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Abstract: Carbon nanotubes are increasingly used in fabrication of nano-detectors and other nano devices. Herein, 
the buckling of a carbon nano-tube made detector is simulated. In order to obtain nonlinear constitutive equation of 
the detectors we assume the distributed electrostatic and Van der Waals attractions along the CNT length. By 
considering the nano forces in a continuum mechanics model we were able to achieve the differential equation of the 
CNT. In the next step by applying Adomian series solution, we provided an analytical closed-form solution of 
CNTs. The deflection and the buckling parameters are determined and discussed in detail. The analytical obtained 
results are compared with those of literature as well as numerical solution. The obtained results revealed that the 
presented continuum based model is in good agreement with experimental result. Moreover it is found that the 
analytical solution can be considered as a reliable approach to study the buckling stability of detectors in nanoscales 
where the presence of van der Waals force is important. 
[Vahdati A, Vahdati M, Mahdavinejad R A. Simulating the buckling deflection of carbon nanotube-made 
detectors used in medical detections by applying a continuum mechanics model. Life Sci J 2013;10(1):186-191] 
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1. Introduction 

After discovering carbons nano-tubes (CNTs), 
these materials are increasingly used in 
manufacturing small-scale structures. In recent 
decades these materials are specially for 
constructing nano-detectors, nanotweezers, 
nanoelectromechanical switches, etc. (Paradise et 
al., 2007; Baughman et al., 1999; Ke et al., 2005). 
It has been demonstrated that the elastic modulus, 
bending flexibility and tensile strength of carbon 
nano-tubes are much higher than the conventional 
metallic materials (Esawi and Farag, 2007).  These 
materials have a great potential for medical 
applications in manufacturing medical detectors, 
biological sensors etc. Assume a typical cantilever 
CNT detector suspended near electrode surface 
with a small gap in between. By applying a voltage 
difference between the nano-components causes 
the CNT to deflect and be attracted toward the 
electrode surface due to the presence of 
electrostatic forces. Once this voltage exceeds a 
critical value, an increase in the electrostatic force 
becomes greater than the corresponding increase in 
the restoring force, resulting in the unstable 
collapsing of the CNT to the ground position. This 
behavior is known as the buckling instability and 
the critical voltage is called the buckling voltage. 
Predicting this voltage is very important for 
engineers.  

While there are several forces such as casimir, 
capillary and van der Waals force that are acting in 
sub-micro distances. As the gap decreases from 
micro to nano-scale, the van der Waals interaction 
occurs. The prediction of the molecular force-
induced instability of CNTs nano-detector is a 
critical subject in design nano-detector: A nano-
detector might adhere to its substrate with an 
applied voltage less than buckling voltage or even 
without an applied voltage as a result of molecular 
force, if the minimum gap between the nano-
detector and substrate is not considered (Lin and 
Zhao, 2005;Abadyan et al., 2010;Koochi et al., 
2011; Tsai and Tu, 2010; Tserpes, 2007; Desquenes 
et al., 2002; Batra and Sears, 2007; Lin and  Zhao, 
2005; Hayt and Buck, 2001). Therefore predicting 
the effect of nano-scale forces on performance of 
the nano-detector is very important issue for design 
reliable detectors. 

There are several approaches for investigate 
the nano-world. In order to simulate the 
nanomaterials, several theoretical techniques might 
be employed by researchers. The most famous 
molecular dynamics (MD) and molecular 
mechanics (MM) simulations could be used to 
study the mechanical behavior of carbon-based 
nano-materials (Tsai and Tu, 2010; Tserpes, 2007; 
Desquenes et al., 2002; Batra and Sears,2007). 
However these methods are very time-consuming 
and might not be easily used in complex structures. 
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Although continuum models are more time-saving 
than MM and MD, their approach often leads to 
nonlinear equations that might not be worked out 
by analytical methods, accurately (Desquenes et 
al., 2002; Lin and  Zhao, 2005). Therefore 
analytical approaches are used to solve the 
constitutive equations of the nano-system.  

Due to the importance of the instability of 
CNT nano-detectors this work is dedicated to 
simulating the instability of the nano-detectors. In 
this paper, the buckling instability of cantilever 
CNT detector has been studied. Modified Adomian 
decomposition (MAD) is employed to solve the 
nonlinear governing equation of the system. The 
obtained results are verified by comparing with 
those from literature as well as numerical solution. 
Results will be useful for design the nano-
detectors. 
 
2. Theoretical Model 
2.1. Electrostatic interaction 

Let us consider a freestanding multi-
walled CNT above a ground plane consisted of 
graphene layers, with interlayer distance d = 3.35 
Å, as illustrated in Fig. 1. When a conductive nano-
tube is placed over an electrode substrate in the 
presence of an applied potential difference between 
the tube and the electrode, the electrostatic charge 
would be induced both on the tube and the 
substrate. To calculate the electrical forces acting 
on the tube, a capacitance model may be used. For 
infinitely long metallic cylinders, the capacitance 
per unit length is given by (Hayt and Buck, 2001): 
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Where Rw the radius of CNT and V the 
applied voltage. 

By applying external voltage the nano-
tube deflected to ground and the distance between 
the nano-tube and ground plate reduce to D-U 
therefore the electrostatic force per unit length of 
deflected detector can be rewrite as: 
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It’s must be noted in this equation we 
assumed that: 
 
 wD R D         (4) 

Equation (3) can be simplified by using 
the following assumption: 

2

2

2

2

1

( )arccosh ( )

1 1

ln[( ) ( ) 1]

1 1

ln [2 ]

W

W W

W

D U
D U

R

D U D U D U

R R

D UD U

R






 
 
  
   
   
 




  (5) 

Therefore 
2

0

2( )ln (2 )
elec

W

V
f

D U
D U

R







    (6) 

 
2.2. van der Waals interactions 

Lennard-Jones potential is a suitable 
model to describe van der Waals interaction 
(Lennard-Jones, 1930). It defines the potential 
between atoms i and j by 
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whre rij is the distance between atoms i 
and j while C6 and C12 are the attractive and 
repulsive constants, respectively. For distances 
higher than 3.4 Å, such as in this paper, the 
repulsive term decays extremely fast and can be 
neglected (Tserpes, 2007). For the carbon-carbon 
interaction, C6=15.2 eVÅ6 (Girifalco et al., 2000). 
A reliable continuum model has been established to 
compute the van der Waals energy by double-
volume integral of Lennard-Jones potential (Ke and 
Espinosa,  2006), that is 
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where 1  and 2  represent the two 
domains of integration, and n1 and n2 are the 
densities of atoms in these domains, respectively. 
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The distance between any two points on 1 and 2 
is r(1,2).  

Eq. (8) provides acceptable results for 
explaining the CNT-graphene attraction compared 
to that of direct pair wise summation through 
molecular dynamics in Eq. (7). For a (15,0) single 
walled carbon nanotube (SWCNT) over a graphene 
surface and for distances larger than 5 Å, the 
difference between EvdW specified by Eq. (8) and 
molecular dynamics, is less than 1% (Tserpes, 
2007).  

Let us consider a freestanding multi-
walled CNT above a ground plane consisted of 
graphene layers, with interlayer distance d = 3.35 
Å, as illustrated in Fig. 1. The length of CNT is L 
and the initial gap between CNT and the ground is 
D. The boundary condition of the CNT is defined 
as cantilever at one end (with no displacement and 
rotation) and traction free at the free end (with no 
shear force and moment).  

Using Eq. (8), the energy per unit length 
of nano-tube is simplified to (Tserpes, 2007): 
 

 
Figure1. Schematic representation of Cantilever 

CNT nano-detector 
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where Ri and Ro are the inner and outer 

radii of CNT, N is the number of graphene sheets 
and  38nm-2 is the graphene surface density. 
Once the van der Waals energy is computed, the 
corresponding energy terms are employed to derive 
the component of the intermolecular force per unit 
length, fvdW, along r-direction as below: 
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In most applications it is practically 

assumed that the diameter of tubes is much smaller 
than the distance between nanotube and the 
graphene surface, i.e. (2R)<<D. According to this 
assumption, Eq. (10) is simplified to  
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where NW is the number of walls of 
nanotube and RW is the mean value of their radii.  

For large number of layers, i.e. D + (N-1)d 
 D, substitution of the summation with an 
integral results: 
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Lastly we have: 
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2.3. Governing equations 

In order to develop the governing equation 
of the beams, the constitutive material of the nano-
tube is assumed to be linear elastic, and only the 
static deflection of the nano-tube is considered. The 
minimum energy principle was applied, which 
implies equilibrium when the free energy reaches a 
minimum value. By applied the Hamilton principle 
the governing equilibrium equation can be 
determined as: 
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Where denotes the variation symbol, X is 
the position along the nano-tube measured from the 
clamped end, U is the beam deflection, Eeff, is the 
effective Young’s modulus of CNT which is 
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typically 0.9-1.2 TPa (Gupta and Batra, 2008) and I 
is the cross-sectional moment of inertia, equal to 
(Ro

4- Ri
4)/4.   
By integrating Eq.(14), the governing 

equation of  cantilever nano-tube detector  is 
derived as: 

4
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These transformations yield 
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(Natural B.C. at free end). 
 
3. Solution 

In this section two solving methods has 
been applied for solving the governing equation. 
First is MAD and the second is Nemerical solution: 
3.1 Adomian series solution 

The detail of the MAD can be find in 

(Adomian, 1983). The analytical MAD solution of 

equation (17) can be obtained as the following: 
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Where the constants C1 and C2 can be 

determined by solving the resulting algebraic 
equation from the B.C at x=1 i.e. using equation 
(17-c).  

For any given , β and , equation (31) 
can be used to obtain the buckling parameters of 
the nano-tube detector. The instability in 
equation (18) occurs when dβ(x=1)/du→0. The 
buckling voltage of the system can be determined 
via plotting the u vs. β.  
 
3.2 Numerical Solution 
In order to verify the analytical results, the 
cantilever beam-type nano-detector is numerically 
simulated and the results are compared with those 
obtained via MAD and LPM. The nonlinear 
governing differential equation (Eq. (17)) is solved 
with the boundary value problem solver of MAPLE 
commercial software. The step size of the 
parameter variation is chosen based on the 
sensitivity of the parameter to the tip deflection. 
The buckling parameters of the system can be 
determined via the slope of the u-β graphs. 
 
4. Results and Discussion 
4.1. Verification 

First we verify the solution with 
experiments. In order to verify the obtained results, 
the buckling voltage of a typical cantilever CNT 
base nano-detector with the following parameters 
was compared to experimental data in Table.  1. 
The length of the nanotube, L= 6:8 m; initial gap 
between nanotube and electrode, D = 3 m; 
Rw=5nm; E = 1 TPa. As seen the MAD results are 
in good agreement with experimental results.  
4.2. Simulation of deflection 
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Figure 2. Deflection of the cantilever CNT for 
different values of  when =25 and =10. (a) 

analytical, (b) Numerical 
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Figure 3. Effect of van der Waals force (f) on pull-

in deflection (=10) 
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Figure 4. Effect of van der Waals force (f) on pull-

in deflection (=50) 
 

After validating the solution by 
experiments, we simulate the deflection of the 
nano-detector. Figure 2 shows the centerline 
deflection of a typical nano-tube detector under 
intermolecular force and external voltage obtained 
using MAD, and numerical methods. This figure 
utip increases from zero to utip

*, when  increases 
from zero to *. This figure reveals that the CNT 
nano-detector has initial deflection without 
applying voltage difference. This is the result of the 
presence of vdW attraction. 
 
4.3 Effect of van der Waals force on deflection of 
CNT 

The buckling deflection is an important 
parameter for design the detectors. The relation 
between buckling deflection and van der Waals 
force ()  is presented if figure 3 and 4 for 2 
different values of radios to initial gap ratio (=10 
and =50) as seen increasing the intermolecular 
force the buckling voltage decrease. When no 
voltage applied (β=0) the CNT buckling if the van 
der Waals force exceeds from its critical values 
(*) the critical values of  can find from the 
horizontal axes of figure 3 and 4. By comparing 
Figure 3 and 4 reveal that by increasing the values 
of , the critical values of   increase as well as  the 
buckling voltage. 
 
Table 1. Buckling voltage obtained from different 
method 

Method 
Experimental 
(Ke et al.,2005 )  

MAD Numerical 

Buckling 
Voltage 

48 50.39 48.79 
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5. Conclusions 
The buckling behavior of a cantilever 

CNT nano-detector has been studied. The obtained 
results show that: 

The Adomian series solution is a very 
power full method for study the buckling behavior 
of CNT based nano-detectors. 

In the absence of electrical loading on 
CNT based detector, it can buckling to ground if 
the van der Waals force exceeds from its critical 
values and this critical values increase if the  
increase. 

The van der Waals force reduces the 
instability deflection of the CNT detector. 
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