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Abstract: Reliability is the probability of a software working correctly over a specific period of time. Reliability 
predictions and assessments are important in ensuring the quality. Many approaches has been given like rate based 
approaches for the reliability of the software and to analyze the reasons for the failure of the software. Criteria for 
the reliability of the software, number of debuggers or developers available are not taken into account. Newly 
detected faults have to wait for some time since all the debuggers will be busy in detecting the faults which they 
found previously. Time taken to remove the fault is taken into consideration and the main fact relies in it is that less 
number of faults been removed when compared to the number of faults detected. This is mainly because fault 
detection is continued as faults are also removed side by side. Taking the previous out comings into consideration, 
our project proposes a rate-based simulation method by applying the queuing theory for the debugging behavior 
during the development of the software. G/G/∞ and G/G/m models have been used in our proposed method. This 
method is used for the real software failure. This approach helps to predict the debuggers’ performance and the cost 
effectiveness.  
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INTRODUCTION 

Software should meet requirements 
specifications. Best quality software satisfies the need 
of the customer. Historically, the word “quality” has 
been adapted and has evolved together with the 
different technologies to which it has been applied. 
Each software should not contain compliance. It 
implies loss of quality or less trust on product. 
Inspection process goal was to avoid corrections 
through the identification of product deviations from 
requirement specification [2]. 

Software metrics can be classified into 
three categories: product metrics, process metrics, 
and project metrics. Product metrics describe the 
characteristics of the product such as size, 
complexity, design features, performance, and quality 
level Software industry focuses on the following 
principles: 1. Software requirements are the quality 
metric fundamental. Lack of compliance with 
requirements is a quality failure. 2. Standards 
establish development criteria. Absence of standards 
means, in many cases, low quality [5]. 3. Indirect 
measures (e.g. usability, maintainability, etc.) and 
direct measures (e.g. lines of code). 

Software can also have small unnoticeable 
errors or drifts that can culminate into a disaster. On 
February 25, 1991, during the Golf War, the 
chopping error that missed 0.000000095 second in 
precision in every 10th of a second, accumulating for 

100 hours, made the Patriot missile fail to intercept a 
scud missile. 28 lives were lost.  

Fixing problems may not necessarily make 
the software more reliable. On the contrary, new 
serious problems may arise. In 1991, after changing 
three lines of code in a signaling program which 
contains millions lines of code, the local telephone 
systems in California and along the Eastern seaboard 
came to a stop. 

In recent decades, rate-based simulation 
approaches have been proposed to analyze stochastic 
failure processes [2], [7], [11]. Simulation approaches 
relax certain unreasonable assumptions which are 
common in model-based approaches. This type of 
approach can also extend the reliability process to 
encompass the entire software life-cycle [11]. 
However, we found that most of the research on 
simulation approaches has not considered the 
limitations of debugging resources during the fault 
correction process (FCP). In fact, for project 
managers, such kinds of information will be valuable, 
and helpful. Musa [3] reported that the number of 
debugging personnel is one of the major constraints 
on the rate of testing. Therefore, in this paper, we will 
incorporate the queuing model into the rate-based 
simulation framework to approximate reality more 
closely.  

Through the proposed simulation 
framework, possible debugging behavior will be 
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analyzed and discussed under consideration of the 
debugging team size. 

The remainder of this paper is organized as 
follows. Section II reviews existing methods for 
software reliability prediction. Then we will propose 
two rate-based simulation procedures to analyze both 
the FDP, and FCP in Section III. In the proposed 
framework, debugging behavior is analyzed based on 
the concept of queuing theory. In Section IV, 
experiments based on two real data sets are discussed 
in terms of performance, and cost-effectiveness. 
Finally, Section V concludes the paper. 
SOFTWARE RELIABILITY PREDICTION 
APPROACHES 

Farr & Lyu [2] also pointed out that the 
NHPP model has formed the basis for the models 
using the observed number of faults per unit time 
group. However, we observed that most of these 
models deal solely with FDP [17]. In reality, the 
terms testing and debugging are related but distinct. 
Testing is the process of exercising a program with 
the intention of revealing inherent faults, while 
debugging activity localizes the root cause of the 
detected fault, and then corrects the fault [18]. 
Because fault removal may require time and effort, 
the number of removed faults will lag behind the 
total number of detected faults. Musa [3] argued that 
the fault removal process is characterized on an 
average basis by assuming that the fault correction 
rate is proportional to the hazard rate. He called the 
proportionality constant a fault reduction factor. In 
addition, Wood [19] reported that instantaneous 
repair is not realistic in practice. Therefore, model-
based methods should be modified to take into 
account the FCP [17]. 

Apart from the NHPP models, many 
researchers have applied neural networks to predict 
FCP, and to estimate software reliability [6], [12], 
[13]. Karunanithi & Malaiya [12] proposed neural 
network architecture which first accepts the 
execution time as the input, and then shows the 
number of detected faults. This type of framework 
models the software’s reliability using different 
neural networks, such as a recurrent neural network. 
Another kind of neural network framework models 
software reliability based on a multiple-delayed 
input/single-output neural-network architecture. For 
example, Cai et al. [12] designated the most recent 
50 inter-failure times as the multiple-delayed inputs 
to forecast the occurrence of the next failure. 
Similarly, Tian & Noore [3] proposed an 
evolutionary neural-network modeling approach for 
the prediction of cumulative failure time based on 
this architecture. Su & Huang [6] also proposed an 
ANN-based dynamic weighted combinational 
approach to predict software reliability [11] reported 

that instantaneous repair is not realistic in practice. 
Therefore, model-based methods should be modified 
to take into account the FCP [7]. 

Apart from the NHPP models, many 
researchers have applied neural networks to predict 
FCP, and to estimate software reliability [6], [11]. 
Karunanithi & Malaiya [2] proposed a neural 
network architecture which first accepts the 
execution time as the input, and then shows the 
number of detected faults. This type of framework 
models the software’s reliability using different 
neural networks, such as a recurrent neural network. 
Another kind of neural network framework models 
software reliability based on a multiple-delayed 
input/single-output neural-network architecture. For 
example, Cai et al. [2] designated the most recent 50 
inter-failure times as the multiple-delayed inputs to 
forecast the occurrence of the next failure. Similarly, 
Tian & Noore [3] proposed an evolutionary neural-
network modeling approach for the prediction of 
cumulative failure time based on this architecture. 
Su & Huang [6] also proposed an ANN-based 
dynamic weighted combinational approach to 
predict software reliability. Besides, Hu et al. [3] 
further studied a major ANN architecture, the Elman 
recurrent networks, to model both the FDP, and FCP 
for software reliability analysis. 
PROPOSED APPROACH 

The simulation algorithm can be applied to 
each individual activity during SDLC. Later, 
Gokhale & Lyu [7] proposed a simulation technique 
to analyze structure-based software reliability. They 
believed that the time required by fault repair should 
be considered explicitly. They also extended the 
simulation to the reliability assessment on the 
application level. Recently, Gokhale et further 
considered the possibility of imperfect debugging in 
the simulation approach. However, we found that 
existing published simulation techniques seldom 
consider the limitations of debugging resources, and 
this oversight may not be reasonable. In practice, the 
number of qualified debuggers will be controlled 
during SDLC. In the next section, we will apply 
queuing theory to mo del software fault correction 
activities through simulation procedures. 

Figure 1. Software testing and debugging activities 
The software system is subject to failures at random 
times caused by the manifestation of the remaining 
faults in the system. 
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2) All faults are independent, and equally detectable. 
The probability that a failure will be experienced 
during (t, t+∆t) is Λ(t) ∆t approximately, and the 
probability that two or more failures will occur 
during (t, t+∆t) is negligible. 
3) The correction of faults takes non-negligible time, 
i.e., explicit repair. The probability that a fault is 
corrected in time interval (ts, ts+∆t) is µ * ∆t. 
Further, fault removals do not affect the ongoing 
activities of fault detection. 
4) No new faults are introduced during the correction 
process. 
5) Available, and qualified debuggers are always 
sufficient. 

The debugging system is modeled by a queue 
system (G/G/∞). Each time a failure occurs, there is 
no lag to allot a debugger to the detected fault. 

Based on these assumptions, Procedure #1 
was developed, and is depicted in Fig. 2. Procedure 
#1 accepts two parameters as inputs: the total number 
of execution time units, defined as stop_time; and the 
consumed time of each run, denoted by dt. The length 
of each time unit should be consistent with the failure 
data collection form. Further, each time unit is 
divided into a large number of runs, and the length of 
each run should be short enough that multiple events 
in a run are rare [2], [7]. That is, the variations of 
failure rate in (t, t+dt) should be insignificant. In 
addition to the two inputs, certain variables are also 
used in the simulation to represent the major 
components of the debugging system, and to gather 
useful statistics. The variable current_time represents 
a clock, which also indicates the cumulative 
execution time to the present. The array correction, 
each element of which contains a fault_info, is used 
to keep track of the status of each fault. Further, 
working_server denotes the current number of busy 
debuggers, while max_server logs the number of 
utilized debuggers at peak time.  Finally, 
cumulative_arrival and cumulative_departure are 
integers used to count the numbers of cumulative 
detected faults and cumulative removed faults, 
respectively. 

There are several ways to derive the 
simulation. Our framework adopts a random-number 
generator, which is common. Following 
mathematical probability distributions, the generator 
is programmed to generate arrivals, departures,  
and so on. During simulation, actions taken in each 
run consist of two steps: detecting, and 
correcting.Detecting: Following similar work in [4], 
and [7], we can simulate the FDP. At the outset of 
each run, the function occur() will be invoked to 
determine whether the testers detect a fault in this 
run. 

This means that the testers may detect a 

fault if is greater than Λ(t). Once the occur function 
returns 1, is increased, the value of is updated, and the 
state of the detected fault will be recorded. Lines 10–
14 in Procedure #1 show the activities taking place as 
a result of each failure occurrence. 

Correcting: Departing from the detection 
step, we commence diagnosing the status of each 
detected fault by checking all elements of the array 
correction. If an open-remaining fault (a detected but 
uncorrected fault) is found, the function leave(ts) 
determines whether this fault will be corrected in this 
run.  Similar to the occur function, the success of 
fault removal relies upon the comparison between dt, 
and the random number. If dt, then the dedicated 
debugger successfully corrects this fault in this run. 
The necessary actions taken due to this successful 
repair are given in Lines 19–22. Otherwise, this fault 
cannot be corrected at this time, and will be 
reexamined in the next run. From Assumption 3), we 
know that the necessary correction time is non-
negligible. Hence, the return of leave(0) is given as 0, 
ensuring that the fault detected in the current run will 
not be removed immediately. 
B. Procedure 2 

In Procedure #2, each run consists of three 
steps: debugger allocation, fault detection, and fault 
correction. 

Allocation: This step allocates the qualified 
debuggers to the faults pending in the queue. First, 
we check the existence of unoccupied debuggers by 
comparing with. If all debuggers are not busy, a 
pending fault will be deleted from the waiting queue, 
and will occupy one debugger. The activities for 
debugger assignment are shown in Lines 11–15, 
which will be repeated until available debuggers are 
exhausted, or the waiting queue becomes empty. 

Detecting: Once a fault is detected, we first 
increase, and then determine whether available 
debuggers exist.  If (meaning that some debuggers 
are still available), the actions are the same as those 
taken during the detection step of Procedure #1. 
Otherwise, the detected fault will be inserted into the 
queue to await service. Related activities are given in 
Lines 19-29 of Fig. 3. 

Correcting: Entering this step, the status of 
each fault will first be checked. If there are faults 
being repaired, the function leave will be executed to 
determine whether the repairs will be successful. 
Following each successful repair, the actions 
described in Lines 35–38 will be taken, i.e., an 
occupied debugger will be released. Conversely, 
faults which are not corrected in the current run will 
be reexamined in the next run. 

The above three steps will be reiterated 
prior to the. In addition to the information obtained 
through Procedure #1, we further have the average 
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time spent in the waiting queue, the average length 
of the waiting queue, and other statistics. Although 
productive research has used neural network 
approaches to predict the increment of the failure 
process, most training algorithms for neural network 
approaches suffer from the overfitting problem. That 
is, the fitting bias of the training set is very slight 
regarding known data, but the bias is unpredictably 
large when new data are presented to the network 
[3]. Determination of the proper number of neurons 
is another common problem in the field of neural 
network research . Moreover, Tausworthe & Lyu 
[2],argued that most SRGM only focus on the failure 
observation during the test phase, or the operational 
phase. They reported that the assumptions of most 
SRGM lead to the over-simplification of the failure 
process. Thus, general simulation techniques have 
been developed to relax certain unreasonable 
assumptions [2]. 

For ease of discussion, we let ≥ 0} be the 
stochastic failure process that represents the number 
of failures observed in an execution interval (0,  ). If 
the failure behavior is modeled by a failure rate, N(t) 
can be modeled by a class of NHCTMC [7]. That is, 
the behavior of the stochastic process N(t) purely 
depends on the rate function for each state of the 
software system. If the state is represented by the 
number of occurrences of the event, it is known as a 
pure birth NHCTMC. 

void Simulation_Procedure (double 
stop_time, double dt) 

{ 
     double current_time = 0; 
     int working_server = 0, max_server = 0; 
     struct fault_info correction[Max_Size]; 
     int cumulative_arrival = 0, 
cumulative_departure = 0; 
     while ( current_time < stop_time) { 
           DETECTING: 
           if( occur() ){ 
             working_server++; 
                 if (working_server > max_server) 
                    max_server = working_server; 
                 
correction[cumulative_arrival].arrival_time = 
current_time; 
                 correction[cumulative_arrival++].state = 
CORRECTING; 
                 } 
           CORRECTING: 
           for(int i = 0; i < cumulative_arrival; i++) { 
                   if (correction[i].state == 
CORRECTING && leave(current_time - 
correction[i].arrival_time)) { 
                                           working_server--; 
                                           

correction[i].departure_time = current_time' 
                                           correction[i].state = 
CORRECTED; 
                                           
cumulative_departure++; 
                   } 
           } 
           current_time += dt; 
}      

                         Figure. 2. Procedure #1           
       
SOFTWARE RELEASE STRATEGIES 
AND COST  ESTIMATIONS 

In the high-technology market, the life 
cycle of software products may be so short that the 
manager is actually willing to deliver the software 
product with uncorrected faults by the scheduled 
deadline. Nevertheless, delivering a bad product 
may lead to customer dissatisfaction, and then cause 
damage to a software company’s reputation [3]. 
Therefore, if some open-remaining  faults  still  exist  
with  the  scheduled  dead- line approaching, we 
assume that there are two debugging strategies to 
manage the project: Release Strategy A, which 
strictly enforces the hard-deadline, and delivers the 
software product with open-remaining faults; and 
Release Strategy B, which extends the deadline, and 
continues the fault correction  until  fixing all  open-
remaining faults.  Based on these two strategies, we 
will study the expected cost and penalty of open-
remaining faults as the project manager staffs the 
debugging team with different amounts of 
personnel. To simplify our analysis, we will only 
focus on those factors related to the staffing level of 
the debugging team. The factors common in both 
strategies will be ignored, such as the cost of 
discovering faults, and the penalties of faults which 
are not discovered before release. 

Correcting: Entering this step, the status of 
each fault will first be checked. If there are faults 
being repaired, the function leave will be executed 
to determine whether the repairs will be successful. 
Following each successful repair, the actions 
described in Lines 35–38 will be taken, i.e., an 
occupied debugger will be released. Conversely, 
faults which are not corrected in the current run will 
be reexamined in the next run. 

Release Strategy A: In addition to 
customer dissatisfaction, the penalties of remaining 
faults should also include the cost of fixing faults 
after release. The cost of fixing a fault after release 
is usually an order of magnitude greater than fixing 
the fault prior to release [4]. The cost function can 
be given as: Intuitively, there may be a negative 
relationship between the penalties of remaining 
faults, and the number of debuggers. But the amount 
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of debuggers’ salaries is proportional to the number 
of debuggers. To determine a suitable staffing level, 
and to re- duce the total cost, software project 
managers should strike a balance regarding the total 
debugger’s salaries before release, and the penalties 
of open-remaining bugs after release. 

void Simulation_Procedure (double 
stop_time, double dt, int staffing_level) 
{ 
     double current_time = 0; 
     int working_server = 0; 
     struct fault_info correction[Max_Size], 
waiting_queue{max_Size]; 
     int num_correction = 0,cumulative_arrival = 0, 
cumulative_departure =0; 
     int queue_head = 0, queue_tail = 0; 
     while (current_time < stop_time) { 
           ALLOCATION: 
           while (working_server < staffing_level && 
queue_head!=queue_tail) { 
                     waiting_queue[queue_head].state = 
OUT_OF_QUEUE; 
                     
waiting_queue[queue_head++].departure_time = 
current_time; 
                     correction[num_correction].state = 
CORRECTING; 
               } 
           DETECTING: 
           if(occur()){ 
                         cumulative_arrival++; 
                         if (working_server >= 
staffing_level){ 
                                            
waiting_queue[queue_tail].state = ENQUEUE; 
                                             
 
waiting_queue[queue_tail++].arrival_time = 
current_time; 
                         } 
                         else { 
                              working_server++; 
                              if (working_server > 
max_server) 
                                 max_server = 
working_server; 
                              
correction[num_correction].arrival_time = 
current_time; 
                              
correction[num_correction++].state = 
CORRECTING; 
                         } 
           } 
           CORRECTING: 
         for (int i=0; i<num_correction; i++) { 

             if (correction[i].state == CORRECTING 
&& leave(current_time - 
correction[i].arrival_time)) { 
                                working_server--; 
                                correction[i].departure_time = 
current_time; 
                                correction[i].state = 
CORRECTED; 
                                cumulative_departure++; 
             } 
         } 
     current_time += dt; 
} 

                           
 
Figure. 3. Procedure #2 
 

Cost1 = debuggers salaries of + cost of 
fixing faults after release + penalty customer     (6) 

Release Strategy B:  
 If the debugging activities are continued 

until all detected faults are removed, the cost will 
exclude the penalties caused by the open-remaining 
faults after release, but the scheduled project deadline, 
and software release could be extended accordingly. 
Thus, in addition to extra debuggers’ salaries during 
the extended period, the penalty of the declining 
market position is inevitable. The expected cost for 
this strategy can be calculated by 

Cost2 =original debuggers salaries +penalty 
of lost market position+Extra debugger’s salaries 
during extended period.                                   (7)  

Similarly, to minimize the expected cost, it 
is necessary to analyze the trade-off between two 
costs: the debugger’s salaries, and the penalties due 
to late release. 
RESULTS 

The data set was from system T1 of the 
Remote Air Development Center project.The failure 
data were carefully collected under strict 
supervision. System T1 was applied to real time 
command and control, including 21,700 delivered 
object instructions. Over the course of 21 weeks, 9 
programmers detected and removed 136 faults. 
1. The average of fault removals per week. 
2. The faults detected during the period of 21 weeks.  
3. The average measure of all faults. Note that the 
waiting time means the time of the fault pending in 
waiting queue, and the response time indicates the 
total time spent in the queuing system. Besides, 
because some detected faults may not be removed 
yet at the end of 21 weeks, the simulation of 
correction processes, and the statistics are continued 
until all pending faults are addressed.  
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Figure. 4. Datas of Remote Air Development Center 
Limitation of 
Available 
Debuggers 

Throughput (by the end of 
21 weeks) 

Time to 
remove faults 
(weeks)2,3 

Avg. 
waiting 
time 
(weeks)3 

Avg. 
response 
time 
(weeks)3 

Avg. queue 
lgth3 

Debugger 
utilization 
(%) Open-remaining 

faults 
Avg. 
removals 

Unlimited 2 6.52 22 0.00 0.66 0.00 - 
12 2 6.52 22 2.45 * 10-3 0.67 1.55*10-2 36.79 
11 2 6.52 22 6.69 * 10-3 0.67 4.22*10-2 40.13 
10 2 6.52 22 1.37 * 10-2 0.68 8.64*10-2 44.14 
9 2 6.52 22 3.21 * 10-2 0.70 0.20 49.05 
8 2 6.52 22 0.10 0.77 0.65 55.18 
7 5 6.38 22 0.37 1.03 2.32 62.75 
6 19 5.71 24 1.03 1.69 5.97 66.15 
5 36 4.90 26 2.15 2.81 11.47 68.61 
4 53 4.10 30 4.02 4.69 18.64 71.15 
3 71 3.24 38 7.44 8.11 27.23 73.75 
2 95 2.10 52 14.23 15.28 39.08 77.26 
1 113 1.24 97 36.79 37.45 52.72 84.67 
 

Figure 5. Performance comparisons between 
different staffing levels as the value of varies from 1 
to 8  
 

According to the above analyses, the 
limitation on the debugging team size is not the 
bottleneck to enhance performance when the number 
of personnel is more than 7. Increasing the number of 
debuggers can only increase the number of 
simultaneous working debuggers, but it does not 
reduce the consumed time taken for a debugger to fix 
a fault. Therefore, when the staffing level can bear the 
load, more debuggers cannot improve the throughput. 
If the manager wants to ameliorate the performance, it 
is necessary to improve the debuggers’ skills, i.e. to 
increase the value. Fig.4 shows some performance 
comparisons between different staffing levels as the 
value of varies from 1 to 8. Due to space limitations, 
we only demonstrate the number of open-remaining 
faults, and the time to remove all faults in each 
condition. As is clear from Fig. 7, both statistics 
decrease with the growth of   , and the staffing. The 
utilization of 6 debuggers is very low at the 
beginning. However, because the number of detected 

faults grows rapidly from the 8th week to the 18th 
week, 6 personnel seem unable to bear the load. Re-
staffing may be reasonable in both conditions. Using 
the pro- posed framework, project managers can 
easily estimate the influence caused by re-staffing 
the debugging system, and further decide whether to 
make an adjustment. 

 
CONCLUSION 

In this paper, we modeled debugging 
behavior using queuing models. Two simulation 
procedures were developed to simulate the 
stochastic FDP, and FCP under different 
conditions. The proposed framework can help to 
understand/infer the current/future situations of the 
on-going project, or to reconstruct the possible 
behavior of the completed project. The applications 
of the pro- posed procedures are illustrated through 
two real data sets. The case studies show that the 
proposed simulation procedures can analyze the 
influence on the performance, and the cost related 
to software debugging when the number of 
allocated debuggers changes. This useful, important 
information can guide project managers in the 
estimation and adjustment of the staffing needs for 
debugging systems. Further, the proposed 
procedures are also useful when the project is 
planned using the techniques of expert judgment, or 
estimation by analogy. 
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