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Abstract: Due to the importance of rolling bearings as one of the most commonly used industrial machinery 
elements, it is necessary to develop proper monitoring and fault diagnosis procedure to suppress malfunctioning and 
failure of these elements during operation. For rolling bearing fault detection, it is expected that a desired time 
domain analysis method has good computational efficiency. In this paper, first, the features in time and frequency 
domain such as Mean Square, Moments, Cumulant, kurtosis, Skeweness, Zero Crossing Rate, Peak Rate, standard 
deviation, maximum  value, Crest factor, Clearance factor, Shape factor and Impulse factor which are widely used in 
fault diagnostics,  have been extracted from the vibration signal. Indeed, the numbers of 12 features have been 
extracted from the time domain signal. Then they are going to PCA algorithm, After PCA processing, the redundant 
features can be removed effectively. In this work, 12 features decrease to six efficient features. Although most of the 
features are reduced, the average diagnosis accuracy does not decrease. For some states, the diagnosis accuracy 
arises a little for the information fusion performance of PCA. Then, the features that extracted have been classified 
successfully using MSVM classifier.  
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1. Introduction 

Roller bearings are the important and frequently 
encountered components in the rotating machines that 
find widespread industrial applications. Therefore, fault 
diagnosis of the roller bearings has been the subject of 
extensive research. Rolling bearing faults can have 
many reasons, e.g. wrong design, improper mounting, 
acid corrosion, bad lubrication and plastic deformation 
[1, 2]. The process of roller bearing fault diagnosis 
includes the acquisition of information, extraction of 
features and recognition of conditions. The latter two 
have priority to the first one. Different methods are 
used for the acquisition of information; they may be 
broadly, classified as vibration and acoustic 
measurements, temperature measurements and wear 
debris analysis. Among these, vibration measurements 
are commonly used in the condition monitoring and 
diagnostics of the rotating machinery [3]. The vibration 
measurement of the roller bearing can be made using 
some accelerating sensors that are placed on the bearing 
house. When faults occur in the roller bearing, the 
vibration signal of the roller bearing would be different 
from the signal under the normal condition [4-6]. So 
far, many conventional vibration-signal-analysis-based 
methods have been applied to rotating machine fault 
diagnosis. Quite a few works have been done in this 
field, e.g. by Wang and McFadden [7], Shiroishi et al. 
[8], Scholkopf [9], Dellomo [10], Li et al. [11], Jack 
and Nandi [12], Nikolaou and Antoniadis [13], Samanta 
et al. [14], Al-Ghamd and Mba [15], and Purushotham 

et al. [16]. The possibilities of using support vector 
machines (SVMs) in machine condition monitoring 
applications are being considered only in recent years. 
For example, Nandi [17], and then, Jack and Nandi [18] 
have provided a procedure for condition monitoring of 
rolling element bearing. Then they improved their work 
by using GAs for automatic feature selection in 
machine condition monitoring [12, 19-20]. Samanta et 
al. developed a procedure similar to that of Jack and 
Nandi but different in processing time-domain signal 
[14], where only two cases were studied which are false 
and normal conditions. Finally, Rojas and Nandi [20] 
have worked on the training of SVMs by using the 
sequential minimal optimization (SMO) algorithm. But, 
multi-class Support vector machines (MSVMs), based 
on statistical learning theory that are of specialties for a 
smaller sample number have better generalization than 
ANNs and guarantee the local and global optimal 
solution are exactly the same [21]. Meantime, the 
learning problem of a smaller number of samples can 
be solved by SVM. 

Recently, it has been found  that SVMs can be 
effectively applied to many applications [22-25]. Due to 
the fact that it is practically difficult to obtain sufficient 
fault samples, SVMs are introduced into rotating 
machinery fault diagnosis due to their high accuracy 
and good generalization for a smaller sample number. 
In this paper, the interesting point of this investigation 
is the introduction of an effective method for fault 
detection and diagnosis in such systems through 
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features in optioned from vibration signals by Principal 
component analysis (PCA) and support vector machines 
(SMVs) that used for classification of rolling-element 
bearing faults. 
The extracted features from original and preprocessed 
signals by using PCA are used as inputs to the 
classifiers for two-class (normal or fault) recognition. 
The classifier parameters this features are classified 
successfully using SVM classifier, the classifiers are 
trained with a subset of the experimental data for 
known machine conditions and are tested using the 
remaining set of data. The procedure is illustrated using 
the experimental vibration data of a rotating machine.  

1. SVM 
In order to calculate decision surfaces directly instead 
of modeling a probability distribution across training 
data, SVM makes use of a hypothetic space of linear 
functions in a high dimensional feature space. A 
support vector (SV) kernel is utilized for mapping the 
data from input space to a high-dimensional feature 
space; this makes easy the process of the problem in 
linear form. 
SVs are samples that have [28]. SVM always finds a 
global minimum because it usually tries to minimize a 
bound on the structural risk, rather than the empirical 
risk. Empirical risk is defined as the measured mean 
error rate on the training set as below: 
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, where l is the number of observations, iy is the class 

label and ix  is the sample vector. The structural risks, 

defined as a structure derived from the inner class of the 
function in the nested subset, find the subset of the 
function that minimizes the bound on the actual risk. 
SVM achieves this goal by minimizing the following 
Lagrangian formulation: 
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Where i  is positive Lagrange multiplier [27, 28]. 

SVM uses some kernels to map the data from the input 
space to a high-dimensional feature space which 
facilitates the problem to be processed in linear form. In 
this paper, linear and radial basis function (RBF), 
quadratic and polynomial kernels have been used.  

2. Principal component analysis (PCA) 
The PCA is an unsupervised feature reduction method. 
Principal component analysis (PCA) is a statistical 
technique that can be constructed by several ways, one 
commonly cited of which is stated in this appendix. By 
stating a few directly useful properties of PCA for radar 
signal analysis, we by no means, tend to give an even 
superficial survey of this ever-growing topic. For 

deeper and more complete coverage of PCA and its 
applications, [26] are also nice and shorter materials to 
explain some general properties of PCA. For 
simplifying the presentation, all the following 
properties of PCA are proved under the assumption that 
all eigenvalues of whichever covariance matrix 
concerned are positive and distinct. One PCA 

construction: Assume a random vector X , taking 

values in
m , has a mean and covariance matrix of 

X  and X , respectively. 1 2 0m       

are ordered eigenvalues of X , such that the i -th 

eigenvalue of X  means the i -th largest of them. 

Similarly, a vector i  is the i -th eigenvector of X  

when it corresponds to the i -th eigenvalue of X . To 

derive the form of principal components (PCs), 
consider the optimization problem of maximizing

1 1 1var[ ]T T

XX    , subject to 1 1 1T   . The 

Lagrange multiplier method is used to solve this 
question. 
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Because 1  is the eigenvalue of X , with 1  being 

the corresponding normalized eigenvector, 

1var[ ]T X  is maximized by choosing 1  to be the 

first eigenvector of X . In this case, 1 1

Tz X  is 

named the first PC of X , 1  is the vector of 

coefficients for 1z , and 1 1var( )z  . 

To find the second PC, 2 2

Tz X  we need to 

maximize 
2 2 2var[ ]T T

XX     subject to 2z being 

uncorrelated with 1z . 
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multiplier method. 
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Because 2  is the eigenvalue of X , with 2  

being the corresponding normalized eigenvector, 

2var[ ]T X  is maximized by choosing 2  to be the 

second eigenvector of X . In this case, 2 2

Tz X  is 

named the second PC of X , 2  is the vector of 

coefficients for 2z , and 2 2var( )z  . Continuing in 

this way, it can be shown that the i -th PC 
T

i iz X  

is constructed by selecting i  to be the i -th 

eigenvector of X , and has variance of i . The key 

result in regards to PCA is that the principal 
components are the only set of linear functions of 
original data that are uncorrelated and have orthogonal 
vectors of coefficients. 

Experimental Procedure Two data sets, each 
containing twenty data files, were collected from two 
bearings which are the same but with different faults. 
The first data file was collected from each test bearing 
when the loading was zero, and the bearing was running 
at the highest speed (3000 rpm).  

The load was then increased step by step, the speed 
was kept at 3000rpm, and four other data files were 
collected. The load was then brought back to zero, and 
speed was decreased by 500 rpm; then, the next five 
data files were collected under five different loads 
similar to the first five data files. This procedure was 
continued until all twenty five sets of data were 
collected.  

The sampling frequency was chosen as 41.67 kHz; 
this sampling frequency along with the data record size 
of 4098 guarantees that the sampling procedure covers 
at least 1.6 revolutions of shaft at the lowest speed.  
The diagram block of detection of the type of faults in 
bearings has been illustrated in Table (1). 

3.  Test bearings 
An impact impulse is generated every time a ball 

hits a defect in the raceway or every time a defect in a 
ball hits the raceway. Each of such impulses excites a 
short transient vibration in the bearings at its natural 
frequencies. Each time this defect is rolled over, an 
impact is produced whose energy depends on the 

severity of the defect. Many failure modes of a rolling 
element bearing produce such a discontinuity in the 
path of the rolling elements. Moreover the majority of 
rolling element bearing failure cases begin with a defect 
on one of the raceways. In this research, defects on 
inner raceway (IRD) and normal Bearing (GBR) are 
used. 
Conclusion Due to the importance of rolling bearings as 
one of the most populous used industrial machinery 
elements, development of proper monitoring and fault 
diagnosis procedure to suppression malfunctioning and 
failure of these elements during operation is necessary. 
 For rolling bearing fault detection, it is expected that a 
desired time domain analysis method has good 
computational efficiency.  
A procedure is presented for diagnosis of bearing 
condition using one classifiers, namely, SVMs with 
feature reduction from time-domain vibration signals by 
PCA.  

4. Performance evaluation  
The performance of a classifying factor can be 
evaluated with the use of the criteria of sensitivity, 
accuracy and specificity.  

sensitivity
TP

TP FN


                           (16) 

specificity
TN

TN FP


                            (17) 

accuracy
TP TN

TP TN FP FN




            (18) 
In the above formulas: TP is the number of correct 
positive classifications (the learning machine classified 
correctly); TN is the number of correct negative 
classifications (the learning machine classifies 
correctly); FP is the number of incorrect positive 
classifications (the learning machine classified 
incorrectly), and FN is the number of incorrect negative 
classifications (the learning machine does not classify 
correctly). 
5. Figures and Tables  
5.1. Figures 

In this section, the diagram block of detection of 
the type of faults (Fig.1), the original acceleration 
vibration signal for two types of faults at 3000rpm 
speed and 500N load have been shown (Fig.2). 
5.2 Table 

In this section, the roller bearing fault diagnosis for 
two type faults at 3000rpm speed and 1000N load have 
been shown in Table 1. 
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Fig.1: the diagram block of detection of the type of faults. 
 

(a) 

 
 

(b) 

 
Fig.2: Original acceleration vibration of the signal for two different faults, (a): Inner race way fault, (b) Good bearing 
 

TABLE 1: The result of the two set of data to SVM for feature extraction using PCA algorithm 
DATA PERCENT TEST 

EDUCATION 
PERCENT TEST 

ACCURACY 
SENCITIVE PERCENT ACCURACY PERCENT 

NORMAL BEARING 100 100 100 100 
FAULTY BEARING 92.49 92.75 92.58 92.76 
1. Conclusion 

In this paper, first, the features in time and 
frequency domain such as Mean Square, Moments, 
Cumulant, kurtosis, Skeweness, Zero Crossing Rate, 

Peak Rate, standard deviation, maximum  value, 
Crest factor, Clearance factor, Shape factor and 
Impulse factor which are widely used in fault 
diagnostics,  have been extracted from the vibration 
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signal. Indeed, the numbers of 12 features have been 
extracted from the time domain signal. Then they are 
going to PCA algorithm, After PCA processing, the 
redundant features can be removed effectively. In this 
work, 12 features decrease to six efficient features. 
Although most of the features are reduced, the 
average diagnosis accuracy does not decrease. For 
some states, the diagnosis accuracy arises a little for 
the information fusion performance of PCA. Then, 
the features that extracted have been classified 
successfully using MSVM classifier. 
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