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Abstract: Numerical solutions of the Equal Width Wave (EW) equation are obtained by Septic B-Spline collocation 
method using Rubin and Graves linearization technique [16]. The motion of a single solitary wave and interaction of 
two solitary waves are studied to validate the accuracy and efficiency of the proposed method. Accuracy of the 
method is discussed by computing the errors norms �� , ��  and conservative quantities. The analytic values of 
invariants �� �� and �� along with other results show that the present method is a successful numerical technique for 
solving EW equation. This numerical scheme is based on forward difference scheme in time and theta-weighted 
scheme in space and is unconditionally stable. 
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1. INTRODUCTION 

This paper is concerned with the numerical 
solution of the Equal Width Wave (EW) equation based 
on collocation method using septic B-Spline. This 
equation was first introduced by Morrison et. al. [12] as 
model equation to describe the non-linear dispersive 
waves. Many methods have been proposed to solve the 
EW and Modified Equal Width Wave (MEW) 
equations. Garacia-Archilla [5] used the spectral 
method for the solution of EW equation. Dag and Saka 
[1] solved the EW equation by using cubic B-Spline 
collocation method . Saka [17] used a finite elemet 
method for numerical solution of EW equation. Ramos 
[14] investigated solitary waves of EW and Regularized 
Long Wave (RLW) equations. Zaki [23] worked on 
solitary waves introduced by the boundary forced EW 
equation. Khalifa and Raslan [10] used the finite 
difference methods for EW equation. Gardner and G.A 
Gardner [6] solved the EW equation with the Galerkin 
method using Cubic B-Spline as a trial and test 
function. Zaki [21] obtained the numerical solution of 
the EW equation by using least-squares method. Esen 
applied a Lumped Galerkin method [4] on quadratic B-
splines finite element for solving EW and MEW 
equations. Raslan [15] studied the Generalized Equal 
Width Wave (GEW) equation by using collocation 
method based on quadratic B-spine to obtain the 
numerical solution of a single solitary wave. Dag et. al. 
[18] obtained the numerical solutions of the EW 
equation by three different methods. Khalifa et. al. [9] 
studied the numerical analysis for the EW Equation. 
Evans and Raslan [2] obtained the solution of solitary 
wave for the GEW equation. Wazwaz [20] used the 
tanh and sine-cosine methods to obtained numerical 

approximation of MEW equation and its invariants. 
Hamdi et al. [19] obtained the exact solutions of the 
GEW equation. Zaki [22] worked on solitary wave 
interactions for the modified equal width equation. The 
Equal Width Wave Equation has the form 

 
�� + ��� − μ���� = 0,                     (1) 
 
where U is the amplitude,		�		is a positive parameter, 
the subscripts x and t denote the space and time partial 
differentiation. EW equation represents an alternative to 
the RLW equation [8]. We seek numerical solution 
subject to the following initial and boundary conditions 
� → 0  as x→ ±∞ , U(x,0) = f(x), and   ��(�,�)=
0,				��(�,�)= 0, 

���(�,�)= 0,���(�,�)= 0, 
						����(�,�)= 0,			����(�,�)= 0, 
where � ≤ � ≤ �  and f(x) is a localized disturbance 
inside the closed interval [a,b]. The organization of this 
paper is as follows. Septic B-splines are explained in 
section 2. Numerical stability is given in section 3. 
Numerical results are provided in section 4. Finally 
some conclusions are drawn. 
2. Septic B-spline Collocation Method 

The interval [a,b] is partitioned into N finite 
elements of uniformly equal length h by the knots �� , 
m = 0,1,2,3…N such that � = �� < �� < �� … … … .<

�� = �  and ℎ =
���

�
	. The septic B-spline function 

�� (�),� = 	−3,− 2,−1… … .,� + 3 at these knots is 
defined as 
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� + 28(�� �� − �)
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																																							[�� ��,�� ��]

(�� �� − �)
� − 8(�� �� − �)

�,															

																								[�� ��,�� ��],

(�� �� − �)
�,																																																																																										

																		[�� ��,�� ��],
0,																																																													��ℎ������.

																																					(2)
	

� 

 
The set of B-splines { ���,���,… .�� �� } 

forms a basia for the functions over theinterval [a,b]. A 
global approximation �� (�,�) to the exact solution 
u(x,t) takes the form 
 

�� (�,�)= � �� (�)�� (�),																					(3)

� ��

� ���

 

 
where �� (�) are unknown time dependent quantities 
which are determined from collocation boundary and 
initial conditions. The nodal values �� ,��

� ,��
��,��

��� at 
the knots ��  are obtained from Eqs (2) and (3) in the 
following form 
 

�� = �(�� )= �� �� + 120�� �� + 1191�� ��
+ 2416�� + 1191�� ��
+ 120�� �� + �� ��, 

 
��
� = ��(�� )

=
7

ℎ
(− �� �� − 56�� ��

− 245�� �� + 245�� ��
+ 56�� �� + �� ��), 

 
��
��= ���(�� )

=
42

ℎ�
(�� �� + 24�� ��

+ 15�� �� − 80�� + 15�� ��
+ 24�� �� + �� ��), 

 

��
���= ����(�� )

=
210

ℎ�
(−�� �� − 8�� ��

+ 19�� �� − �� ��
+ 8�� �� + �� ��),								(4) 

 
  where dashes represent differentiation  with respect to 
the space variable.   

   
Eq. (1) can be written as 

(� − ����)� + ��� = 0.														(5) 
The time derivative of Eq. (5) is discretized by a first 
order accurate forward difference formula and by using 
the �-weighted 
(0 ≤ � ≤ 1), scheme to the space derivative at two time 
levels to get the equation 
�� �� ������

�� ���(� ������
� )

∆�
 +�(���)

��� 

+(1 − �)(���)
� = 0,																														(6) 

where,∆� is time step and the superscripts n and n+1 

are successive time levels. In this work we take   � =
�

�
 

. Hence Eq. (6) is written as 
(���� − ����

���)− (�� − ����
� )

∆�
 

+
(���)

�� ��(� ��)
�

�
= 0.             (7) 

The non-linear term in Eq. (7) is approximated by 
applying Taylor series given in  [12] as 

(���)�
��� ≈ ��

� (��)�
��� 

+��
���(��)�

� − ��
� (��)�

� .									(8) 
At the nth time step we denote �� ,��

� ,��
��	���	��

��� at 
the knots ��  by the following expressions 
�� � = �� ��

� + 120�� ��
� + 1191�� ��

� + 2416��
�

+ 1191�� ��
� + 120�� ��

� + �� ��
� , 
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�� � =
7

ℎ
(−�� ��

� − 56�� ��
� − 245�� ��

� + 245�� ��
�

+ 56�� ��
� + �� ��

� ), 

�� � =
42

ℎ�
(�� ��
� + 24�� ��

� + 15�� ��
� − 80��

�

+ 15�� ��
� + 24�� ��

� + �� ��
� ), 

�� � =
���

��
(−�� ��

� − 8�� ��
� + 19�� ��

� − 19�� ��
� +

8�� ��
� + �� ��

� ).            (9) 
Using the knots �� ,� = 0,1,2,… �  
as  the collocation points, the  following recurrence 
relation at the point ��  is obtained  
 
       using Eqs. (6)-(9) 

���� ��
��� + ���� ��

��� + ���� ��
���  

+����
��� + ���� ��

��� + ���� ��
���  

+���� ��
��� 	= 2ℎ�(�� − ���),          (10) 

where 
�� = �� � − 7ℎ∆��� � − 84�, 

 
	�� = 120�� � − 392ℎ∆��� � − 2016�, 

    								�� = 1191�� � − 1715ℎ∆��� � −
																								1260�,			                       

		         �� = 2416�� � + 6720�, 
   

							�� = 1191�� � + 1715ℎ∆��� � − 1260�, 
													�� = 120�� � + 392ℎ∆��� � − 2016� 

�� = �� � + 7ℎ∆��� � − 84�, 
									�� � = ℎ

�(2 + ∆��� �),																								(11)     
 where   m=0,1,2….N. 

The Eq. (10) relates parameters at adjacent 
time levels. From the above general scheme as stated in 
Eq. (10) and using the values of m=0,1,2,….N, a septa 
diagonal matrix is produced containing N+1 equations 
in N+7 unknowns in the form of ��, i=-3,-2 -1…N+3. In 
order to obtained a unique solution, we eliminate the 
parameters {���

���,���
���,���

���,����
���,����

���,����
��� } from 

Eq. (10). The values of these parameters are obtained 
from Eq. (9) and the collocation boundary conditions as 
given below 

��� = −
40

27
�� +

14

9
�� +

8

9
�� +

1

27
��, 

��� = −
220

27
�� −

55

18
�� −

35

9
�� −

11

54
��, 

��� = −
280

3
�� + 35�� + 56�� +

10

3
��,			 

���� =
1

27
���� +

8

9
���� +

14

9
���� −

40

27
��, 

���� = −
11

54
���� −

35

9
���� −

55

18
���� +

220

27
��, 

���� =
��

�
���� + 56���� + 35���� −

		���

�
�� ,                                                

(12) 
By eliminating the parameters from Eq. (10) 

given in Eq. (12) a linear system of (N+1) equations in 
(N+1) unknowns parameters ��, i=0,1,2,3,…..N is 
obtained, which is solved by a septa diagonal solver for 

��
�,� = (1,2,3… .). Finally the approximate solutions 

U(x,t) are obtained from Eq. (10). The initial 
parameters ��

� , are determined by using the initial and 
boundary conditions with the help of the following 
expressions 
��(��,0)= �

�(��,0)

=
7

ℎ
(−���

� − 56���
� − 245���

�

+ 245��
� + 56��

� + ��
�)= 0, 

���(��,0)= �
���(��,0)

=
42

ℎ�
(���
� + 24���

� + 15���
� − 80��

�

+ 15��
� + 24��

� + ��
�)= 0, 

����(��,0)= �
���(��,0)

=
210

ℎ�
(−���

� − 8���
� + 19���

�

− 19��
� + 8��

� + ��
�)= 0, 

�(�� ,0)= �(�� ,0)
= �� ��

� + 120�� ��
� + 1191�� ��

�

+ 2416��
� + 1191�� ��

� + 120�� ��
�

+ �� ��
� = �(�� ),� = 0,1,2,… �, 

����(�� ,0)= �
���(�� ,0)

=
210

ℎ�
(− ����

� − 8����
� + 19����

�

− 19����
� + 8����

� + ����
� )= 0, 

���(�� ,0)= �
��(�� ,0)

=
42

ℎ�
(����
� + 24����

� + 15����
�

− 80��
� + 15����

� + 24����
�

+ ����
� )= 0, 

��(�� .0)= �
����,0� =

�

�
(- ����

� − 56����
� −

24����
� + 245����

� + 56����
� + ����

� )=
0.																																																											(13) 
Eq. (13), consists of (� + 1)× (� + 1)  system of 
equations which can also be solved by a septa-diagonal 
solver. 
 
3. Stability Analysis 

The non-linear term ���  in the scheme is 
linear zed by equating U as a constant k, using the Von-
Neumann [11] stability method .The linear zed from of  
the proposed scheme is given as 
���� ��

��� + ���� ��
��� + ���� ��

��� + ����
��� + ���� ��

���

+ ���� ��
��� + ���� ��

���

= ���� ��
� + ���� ��

� + ����� ��
�

+ �����
� + ����� ��

� + ����� ��
�

+ ����� ��
� ,				(14) 

 
where 
�� = 2ℎ

� − 7ℎ�∆� − 8�, 
�� = 240ℎ

� − 392ℎ�∆� − 2016�, 
�� = 2382ℎ

� − 1715ℎ�∆� − 1260�, 
�� = 4832ℎ

� + 6720�, 
�� = 2382ℎ

� + 1715ℎ�∆� − 1260�, 
�� = 240ℎ

� + 392ℎ�∆� − 2016�, 
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�� = 2ℎ
� + 7ℎ�∆� − 84�, 

�� = 2ℎ
� + 7ℎ�∆� − 84�, 

�� = 240ℎ
� + 392ℎ�∆� − 2016�, 

��� = 2382ℎ
� + 1715ℎ�∆� − 1260�, 

��� = 4832ℎ
� + 6720�, 

��� = 2382ℎ
� − 1715ℎ�∆� − 1260�, 

��� = 240ℎ
� − 392ℎ�∆� − 2016�, 

��� = 2ℎ
� − 7ℎ�∆� − 84�. 

Substitution of ��
� = ��exp	(���ℎ)  in the general 

scheme (14), where � = √−1  leads to 
�((�� exp(−3��ℎ)+ �����(−2��ℎ)+
�� exp(− ��ℎ)+ �� + �� exp(��ℎ)+ �� exp(2��ℎ)+
�� exp(3��ℎ)= �� exp(− 3��ℎ)+ �����(−2��ℎ)+
��� exp(− ��ℎ)+ ��� + ��� exp(��ℎ)+
��� exp(2��ℎ)+ ��� exp(3��ℎ)).								(15) 
Simplifying Eq. (15) we get 

� =
����

�� ��
, where 

A= (4ℎ� −
168�)cos(3�ℎ)+ (480ℎ� − 4032�)cos(2�ℎ)+
(4764ℎ� − 5220�)cos(�ℎ)+ (4832ℎ� + 6720�), 
B= (14ℎ�∆�)sin(3�ℎ)+ (784ℎ�∆�)sin(2�ℎ)+
(3430ℎ�∆�)sin(�ℎ)+ (4832ℎ� + 6720�),  so that 

|�|� =
�����

�����
= 1,	 hence � = 1, shows that the scheme 

for EW equation is unconditionally stable. 
 
4. The numerical tests and problems 

The numerical method proposed in the 
previous section is tested for single solitary wave and 
interaction of two solitary waves. The accuracy of the 
method is measured using the following error norms 

�� = |�� − ��|�
��� ,  �� = �ℎ∑ |�� − ��|

��
�� �  

where u and U denote the exact and approximate 
solutions respectively. The analytical solution of EW 
equation given in the literature  [18] is written as 

�(�,�)= 3�	secℎ���(� − �� − ��)�,						(16) 

where � =
�

���
 measures width of the wave pulse, v=c 

is the wave velocity and ��   is an arbitrary constant. 
The initial condition is given by 

�(�,�)= 3�	sec ℎ���(� − ��)�,															(17) 
The conservative properties of the EW equation related 
to mass, momentum and energy given in [13] are 
determined by assessing the following three invariants, 

�� = � ���, �� = � (�� + �(��)
�)��

�

�

�

�

 

�� = ∫ ��
�

�
.                                                (18) 

 
4.1 Motion of single solitary wave 

Problem 1. We use the parameters � = 1 , 
�� = 10,� = 0.1	���	0.03, h=0.03 ,0.15 and time step 
∆� = 0.05, run up time t=80  so that the solitary waves 
have amplitudes 0.3 and 0.09. The initial conditions are 
extracted from 

the exact solution whereas the following boundary 
conditions are used 

��(0,�)= ���(0,�)= ����(0,�)= 0, 
��(30,�)= ���(30,�)= ����(30,�)= 0, 

The results are compared with [3,7,21]. ��, �� 
and the three invariants ��,��	���	��  are recorded in 
Table 1 and Table 2. 
 

 
 
Fig. 1. Solitary wave profile for amplitude 0.3 
           corresponding to problem 1.  
 

 
       Fig2. Error graph for c=0.1 corresponding      
                to problem 1. 
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Fig3. Error graph for c = 0.3 corresponding to problem 
1. 
 
Table 1. Invariants and norms for the single solitary 
wave 
T �� × 10

�  �� × 10
� �� �� �� 

0 0.0 0.0 1.19995 0.28799 0.05760 
10 0.02468 0.03443 1.20002 0.28800 0.05760 
20 0.03377 0.04710 1.20004 0.28800 0.05760 
30 0.0313 0.05176 1.20005 0.28800 0.5760 
40 0.03837 0.05347 1.20005 0.28800 0.05760 
50 0.3886 0.05411 1.20005 0.28800 0.05760 
60 0.38907 0.05434 1.20005 0.28800 0.5760 
70 0.03922 0.05443 1.20005 0.28800 0.05760 
80 0.03962 0.05446 1.20004 0.28800 0.05760 
80[3] 0.024697 0.016425 1.23387 0.029915 0.06097 
80[7] 3.849 2.646 1.1910 0.2855 0.05582 
80[21] 7.444 4.373 1.1964 0.2858 0.0569 

 
Fig. 4. Solitary wave profile for amplitude 0.3 
 
The exact values of these invariants are given in 
reference  [18] as 

�� =
��

�
= 1.2, �� =

����

�
+
������

�
= 0.288 

and  �� =
�����

��
= 0.0576	.																						(19) 

When c = 0.03, then the analytical values  
Given in the reference [18] are  
�� = 0.36,�� = 0.02592	���	�� = 0.00156.  
                                                 (20) 

 

 
Fig. 5 Solitary wave profile for amplitude 0.09 
corresponding to problem 1. 
 
Table 2. Invariants and norms for the single solitary 
wave 
T �� × 10

�  �� × 10
� �� �� �� 

      
0 0.00034 0.00048 0.35998 0.02591 0.00155 
10 0.00330 0.00424 0.35999 0.02592 0.00156 
20 0.00528 0.00737 0.35999 0.02592 0.00156 
30 0.00695 0.00969 0.36000 0.02592 0.00156 
40 0.00818 0.01142 0.36000 0.02592 0.00156 
50 0.00909 0.01269 0.36000 0.02592 0.00156 
60 0.00978 0.01364 0.36001 0.02592 0.00156 
70 0.01028 0.01434 0.36001 0.02592 0.00156 
80 0.01064 0.01485 0.36001 0.02592 0.00156 
80[21] 0.22 0.16 0.3593 0.0259 0.00155 
80[3] 0.002683 0.001836 0.36665 0.02658 0.00162 
 

 

 
Fig. 6. Motion of single solitary wave at 
Selected times corresponding to problem 1. 
 

It is clear from Table 1 that the error norms of 
the present method are smaller than those of [3,7,21]. 
The values of the three invariants and two error norms 
obtained by the present method are shown in Table 1,2 
for different amplitudes c=0.1, 0.03. The analytical 
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values of the three invariants are given in Eqs. (19)-
(20). 
 
4.2  Interaction of two solitary waves 

Consider Eq. (1) along with collocation 
boundary conditions 

��(0,�)= ���(0,�)= ����(0,�)= 0, 
��(80,�)= ���(80,�)= ����(80,�)= 0, 

and the initial condition 

�(�,0)= 3�� sec ℎ
����(� − �� − ��)�

+ 3�� secℎ
����(� − ��

− ��)�.						(19) 
which represents interaction of two solitary waves, one 
with amplitude 3��  and other with amplitude 3�� 
placed initially at � = 	�� and � = ��. 
 
Problem 2.  For interaction of two solitary waves, using 
the parameters � = 1 , �� = 10 , �� = 25 , �� = �� =
0.5, �� = 1.5, �� = 0.75 
� = 0.1, h=0.1, ∆� = 0.1, and the runup time t=30. The 
values of the three invariants obtained by the present 
method are recorded in Table 3. They are compared 
with some earlier methods [15,18] in the literature. The 
results of the present method  are in a good agreement. 
The analytical values given in [18] are 

�� = 12(�� + ��)= 27,  
�� = 28.8(��

� + ��
�)= 81,    

�� = 57.6(��
� + ��

�)= 218.7. 
 
Table 3. Values of three invariants at different time.    
T �� �� �� 
0 26.99999 81.00000 218.70300 
1 27.00011 81.00044 218.70289 
5 27.00019 81.00034 218.70213 
10 27.00019 80.99414 218.66204 
15 27.00019 80.94087 218.32369 
20 27.00019 80.99234 218.65317 
25 27.00019 81.00013 218.70157 
30 27.00019 81.00045 218.70312 
25[15] 27.124800 81.220630 218.698300 
30[18] 26.99973 80.99778 218.69094 
    

 
Table 4. Values of the three invariants at various times. 
T �� �� �� 
0.0 -2.400000 97.916015 -58.519209 
1.0 -2.399999 97.916019 -58.519207 
4.0 -2.399999 97.905400 -58.485293 
6.0 -2.399999 97.889200 -58.378440 
8.0 -2.399999 97.907313 -58.384056 
10.0 -2.399999 97.8511039 -58.397048 

 
 
 
 

 
Fig. 7. Interaction of  two solitary waves at 
        t = 0, t = 30 corresponding to problem 2. 
 

     Fig.8 Interaction of two solitary waves 
      at selected times corresponding to    problem 2 

 
Fig. 9. Interaction of  two solitary waves at 
            t = 0, t = 15 and t = 30 corresponding to 

problem 2. 
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Fig. 10. Motion of single solitary wave at 
Selected times corresponding to problem 1. 
 
4.3 Interaction of solitons 

For this simulation we use Gardner [24], 
which has simulated the interaction of two waves (a 
positive and a negative) for the EW equation. The 
collision was confirmed given in references [25-28]. 
The initial condition is using as 
�(�,0)= �� + ��, where 
�� = 3�� sech(�(�� − �� − ��))

�,���	� = 1,2. 
 
Problem 3. We use the parameters � = 0,� = 80,� =
1,�� = 23,�� = 38,�� = �� = 0.5,�� = 1.2,�� =
−1.4,� = 0.1,ℎ = 0.1,∆� = 0.1	���	���	��	����	� =
10. The values of the three invariants obtained by the 
present method are recorded in Table 4 for two solitary 
waves. The analytical values of the three invariants 
given in the reference [29] as listed below 

�� = 12(�� + ��)= −2.4, 
	�� = 28.8(��

� + ��
�)= 97.9, 

�� = 57.6(��
� + ��

�)= −58.5216. 

 
Fig11. Interaction of two opposite solitons 
         corresponding to problem 3. 

5. Conclusion 
We studied motion of a single solitary wave, 

interaction of two solitary waves and interaction of two 
solitons using septic B-spline collocation method 
.Three tests problems are given and the results are 
compared with some earlier work from literature. In 
this work, the performance and accuracy of the septic 
B-spline collocation method was demonstrated by 
evaluating the two error norms ��	, ��  and three 
invariants on the motion of signal solitary wave and 
interaction of two solitary waves. The error norms are 
sufficiently small and the invariants are very close to 
the analytic values. 
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