
Life Science Journal 2013;10(1) http://www.lifesciencesite.com

37

Solving N-Queen problem using Gravitational Search Algorithm

1Homayun Motameni, 2Seyyed Hossein bozorgi, 2mohammad ali shaban nezhad, 3Golnaz Berenjian, 4Behnam
Barzegar*

1Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

2Young Researchers Club, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
3Department of Computer Engineering, Tabari Institute of Higher Education, Babol, Iran

4Department of Computer Engineering, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran

*Corresponding author: Behnam Barzegar
behnam.barzegar@yahoo.com or barzegar@iauns.ac.ir

Abstract : The N-queens problem aims at placing N queens on an NxN chessboard, in such a way that no queen could
capture any of the others. This problem is considered as one of the hard problem to be solved. Many researches have been
interested to solve it with different Heuristic methods. In this paper, a new heuristic method, called the Gravitational
Search algorithm or GSA will be shown in solving of the N-queens problem. The offered algorithm is named Gravitational
Search algorithm N-queens or GSA-NQ and so as to confirm it, the algorithm should be implemented and compared with
GA. The experimental results with proposed method gives the best results compare genetics algorithm.
[Homayun Motameni, Seyyed Hossein bozorgi, mohammad ali shaban nezhad, Golnaz Berenjian, Behnam Barzegar.
Solving N-Queen problem using Gravitational Search Algorithm. Life Sci J 2013;10(1):37-44](ISSN:1097-8135).
http://www.lifesciencesite.com. 6
Key words: N-queen problem, Gravitational search algorithm, combinatorial optimization.

1. INTRODUCTION

Combinatorial optimization problems form a set of
problems which need a considerable effort and time
to be solved. Their difficulty lies in the fact that there
is no formula for solving them exactly. Every
possibility has to be examined in order to find the
best solution and the number of possibilities increases
exponentially as the size of the problem increases.
Researchers and scientists offered various Heuristic
algorithms for optimization by modeling from
physical and biological processes in nature, which
often operate collectively. Heuristic algorithms
against classic algorithms operate randomly and
search along with the space. The other difference
between them is that Heuristic algorithms don’t use
space gradient information. These kinds of methods
just use fitness function for guiding the search, but
because of having intelligence as type of collective
intelligence, are able to find solution. Examples of
these algorithms includes inherited algorithms that
have inspired by Genetics and evolution science
(1975), simulated annealing by modeling from
thermodynamics observations (1983), immunity
algorithm by simulating human defensive system
(1986), searching ants population by simulating ants
behavior in finding food (1991), and optimization
particles swarm by following birds social behaviors
(1995).

Recently, an ultra-Heuristic technique, called
gravitational search algorithm, has been introduced
by modeling from gravity rule and movement rules,
in order to solve optimizing problems. Way of
solving group of combined optimization problem,
called NP-hard problems effectively, means that
finding best solutions among a large but limited
series of possible solutions. Today, approximate
solutions of NP-hard problems and among them,
ultra- Heuristic solutions for solving this kind of
problems have been extremely interested. These
methods try to search the searching space of an
optimization problem regulated by using two
concepts of exploring and exploiting.
As much as the power of an algorithm be high in
suitable controlling these two parameters, its ability
in finding reasonable solutions would be increased.
We also by offering a solution in gravitational search
algorithm, controlled these two parameters by
researcher factors and finally by algorithm itself, and
proved its practicability with this solution. Also,
solving N-queen problem with Genetics algorithm
and noted gravitational search algorithm and
comparing their performances, prove the
optimization of search with suggested solution.
The rest of the paper is organized as fallow:
In first section we defined N-queen problem
basically. In section two we explained gravitational

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

38

search algorithm (GSA) and its rules. In section three
we evaluated suggested solution and implemented N-
queen problem with gravitational algorithm. In
section four we compared and evaluated performance
of N-queen problem with performance of Genetics
algorithm and SA and Hilling. In section five we
concluded the paper.

2. RELATED WORK
Ahmed Tariq, has been solved N-queen problem by
using a combined method, known as DNA
accounting algorithm and Taboo searching and
producing the mode by chance [2]. Miguel also has
been solved N-queen problem by using P-systems,
and presented way of formulating in P-systems and
CNF and extended it for larger N in N-queen
problem, too [4]. Douglas has been solved N+K-
queen problem by reflecting on the plate and related
matrix, and turning movement in different directions
and degrees [3]. Marko also has been solved N-queen
problem with parallel Genetics algorithm and solved
it for different functionalizing and different parts and
different phases [5].

3. N- QUEEN PROBLEM
The classic combinatorial problem is to place eight
queens on a chessboard so that no two attack. This
problem can be generalized as placing n non
attacking queens on an n×n chessboard. Since each
queen must be on a different row and column, we can
assume that queen i is placed in i-th column. All
solutions to the n-queens problem can therefore be
represented as n-tuples (q1, q2, …, qn) that are
permutations of an n-tuple (1, 2, 3, …, n). Position of
a number in the tuple represents queen's column
position, while its value represents queen's row
position (counting from the bottom) Using this
representation, the solution space where two of the
constraints (row and column conflicts) are already
satisfied should be searched in order to eliminate the
diagonal conflicts. Complexity of this problem is
O(n!). Figure 1 illustrates two 4-tuples for the 4-
queen problem.

 Figure 1. n-tuple notation examples
The problem with determining a good fitness
function for n-Queen problem is the same as for any
combinatory problem: the solution is either right or

wrong. Thus, a fitness function must be able to
determine how close a wrong solution is to a correct
one. Since n-tuple representation eliminates row and
column conflicts, wrong solutions have queens
attacking each other diagonally.
A fitness function can be designed to count diagonal
conflicts: more conflicts there are, worse the solution.
For a correct solution, the function will return zero.
For a simple method of finding conflicts [7], consider
an n-tuple: (q1,..., qi,..., qj, ..., qn). i-th and j-th queen
share a diagonal if:

i - qi = j – qj (1)
or

i + qi = j + qj (2)
which reduces to:

 || qi - qj || = || i – j || (3)

This simple approach results in fitness function with
complexity of O(n2). It is possible to reduce
complexity to O(n) by observing diagonals on the
board. There are 2n-1 "left" (top-down, left to right)
and 2n-1 "right" (bottom-up, right to left) diagonals
(see Figures 2 and 3)

Figure 2. Third "left" diagonal

Figure 3. Second "right" diagonal

A queen that occupies i-th column and qi-th row is
located on i+qi-1 left and n-i+qi right diagonal. A
fitness function first allocates counters for all
diagonals. Then, for each queen, counters for one left
and one right diagonal that queen occupies are
increased by one. After evaluation, if a counter has a
value greater than 1, there are conflicts on the
corresponding diagonal. Fitness value is obtained by
adding counter values decreased by 1 (except for
counters with value 0) Figure 4 shows a pseudo code
for such a function. Note that each counter value is
normalized with respect to length of corresponding
diagonals.

Q
 Q
 Q
 Q

 Q
 Q
Q
 Q

(4, 1, 3, 2) (2, 4, 1, 3)

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

39

set left and right diagonal counters to 0
for i= 1 to n
left_diagonal[i+qi] ++
right_diagonal[n-i+qi] ++
end
sum = 0
for i = 1 to (2n-1)
counter = 0
if (left_diagonal[i] > 1)
counter += left_diagonal[i] - 1
if (right_diagonal[i] > 1)
counter += right_diagonal[i] - 1
sum += counter / (n-abs(i-n))
end

Figure 4. Fitness function for n-queen problem

4. GRAVITATIONAL SEARCH
ALGOROTHM

In GSA, optimization is done by using gravitational
rules and movement rules in an artificial discrete-
time system.
System area is same as problem definition area.
According to gravitational rule, act and state of other
masses are recognized through gravitational forces.
So, this force could be used as a tool for transferring
information. We can also use suggested solution for
solving any optimization problem which within it any
answers of problem is definable as a state in space,
and its degree of similarity with other answers of
problem is mentioned as a distance.
Value of masses in each problem is also mentioned in
regards to purpose function. In first step, system
space is determined. Area includes a multi-
dimensional coordinated system in problem
definition space. Each point in space is one of the
answers of problem and search factors are also series
of masses.

Each mass has three properties:
a) mass state, b) gravitational mass, c) Inertia mass.

Abovementioned masses are resulted from active
gravitational mass and Inertia mass concepts in
physics. In physics, active gravitational mass is
criteria of degree of gravitational force around a
body, and Inertia mass is criteria of body resistance
against movement. These two properties could be not
equal, and their amounts are determined base on
suitability of each mass. Mass state is a point in space
which is one of problem answers. After forming
system, its rules are determined.
We suppose that only there are only gravity rule and
movement rule. Their general forms are similar to
nature rules and have defined as below:

 Gravity Rule): Any mass in an artificial system
attracts all other masses toward itself. The value of
this force is proportional with gravitational mass of
related mass and distance between two masses.
 Movement Rule): Recent speed of each mass is
equal to sum of the coefficient of last speed of that
mass and its variable speed. Also, acceleration or
variable speed is equal to delivered force on mass,
divide on amount mass.
 In following, we explain principals of this algorithm:
Suppose that there is a system with S masses and
within it, state of mass i-th is defined as relation (4),
where x denotes position of mass i-th in dimension d
and n denotes number of dimensions in the search
space.

Xi = (xi

1,…,xi
d,…,xi

D) (4)

worst(t) and best(t) are for minimization problems
and are calculated with relations (5) and (6).
(For maximization problems is just enough to
consider the inverse of these two relations).

Best(t) = max fitj (t) (5)
 j∈{1,…,m}

worst(t) = min fitj (t) (6)
 j∈{1,…,m}

We can account fitness of recent population with
relation (7), and obtain mass of factor i-th in time t
(i.e. with relation (8)), where M and fit are denote
mass and fitness of factor i-th in time t, respectively.

q୧(ݐ) = ௧ି௪௦௧(௧)

௦௧(௧)ି ௪௦௧(௧)

 M(ݐ) =
∑ (௧)ೞ
ೕసభ

In this system, force F is delivered on mass i-th
from mass j-th in time t in the direction of
dimension d, which value of this force is obtained
base on relation (9), And in relation (9), G(t) is
gravity constant in time t which is regulated in the
beginning of operating algorithm, and is decreased by
the time.

 F୧୨ୢ(ݐ) =

ீ(௧)×ெೕ(௧)

ோೕ(௧)ାఌ
 (ܺ

ௗ(ݐ) − ܺ
ௗ(ݐ))

R is ECLIDIAN distance between factor i-th and
factor j-th that is defined as relations (10),” ” is also
a small value for avoiding denominator from
becoming zero.

(7)

(8)

(9)

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

40

(10)

ij = ඥ(ܺଶ − ଵܺ)ଶ + (ଶܻ − ଵܻ)ଶ + (ܼଶ − ܼଵ)ଶ + ⋯+ (݊ଶ − ݊ଵ)ଶ

The force delivered on mass i-th in direction d at
time t is equal to resultant of total force from k
superior mass in population (k is better factor than
recent factor). Kbest denotes series of k superior
masses in population. K value is not constant and is
defined as a time-dependant value, such that all
masses at the beginning influence on each other and

deliver force, but by passing time, number of
effective members in population is decreased
linearly. And for accounting sum of delivered forces
on mass i-th in dimension d we could write (11). In
this relation, rand is a random number with normal
distribution in the interval [0,1].

F୧ୢ(ݐ) = ∑ ݆ ݀݊ܽݎ × (ݐ)

ெೕ(௧)×ெ(௧)

ோೕ(௧)ାఌఢ௦௧,ஷ (ܺ
ௗ(ݐ) − ܺ

ௗ(ݐ)) (11)

According to Newton's second movement rule; each
mass takes acceleration in the direction of dimension

d, which is proportional with delivered force on that
mass, and has mentioned in relation (12).

a୧ୢ(t) =
ౚ(୲)
(୲)

 → (12)

a୧ୢ(t) = rand j × G(t)
M୨(t) × M୧(t)

R୧୨(t) + ε
୨୩ୠୣୱ୲,୨ஷ୧

(X୨ୢ(t)− X୧ୢ(t))

 And speed of each mass is equal to sum of
coefficient of mass recent speed and acceleration, and
is explained as relation (13). In this relation, rand is a
random number with normal distribution in the
interval [0,1], and its random property is resultant of
keeping search in random mood.

 V୧ୢ(ݐ + 1) = ݀݊ܽݎ × ܸ

ௗ(ݐ) + ܽௗ(ݐ)

Now, mass should moves. It is obvious that more
speed of the mass, cause more movement in that
dimension. New state of factor i-th is mentioned by
relation (14).

 X୧ୢ(ݐ + 1) = X୧ୢ(ݐ) + ܸ

ௗ(ݐ + 1)

At the beginning of forming system, each mass
(factor) is randomly positioned in one point of space
that is an answer of problem. In each moment,
masses are evaluated and then changing in the
position of each mass is calculated after solving

relations 11 to 14. System parameters are updated in
each stage (G, M).
 Stop condition could be determined after passing
specified time. In Figure 5, semi-code of this
algorithm has been presented [1,6]:

1) determining system area and initial valuing;
2) initial positioning the masses;
3) evaluating masses;
4) updating parameters G, best, worst and M ;
5) calculating delivered force on each mass;
6) accounting acceleration and speed of each mass;
7) updating position of masses;
8) if stop condition doesn’t meet, go to phase3.

Figure 5. semi-code of GSA

5. Proposed Algorithm
As we know, state of a N*N chessboard with queen
chessmen on it, could be mentioned as an one-

(13)

(14)

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

41

dimensional array with N cells. So each cell of this
array is attributed to one column of plate, and number
of each house of array denotes number of that line
which queen is there.
For example, second house of below array shows that
queen has been placed in second column and third
line (Figure 6).

Q
 Q Q

 Q

Figure 6. N-Queen problem

In gravitational algorithm, each factor in searching
space includes one-dimensional array which keeps
recent state of queen on related plate. So with five
masses, we in fact applied five researcher factors for
finding target state. Each factor independently has a
mass, which is determined in regard to number of
queen crashes. In order to show that heavier mass has
better state, we should subtract number of queen
crashes from a constant number (we suppose that this
constant number is number of maximum crashes of N
queen).
Result answer of this subtraction is qi , conforming
with formula (7). Now if base on formula (8), we
divide fitness of one factor on sum of factors fitness,
mass factor is attained. Accounting delivered force,
acceleration, speed and position of each mass are
depended on dimension of each mass, and they are
independent of each other.
Consider a two-dimensional space. If there are two
masses in one column during applying calculations
on dimension X, calculations should be stopped,
since second mass doesn’t deliver force on first mass
in direction of dimension X.
For example, in Figure 7, you see that two masses (A
and B) are placed in one column, so they don’t
deliver force in direction of dimension X on each
other. And similarly, two masses C and D are placed
in one line, and so don’t deliver force on each other
in direction of dimension Y.
But pair masses (B, C) , (B, D) , (C, D) , (A, D) are
delivered force on each other in both directions of
dimensions X and Y, and so calculations are applied
on them completely (Figure 7).

Figure 7. masses A,B,C,D

Therefore, in first condition, we investigate un-
parallelism of two masses in interested dimension.
Then in order to account sum of delivered forces on
related mass, we need to determine forces delivered
from those masses which are placed in Kbest series.
Kbest array is filled with initial value of (-1).
According to gravitational algorithm, at the first
moment of operating algorithm, all masses deliver
force on each other. After assessing first condition,
we add number of masses to Kbest series (Figure 8).

Figure 8. calculate of K_best

It is obvious that according to gravitational
algorithm, in next moment, we should add the
condition of “being masses heavier” to the first
condition, i.e. in addition to condition of un-
parallelism of masses, those masses which are
heavier than recent masses, should be added to Kbest
series.
 Now, we could write calculations as follow (Figure
9):

4 3 1 2

for (byte j = 0; j < j_num - 1; j++)
 K_best[j] = -1;

for (byte i = 0; i <= mass_num - 1; i++)
 {
 if (Loc_arr[0, i] >= n)
 Loc_arr[0, i] = n - 1;
 if (Loc_arr[1, i] >= n)
 Loc_arr[1, i] = n - 1;
 if (Loc_arr[0, k] != Loc_arr[0, i])
 {
 for (byte j = 0; j < mass_num - 1; j++)
 if (K_best[j] == -1)
 {
 K_best[j] = arr[Loc_arr[0, i], Loc_arr[1, i]];
 break;
 }
 }
 }

A

B

C

D

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

42

Figure 9. calculate of Force

New positions of mass, has been specified. And it is
obvious that researcher factor should have new state
and finally new mass in new position of search space.
But how these changes in state and mass should be
created?
In suggested solution, we divide state array on N
dimensions of search space, i.e. for each dimension,
we assign some houses to state array.
For example, we would have a state array with six
houses and a three-dimensional search space, where
we assign two houses for dimension X and two
houses for dimension Y and two houses for
dimension Z (Figure 10).

2 3 1 7 8 6

Figure 10. dimension x, y, z

Attention that order of assigned dimensions to the
houses are arbitrary, but with change in position of
factor in search space, movement is determined in
direction of related dimension, and only
corresponding cells with that dimension may be
change in state array, and other values remain
constant. So factors could move in direction of their
corresponding dimensions.
Way of changing values is important, and is
explained as follow:

When a factor starts to move in one direction, we
divide each corresponding value with related
dimension on distance, then by recalling
neighborhood function, we determine that with which
substituting in state array, number of queen crashes is
decreased, or in other words, better mass is
specified. Finally, if by substituting no new values,
better state is achieved, mass moves to the last
position of state array in related dimension.
It is obvious that if distance be zero, division is not
done, and it means that two masses in search space
have attracted each other, and placed in same
position.
 Now, after determining new position and state of
each mass, new masses should be determined. So by
recalling heuristic function, masses are evaluated.

while ((K_best[l] >= 0) && (number <= mass_num - 2))
 {
 R = Math.Sqrt((Math.Pow((Loc_arr[0, k_best_T] –
 Loc_arr[0, k]), 2) + Math.Pow((Loc_arr[1, k_best_T] –
 Loc_arr[1, k]), 2)));
 F_arr[0, k] = F_arr[0, k] + ((rand_obj.Next(100) / 100.0) * G *
 (Math.Abs((hiu_mass[k_best_T] - hiu_mass[k])) / (R + E)) *
 Math.Abs(Loc_arr[0, k_best_T] - Loc_arr[0, k]));
 }
 A_mass = F_arr[0, k] / hiu_mass[k];
 V_arr[0, k] =((rand_obj.Next(100)/100.0)* V_arr[0, k]) + A_mass;
 x_temp=Convert.ToInt32(Loc_arr[0,k]+Math.Round(V_arr[0, k]));

dimension Z dimension X
dimension y

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

43

h = 0;
for (j = 0; j <= 7; j++)
 {
 for (int l = j + 1; l <= 7; l++)
 {
 if (sta_arr[j] == sta_arr[l])
 { h++; break; }
 }
 for (int l = 1; l <= 7; l++)
 {
 if ((j + l) <= 7 & sta_arr[j] + l <= qu_num)
 if ((sta_arr[j] + l) == sta_arr[j + l])
 { h++; break; }
 if ((j + l) <= 7 & sta_arr[j] - l > 0)
 if ((sta_arr[j] - l) == sta_arr[j + l])
 { h++; break; }
 }
 }

if (h == 0)
 {
 for (j = 0; j <= 7; j++)
 {
 k = sta_arr[j];
 i = (j * 8) + k;
 switch_page(i);
 }
 break;
 }

Figure 11.

If a mass with no crashes is found, search has been
finished. And switch_page function is called in order
to puts queen icons in related houses. If still there is a
factor with no crashes, calculation function is called
once again, to accounts related calculations (force,
acceleration, …) for new states and positions. These
series of recalling would be continued continuously,
until an answer (a factor with no crashes) is founded,
or distance between masses became zero.

6. RESULTS AND PERFORMANCE
DISCUSSION

In suggested solution, if dimension of search space
was not equal to number of state array houses, two
situations are occurred: a) if dimensions of search
space be more than number of state array houses, we
recommend that assign some dimensions to one
house of state array , arbitrary. b) If dimensions of
search space be less than number of state array
houses, we suggest that assign some houses of state
array to one dimension, arbitrary.
This fact that moving one factor just changes a part
of state array, guarantees that we have a controlled
search, and distances between masses are regulated
base on gravitational algorithm. Also, this fact that

changing part should improve factor mass, has been
well-operated base on proximity principal, and
guarantees that search is finding best states, and
sudden changes don’t make situation worse and don’t
waste time and space (Figure 12).

Figure 12. Genetics algorithm (initial population)
and Gravitational search algorithm (masses number)

7. CONCLUSION
Random algorithms are widely used for optimization
problems. These algorithms are often created by
inspired from nature or known physical processes or
creature behaviors. Since solving this algorithm with
hilling algorithms and heat simulating has been
widely comprehensive and has published in different
articles and books, we, also solved our 8-ministers
problem with two abovementioned algorithms. In
comprising their performances with suggested
algorithm, reasonable speed and implying optimizing
works in suggested gravitational searching algorithm
is obvious.
Gravitational searching algorithm is one of those
algorithms which have been organized base on
gravity rules in nature. We have used this new
algorithm for offering suggested solution, and solving
N-queen problem. Our suggested solution guarantees
controlling situations and regulating them by
corresponding dimensions of search space with state
array houses, and improving search. We hope that by
using reasonable changes in moving factor in search
space and doing several compares, which are
presented in Figure 3, could have taken small steps
toward solving problems and optimizing search
algorithms.

Life Science Journal 2013;10(1) http://www.lifesciencesite.com

44

REFERENCES

[1] Rashedi, E., Nezamabadi-pour, H., Saryazdi,

S.(2009). GSA: A Gravitational Search
Algorithm. Information Sciences,vol. 179, pp.
2232–2248

 [2] Ahmed Tariq Sadiq, Dr. Hasanen S. Abdullah,
Mohmed Natiq Fadhel. Tabu DNA Computing
Algorithm to Solve N-Queens Problem.

[3] R. Douglas Chatham (2009). Reflections on the N
+ k Queens Problem. College Mathematics
Journal,pp.204-210.

[4] Miguel A. Gutierrez-Naranjo, Miguel A.
Martinez-del-Amor, Ignacio Perez-Hurtado,
Mario J. Perez-Jimenez. Solving the N-Queens
Puzzle with P Systems.

[5] Marko Božikovic, Marin Golub, Leo Budin
(2003). Solving n-Queen problem using global
parallel genetic algorithm. EUROCON 2003
Ljubljana,Slovenia.

[6] Rashedi, E., Nezamabadi-pour, H., Saryazdi,
S.(2010). BGSA:binary gravitational search
algorithm. Natural Computing, vol. 9, pp. 727-
745.

[7] Ellis Horowitz and Sartaj Sahni (1978).
Fundamentals of computer algorithms.
Computer Science Press Inc., Rockville, MD.

8/15/2012

