate levels 

ofprecipitation(Figure 5). 

 

 
Figure 3. The relationship between observed fire 

density and fire density predicted by the random 

forest model. The solid line is the linear regression 

line of random forest model (variance explained was 

78.33%). The dashed line indicates the 1:1 

correspondence.  

 

Ecological forces also played an important 

role in determining global fire density.In regions 

where temperature was not the limiting factor (mean 

annual temperature above 19.3°C), global fire density 

was associated with three classes of tree density, i.e., 

intervals of tree cover percent below 9%, between 9% 

and 53%, above 53% of the grid cells, respectively 

(node 2, 3 and node 8, 9). When the percent of tree 

cover was in the first or the last interval, fire density 

remained in a low level (approximately 1 count per 

100 km
2
 per year). Only with moderate tree density 

(9%-53%) can fire density exceed 7 counts per 100 

km
2
 per year (node 9). Because fire density around 

tree density of 66% is similar to that of 53%, the 

threshold of 66% was also included in the interval of 

high tree cover percent (above 53%, node 3 and 4 in 

Table 2). Furthermore, we calculated the distribution 

of fire counts in the three tree density intervals, 

accordingto the methods of Chuvieco et al. (2008) 

(Chuvieco et al. , 2008). We found the three regions 

were possibly in accordance with the biomes of 

deserts (53% of all the grid cells), tropical and 

subtropical savannas (53% of all the grid cells), and 

tropical and subtropical moist broadleaf forests (89% 

of all the grid cells), respectively (Table 3). In 

addition, there were significant differences between 

fire density in the intermediate and low/high tree 

density classes (Figure 6). 

High human population (above 64 people 

per km
2
) played a suppressing role in determining fire 

density at the global scale, overall. Fire density was 

lower than 1.5 per hectare per year, if population 

density was above 64 people per km
2 
(node 5 in Table 

2). Agricultural land uses and topographic roughness 

werenot identified in the regression tree analysis for 

the global fire density, consistent with the results of 

random forest (Figure 4).  

 

5. Discussions 

In this study, fire density is developed from 7 

years of MODIS active fire data to represent global 

fire activity, following the previous studies (Giglio et 

al. , 2006a, Chuvieco et al. , 2008). The random 

forest and regression tree analysis capture global fire 

density pattern well. Temperature, precipitation, tree 

cover, lightning density, and population density are 

identified to be highly effective in explaining the 

observed fire density patterns. Agricultural land use 

and topographic roughness are not identified as the 

most important factors, probably due to the large 

scale we considered. 
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Table 3.Cross-tabulation of tree density categories (columns) and biomes (rows) in regions of temperature above 

19.3°C. The numbers in the table are the counts of fire-prone grid cells. 

Biome Percent of tree cover (%) 

  <9.5 9.5-52.5 >52.5 

Tropical/subtropical moist broadleaf forests 176  2341  1985  

Tropical/subtropical dry broadleaf forests 139  766  86  

Tropical/subtropical coniferous forests 2  96  7  

Temperate broadleaf/mixed forests 32  47  9  

Temperate coniferous forests 4  65  13  

Tropical/subtropical grasslands/savannas/shrublands 1088  4627  127  

Temperate grasslands/savannas/shrublands 67  78  0  

Flooded grasslands/savannas 60  200  6  

Montane grasslands/shrublands 19  62  3  

Mediterranean forests/woodlands/scrub 38  17  0  

Deserts/xeric Shrublands 1806  405  2  

Total 3431  8704  2238  

 

 
 

Figure 4.The relative importance of factors 

influencing variation in global fire density. Factors 

were ranked according to their contributions in 

explaining global fire density patterns. The 

importance of factor contributed most, temperature, 

was set to 1, and the relative importance of other 

factors werecompared with that of temperature. 

 

There are significant differences among fire 

density in the three intervals of tree cover percent 

(Figure 6). The intermediate tree density is related 

with high fire density, but both low and high tree 

density are coincident with low fire density.The low 

fire density in the low tree density zones is likely 

related to few available burning resources in the 

deserts.The low fire density in the high tree density 

zonesis presumably due to the insufficient dryness of 

burning materials(Giglio et al. , 2006a, Chuvieco et 

al. , 2008, Bowman et al. , 2009, Bradstock, 2010, 

Staver et al. , 2011a). 

In addition, the substantial differences 

between fire density of the medium and high/low tree 

cover zones (7.0 vs. 1.3/0.9 counts per 100 km
2
 

peryear) indicate that there might be severaldistinct 

stages of tree density(i.e., vegetation states)correlated 

with fire density.The three intervals of tree cover 

percent are mainly related with three biomes, i.e., 

deserts, tropical/subtropical savannas, and 

tropical/subtropical moist broadleaf forests (Table 

3).Hirota et al. (2011) analyzed tree density in Africa, 

Australia, and South America, and also revealed the 

existence of three distinct attractors: forest, 

savanna,and a treeless state (Hirota et al. , 2011).It is 

suggested that alternative stable states (biome types) 

might exist due to influence of fire (Staver et al. , 

2011). Since herbaceous plants tend to recover 

quicker than trees, fire constrains tree cover (Bond, 

2008, Staver et al. , 2009) and promotes the openness 

of savanna, but once tree cover becomes sufficiently 

dense, fires might be kept out(Archibaldet al. , 2009, 

Warman and Moles, 2009, Staver et al. 2011b, 

Murphy and Bowman, 2012). Therefore, it might be 

not appropriate to continue regarding the 

relationships between fire and vegetation as linear 

and smooth. It is necessary to take the catastrophic 

transition ofvegetation states into next generation fire 

model, and percent of tree cover data might serve as a 

good option(Murphy et al. , 2011, Murphy and 

Bowman, 2012, Pausas and Paula, 2012). 

 
Figure 5.Effects of annual precipitation (mm) on 

global fire density (counts per 100 km
2
 per year), 

displayed on log-log coordinates. 
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Figure 6. Fire density (counts per 100 km

2
 per year) 

in the three tree density classes.Low tree density: 

below 9%, medium tree density: 9-53%, high tree 

density: above 53%. The thresholds were identified 

by the random forest regression tree method. The fire 

density in the medium tree density class was higher 

than that of the low/high tree density classes at the 1% 

significance level. 

 

Mean annual temperature is found to be the 

primary factor in determining global fire density. 

High temperature (higher than 19.3°C) tends to favor 

high fire density. It is probably because warmer 

temperatures would increase evapotranspiration and 

lengthen the fire season (Westerling et al. , 2006). It 

is projected that temperature would rise by 2-7 °C 

and precipitation regimes would change 

tremendously across the globe at the end of this 

century (IPCC, 2007). This might shift future fire 

regime and transform the ecosystem processes 

substantially (Westerling et al. , 2006, Westerling et 

al. , 2011).  

It is assumed that topographic roughness 

might result in different fuel connectivity, i.e., 

fragmented or continuous fuels (Archibald et al. , 

2009). However, topographic roughness is not 

identified as an important influencing variable 

(Figure 3), probably due to the large scale we 

considered. The next step is to explore the effects of 

topographic roughness on fire density at regional 

scales and compare it across regions. In addition, 

population density and percent of agricultural land 

use (croplands and pastures) are not identified as the 

most influential factors in influencing global fire 

density (Figure 3).It is presumably because human 

activities only take effect in certain regions suitable 

for human livings, thus making its effects on fire 

density not obvious on the global scale (Aldersley et 

al. , 2011, Murphy et al. , 2011).There are 

underestimations in the high fire density zones 

(Figure 2). Because random forest and regression tree 

partition data into relatively homogeneous subsets, 

underestimation is predictable and has been reported 

before (Archibald et al. , 2009, Aldersley et al. , 

2011). In addition, extreme weather conditions are 

shown to be related with catastrophic fire events 

(Moritz, 2003, Cochrane and Barber, 2009). The 

averaging of fire data across years can enhance the 

robustness of results we derived, although it is not 

suitable to incorporate cumulative precipitation data 

preceding fires (Archibald et al. , 2009, Aldersley et 

al. , 2011). 

 

6. Conclusion 

Previous studies mostly tookthe relationship 

between fire and vegetation as linear and continuous, 

neglecting the resilience of ecosystem and resultant 

non-linear relationships between fire and vegetation. 

This study explicitly quantified the abrupt 

relationships between global fire density and 

vegetation, demonstrating the feasibility of data of 

tree density and method of random forest in 

quantifying the thresholds in the 

climate-vegetation-fire relationships. The classes and 

thresholds of tree densityidentified in this 

studypresumably provide insights into next 

generation fire model and global biogeochemistry 

cycle model. 
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