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Abstract. The purpose of this paper is to generalize the flow problem considered in [21] for magnetohydrodynamic 
fluid. The problem is first formulated in the form of a differential equation by taking into account the effects of 
magnetic field and then solved numerically for various values of material parameters. Here, in addition to the 
non-Newtonian parameters, non-dimensional Hartman number also comes into play. The effects of Hartman number 
on longitudinal velocity, stream function, longitudinal pressure gradient and pressure rise per wavelength are 
discussed with the help of graphs. 
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1. Introduction. 

Flow of fluid induced by propagation of 
waves along the flexible walls of the channel, also 
known as peristaltic flow is of vital importance and 
subject of recent interest due to its occurrence in 
physiology and industry. Specifically, in physiology 
peristaltic flows occur in transport of urine from 
kidney to the bladder, movement of chyme in 
gastro-intestinal tract, vasomotion of small blood 
vessels and the flows in many glandular ducts. In 
industry peristaltic mechanism is exploited for 
transport of corrosive fluids and in manufacturing of 
peristaltic pumps. Bio-medical instruments such as 
heart-lung machine also operate according to 
peristaltic mechanism. 

Pioneering works on peristaltic flows were 
made by Latham [1], Shapiro et al. [2], Fung and Yih 
[3] and many others [4]-[6]. In all these studies the 
considered fluid obeys the Newton's law of viscosity. 
However, it is well known that many physiological 
and industrial fluids are non-Newtonian in nature and 
cannot be understood using Newton's law of viscosity. 
Raju and Devanathan [8] first time analyzed the 
peristaltic flow by considering fluid to be 
non-Newtonian. Later on several researchers 
investigated interaction of peristalsis with 
rheologically complex fluids [7]-[17]. 

Amongst many non-Newtonian fluids 
Oldroyd-B fluid is quite popular. This model is 
capable of predicting viscoelastic effects such as stress 
relaxation and retardation. Flows of Oldroyd-B fluids 
were studied extensively in the literature [18]-[20]. 
However, this fluid model does not exhibit 
viscoelastic effects when peristaltic flow under long 
wavelength approximation is considered. The simplest 
non-Newtonian model which can predict rheological 
effects under long wavelength assumption is Oldroyd 
4-constant model. Ali et al. [21] discussed the 

peristaltic motion of Oldroyd 4-consatant fluid in a 
planner channel. However, there analysis is only valid 
for hydrodynamic fluid. The study of peristaltic flow 
with magnetohydrodynamic (MHD) effects fall in the 
area of biomagnetic fluid dynamics (BFD). Flows of 
MHD biological fluids are quite important in 
bioengineering and medical sciences. These fluids are 
extensively found in living creatures and there flows 
are greatly influenced by magnetic field. Blood, urine, 
chyme etc. are examples of biofluids.Further, MHD 
peristaltic flows of biofluids are useful in problems of 
conductive physiological fluids for example the blood 
and blood pump machines and peristaltic MHD 
compressor. Motivated by these facts the purpose of 
this paper is to extended the analysis of Ali et al. [21] 
for a magnetohydrodynamic fluid. 
2. Flow equations. 

Neglecting the body forces, the governing 
equations of the incompressible fluid are given by 

,0div V                       (1) 

,div Sp
td

Vd
            (2) 

where  V   is the velocity,   is the density, 
d

dt   

is the material derivative, p   is the pressure and  S   
is the extra stress tensor. The extra stress tensor in an 
Oldroyd 4-constant fluid satifies the following 
equations. 
The constitutive equation for the Oldroyd 4-constant 
fluid is given by  
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where  1   and  3   are the relaxation times,  
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2   is the retardation time,  1A   is the first 

Rivlin-Ericksen tensor, defined by 

        ,1
TLLA                 (4)  

L  is the velocity gradient and  

 ,T

tt
SLLS

d

dS

D

DS
              (5)  

is the upper-convected time derivative. It should be 
noted that the model (3) includes the Oldroyd 

3-consatnt model  for  ),03    the Maxwell 

model   for  )032    , the viscous fluid 

model for  1 2 3    0  and the 

second grade fluid if  )031     as the 

limiting cases. 
2. Problem formulation. 
Consider a two dimensional channel of uniform 

thickness  a2  . Let it be filled with a homogenous 
incompressible Oldroyd 4-constant fluid. The walls of 
the channel are assumed flexible. Assume two 
symmetric infinite wave trains traveling with velocity  

c   along the walls. If X and  Y   are the 
longitudinal and transverse coordinates, respectively, 
The fluid considered here is electrically conducting. A 

uniform magnetic field 0B   is applied perpendicular 
to the flow. The total magnetic field is  

,0 bBB               (6)  

where  b   is induced magnetic field. However, 
under the assumption of small magnetic Reynold 
number the induced magnetic field can be 
neglected.then the wall surface is mathematically 
defined as 

  .
2
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 tcXbatXh
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
       (7)  

Here  b   is the wave amplitude,     is the 

wavelength and  t   is the time. A further 
assumption is that there is no motion of the wall in the 
longitudinal direction. This assumption implies that 
for the no-slip condition i.e., longitudinal velocity is 
zero at the wall. 
For the flow under consideration the velocity field is 
given by 

  ,0),,,(),,,( tYXVtYXUV           (8)  

where  U   and  V   are the longitudinal and 
transverse velocity components, respectively. 
Substituting Eq. (8) in Eqs. (1) and (2) yield the 
following scalar equations. The governing equations, 
taking into account the effect of magnetic field in the 

laboratory frame are 
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Now we proceed to calculate the components of stress 
tensor using the relation (5). 
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for two-dimensional flow we can define

.











YYYX

YXXX

SS

SS
S                      (15) 

With the help of Eq. (15) we have 
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Similarly 
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Inserting Eqs. (12)-(18) into relation (3) and equating 
the corresponding components on the both sides yield 
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the following equations 
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In the laboratory frame ( YX ,  ), the flow in a 

channel is unsteady. However, it can be treated as 

steady in a coordinates system ( yx,  ) moving at the 

wave speed (wave frame). The transformations 
relating coordinates and velocities in two frames are 
given by 

,      ,      ,      , VvcUuYytcXx  (22)  

where  u   and  v   are respectively the 

dimensional velocity components parallel to  x   

and  y   in the wave frame. We make use of 
Maxwell equations with generalized Ohm's law and 
find that     
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With the help of Eq. (22), Eqs. (9)-(11) and (19)-(21) 
becomes 
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Upon making use of the transformation (22), Eqs. 
(24)-(26) can be casted in the wave frame as 
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In order to non-dimensionlize the governing Eqs. 
(27)-(32), we introduce the following variables and 
parameters. 
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Using these variables and parameters and defining the 
stream function by the relation 
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With the help of dimensionless parameters defined by 
Eq. (33) and stream function given by Eq. (34), we 
obtain the following dimensionless equations, the 
continuity equation (27) is identically satisfied and the 
Eqs. (28)-(32) take the following form 
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In above equations Re is the Reynolds 

number,     is the Wave number and  31   are 

the Wessenberg numbers. 
It is formidable task to solve the Eqs. 

(35)-(40) in their current form. Fortunately, many 
physiological processes, where peristalsis is involved, 
the wavelength of the wave is large as compared to the 
radius of the vessel or organ. This assumption amount 

to assume that      0   and known in the 
literature as long wavelength approximation. 
Therefore, under the long wavelength and low 
Reynolds number assumptions, Eqs. (35)-(40) reduces 
to 
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Solving Eq. (38) and Eq. (39) for  xyS   when     

0   we get 
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It is to be noted that when  ,0M   Eqs. (44) and 

(45) reduce to corresponding equations of 
hydrodynamic fluid. 
3. Rate of volume flow and boundary conditions  
The instantaneous volume flow rate in the fixed frame 
is given by 
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,),,(
0

YdtYXUQ
h

                  (46) 

where  h   is a function of  X  and  t  . 
The rate of volume flow in the wave frame is given by 
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where  h   is a function of  x   alone. If we 
substitute Eq. (22) into Eq. (46) and make use of Eq. 
(33), we find that the two rates of volume flow are 
related by 
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The time mean flow over a period  T   at a fixed 

position  X   is defined as 
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Substituting Eq. (48) into Eq. (49) and integrating we 
get 
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defining the dimensionless time mean flows     

and  F   respectively in the fixed and wave frame 
as 
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one finds that Eq. (50) can be written as  
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and  h   represents the dimensionless form of the 
surface of the peristaltic wall, i.e. 

.cos1)( xxh                  (54)     

Here  ab /   is the amplitude ratio or the 

occlusion. 
If we select the zero value of the streamline at the 

centerline  )0( y  . we have 
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then the wall  )( hy    is a streamline of value 
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The appropriate boundary conditions for the 
dimensionless stream function in the wave frame  
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4. Numerical solution 
In this section we proceed to find direct 

numerical solution of the differential Eq. (45) subject 
to boundary conditions (57) by means of a suitable 
numerical technique. The differential Eq. (45) is 
nonlinear in     and cannot be solved by the direct 

finite difference method. In solving such a nonlinear 
equations, iterative methods are commonly used. We 
can now construct an iterative procedure in the 
following form 
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where the index   n   indicates the iterative step. It 

is easy to confirm that if the indices   n   and  

 1n   are withdrawn, the Eq. (58) is consistent 

with the original differential Eq. 45 . Equation 
(58) and the boundary conditions (59) define a linear 

differential boundary value problem for  
 1n  . By 

means of the finite difference method a linear 
algebraic equation system can be deduced and solved 

for each iterative step  )1( n  . Therefore, a 

sequence of functions  
      ),...,(),,(),,( 210 yxyxyx  is determined 

in the following manner: if an initial estimated  
  ),(0 yx  is given, then  

    ),...,(),,( 21 yxyx   are calculated 

successively as the solutions of the boundary value 
problem (58) and (59). Unfortunately, such an 
iteration is often divergent, especially when the initial 
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estimated  
  ),(0 yx   is not given carefully and 

suitably. Usually, in order to achieve a better 
convergence, the so called method of successive 
under-relaxtion is used. We solve the boundary value 

problem (58) and (59) for the iterative step  n 1  

to obtain an estimated value of  n1
  and 

n1
,  then  n1

  is defined by the formula 

                     

n1n n1
n ,   0,1  #   

      (60) 

where   is under-relaxation parameter. We should 

choose     so small that convergent iteration is 
reached. In our simulation we choose an initial guess 
of    hFyyx /),(0   which fulfils the first and 

third boundary conditions in (57). Of course, some 
other choices are also possible. The iteration should be 
carried out until the relative differences of the 

computed  n1
  and  n

  between two 
iterative steps are smaller than a given error chosen to 

be  108 .   
 
5. Results and discussion 

To see the effect of Hartman number on 
various features of the peristaltic motion we have 
plotted Figs. 1-4. 

In Fig. 1(a) the longitudinal velocity  u   is plotted 

against  y   for different values of  1   at a fixed 

position  x   with non-zero values of  M  

.Fig. 1(b) is made to see the effects of  2   on  u   

for MHD fluid. The profiles of stream function for 

MHD fluid for different values of  1   and  2   

are shown in Figs. 1(c) and 1(d). We observe from 
these figures the similar behavior as observed for 
hydrodynamics fluid. However, Figs. 2(a)-(d) reveal 
some interesting results. These are summarized below. 

   An increase in M increases the velocity near 
the boundary. However, near the centerline the 
situation is reversed. 

   The values of stream function decreases in going 
from hydrodynamic to magneto hydrodynamic fluid. 

The variation of longitudinal pressure 

gradient  dxdp /   over one wavelength for 

different values of  M   is shown in Figs. 3(a)-(d). 

In Figs. 3(a) and 3(b)  8.0  , while in Figs. 3(c) 

and 3(d)  .2.0   The following results are 

worth mentioning. 

   The magnitude of longitudinal pressure gradient 

increases with an increase in  .M   

   The longitudinal pressure gradient resists/assist 
the flow in the narrow/wider of the channel for the 

small values of  .  For the large values of     
longitudinal pressure gradient become favorable over 
the whole width of the channel. 
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Fig. 1(a): Plot of the longitudinal velocity  u   for 

various values of  )5.0( 21   . The other 

parameters chosen are  M 5,    2.0F   

and  .3.0   
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Fig. 1(b): Plot of the longitudinal velocity  u   for 

various values of  )5.0( 12   . The other 

parameters chosen are  ,5M    2.0F   

and  .3.0   
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Fig. 1(c): Plot of the stream function    for 

various values of  12 0. 5 . The other 

parameters chosen are  M 5,F 0. 2   and  

0. 3.   
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Fig. 1(d): Plot of the stream function    for 

various values of  21 0. 5 . The other 

parameters chosen are  M 5,    F 0.2   

and  0.3  . 
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Fig. 2(a): Plot of the longitudinal velocity  u   for 

various values of  M  . The other parameters chosen 

are  1 0,2 0. 5, F 0.2   and  

0. 3.   
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Fig. 2(b): Plot of the longitudinal velocity  u   for 

various values of  M.   The other parameters 

chosen are  1 0.5,2 3, F 0.2   and  

0. 3.   
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Fig. 2(c): Plot of the stream function    for 

various values of  M.   The other parameters 

chosen are  1 0. 5,2 0. 5,F 0. 2   

and  0. 3.   
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Fig. 2(d): Plot of the stream function    for 

various values of  M.   The other parameters 

chosen are  1 0.5,2 1, F 0.2   and  

0. 3.   
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Fig. 3(a). Plot of the longitudinal pressure gradient  

dxdp /   for various values of  M.  The other 

parameters chosen are  

8.0,5.0,1.0 21     and  0. 3.   
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Fig. 3(b). Plot of the longitudinal pressure gradient  

dp/dx   for various values of  M. The other 
parameters chosen  are

1 0. 5,2 0. 8, 0. 8  and 0. 3.  
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Fig. 3(c). Plot of the longitudinal pressure gradient  

dp/dx   for various values of  M.  The other 

parameters chosen are  

1 0. 1,2 0. 5, 0. 2   and  

0. 3.   
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Fig. 3(d). Plot of the longitudinal pressure gradient  

dp/dx   for various values of  M.   The other 
parameters chosen are  

1 0. 5,2 0. 8, 0. 2   and  

0. 3.   
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Fig. 4. Profile of pressure rise per wavelength  p   

versus flow rate     for various values of  M.   
The other parameters chosen are  

1 0, 0.1, 0. 2, 0.4, 0. 5,2 0. 5   and  

0. 3.  

 

Table 1: Values of  p   for different values  of  M   and  .  
 

M   
  0     0. 04    0. 08     0. 12     0. 16     0.2     0. 24   

0 0.88432 0.55901 0.212003 -0.15553 -0.56624 -1.06249 -1.66624 
1 1.80726 1.04089 0.246788 -0.58384 -1.46769 -2.42249 -3.43287 
1.2 1.94645 1.05173 0.130933 -0.82452 -1.83173 -2.91073 -4.04737 
1.4 2.11167 1.06628 -0.00318 -1.10535 -2.25792 -3.48343 -4.76919 
1.6 2.30321 1.08524 -0.15463 -1.42541 -2.74548 -4.13974 -5.59735 
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Figure 4 and Table 1 illustrates the relation 

between pressure rise per wavelength  P   and 

flow rate     for the various values of  M  . It 

is observed that  P0   increases by increasing  

M.   This means that the peristalsis has to do work 
against greater pressure rise for MHD fluid as 
compared to hydrodynamic fluid. Moreover, in 
co-pumping the pumping rate decreases for large 

values of  .M   
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