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1. Introduction
Let A be the class of analytic functions f

f(z)y=2+>a,z",
n=2

defined in the open unit disk E={z :|z|<1}.

The class A is closed under the convolution or
(Hadamard product)

(frg)(2)= % apby 2"
n=2

(1.1)

1, a,=b, =1, zeE,

where
f(z)=>a,z2"" and g(z) =) b, z"".
n=0 n=0

In particular, we consider the convolution with
incomplete beta function ¢(d,C,z), related to
Gauss hypergeometric function [1] by

¢(d,c,z)=z F(l,d,c,2)= Zm:((i))“ AN

’(1.2)
zeE,c#0,-1,-2,...,
where (d )n denotes the Pochhammer symbol given by
@ ={1, n=0, d e C\{0},
" la(a+1),---«(@a+n-1), neN.
#(d.1.2)= 4

is the Koebe function, see [2].

Carlson and Shaffer [3] defined a convolution
operator on A involving an incomplete beta
function as

Note that and

#(2,1,2)

L(d,c)f =¢(d,c,2)xf, feA zeE. (13)

It follows from (1.2) and (1.3) that,

http://www lifesciencesite.com

3756

2(L(d,0) f(2)) =dL(d +1,0) f (2)
—(d-DLd,0)f(2). (1.4)
Ifd =0,-1,-2,..., then L(d,c)f is a polynomial.
If d#0,-1,-2,..., then application of the root
L(d,c)f

has the same radius of convergence as that for f

test shows that the infinite series for

because
lim @), =1.
nN—o0 (C)n
Hence L(d,c) maps A into itself. L(d,d)

is the identity and if d #0,—1,-2,---, then
L(c,d) andis
L(d,c)
provides a  convenient  representation  of
differentiation and integration. If ¢(2) = zf '(2),

then g=L(Q2,)f and f =L(,2)g.

In [4], Janowski introduced the class P[A,B] ,
for A and B, -1<B< A<, if and only
if for ze€E, a function

L(d,c) has a continuous inverse

a one-to-one mapping of A onto itself.

P, analytic in E

with  P(0)=1 belongs to the class P[A,B]
if
0(2) = 1+Aw(z)’
1+ Bw(2)
where W(Z) is an analytic function in E, with
w(0)=0, and |W(Z)|<]1.
We note that P[—1,1]=P, the class of

functions with positive real part consists of functions
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p with Rep(z)>a. Also it can be clearly

seen that P[A,B]c P(p), B =%’

therefore, we have
p(D)=01-Pp(D)+p, peP. (153
Let B [a,A,B] denote the class of functions P

that are analytic in E with pP(0)=1 and are
represented by
k 1 k 1
= —+=|p()-|=—=|p,(2), (16
p(2) (4 2)!’1()(4 ijz() (1.6)

where p,,p, € Pla,AB], -1<B< A<,
0<a<l, k>2. 1tisclear that
Pla,AB]c R[AB]c R (h),
=15, A=(1-p)A+pB
and BRJ[L-1]=PB, [5]. For k=2,
Pla,A B]=PJ[a, A B] was introduced by [6].

We will assume throughout our discussion, unless

the class

otherwise stated, that d=0,-1,-2,---,
c#0,-1,-2,---, - 1<B<A<1, 0<ax<l
and Ze€kE.

By using a linear operator  L(d,C) , we define the

following analytic classes.

Definition 1.1. Let feA zeE.
f eCd,c[a, A, B], ifand only if
@LE.O @Y o p g
(L(d,c)f(2))

From (1.7), it is clear that
feC,.la,ABl< Ld,c)f eCla,AB]cC.

Then

1. a.mn

Similarly, f €S [a, A B], ifand only if,
L(d,c)f € S'[a,A,B]c=S".

Definition 1.2. Let f € A. Then
f eQX°[B,a, A B], ifand only if, for
B=0,

{(1_ 5 @(Ld,0 (@)

(L(d,0)g(2)Y

2(L@,0f (@)
(L(d,0)9(2))

p }e P.la, A B],

(1.8)
for some geC, [a,AB].
B, A
I?’c[ﬂ,Ot,A, B] ., we get

of analytic and univalent

By varying the parameters C, d, «,

and B
different

in the class

subclasses
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functions studied earlier by various authors, see for
example [7-12].

2. Preliminary Lemmas

Lemma2.1[13].Let 0<d<C and d=>2
C+d >3. Then the function

o(d,c)(z) = i% " z2€E

n=0 (C)n
isinthe class C of convex univalent functions.
Lemma 2.2 [13]. Let f eC geS”.

Then for every function F analytic in E with

F(0)=1, wehave

or

and

(f+Fg) o
(f+g) (E) = co(F(E)),

where E(F(E)) denotes the closed convex hull

of F(E).

Lemma 2.3 [14]. Let U=U, +IiU,, V=V, +1V,

and let W(U,V) be a complex-valued function

satisfying the following conditions:

1) W(u,V) is continuous in a domain D < C?,

2) (1,0)eD and Re(¥(1,0))>0,

3)  Re(¥(iu,,v,)<0,
(iu,,v,)eD and v, <3(1+Ud).

whenever

If p(z)=1+Yc,z" is a function analytic in
m=1
E, such that (p(2),zp'(2))eD, z€E

Re(W(p(2),zp'(2)) >0 zeE,
Rep(z)>0 in E.

and

for then

3. Main Results

In this of the class

d . .
« “[B,a, A,B] such as inclusion results, second

section, some properties

coefficient bound, its invariant property under
convolution with the convex function, covering
theorem and radius problem will be discussed.

Theorem 3.1. If 0<c<d, d>min[2,3—C]
andif 0<a<c, c>min[l,1—a], then

CLB.a, A Bl Q[ B,a, A B]
LB, A Bl QY[ B, e, A, Bl
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Proof. To prove the first inclusion, we proceed as
follows:

(i) Let feQS’C[,B,a,A,B]. Now

(z(Ld,a) f(2)))
(L(d,a)g(2))

z(Ld,a)f(2))"

1-
=9 L(d,a)g(2)

2*[(¢(d.0)*g(c.a)* )]
(4(d.c)*f(c.2)* 9)
+ﬂPa@wmw¢mawfﬂl
#(d.a)xg(c.a)* )’
ﬂam*swwxwgq
(4(c.2)*§(d.0) g
+ﬂ[mcaw (ﬂdC)qu.GJ)
#c.a)¢(d.c)* g)

)

=O—ﬂ{

@(C,a) is convex,

therefore by using Lemma 2.3 to see that the right
hand side of (3.1) is contained in the convex hull of

the image of E under [(1-/)%+ A8 with
N(z)=z(¢(d,c)* ),

D(z)=¢(d,c)*g eCla,A,B]lcCcS".
This implies f le’a[ﬂ,a,A, B] for zeE

and the proof of (i) is complete.

The proof of the second inclusion is similar to that of
the first part.

Theorem 3.2. Let

f(z)=z+Y a 2" €Q*[4,a, AB]. Then
n=2

(1-a)(A-B)C)Kk+1+ /)

4d(1+ p)
a=0, A=1, B=-1,

occurs for fU(Z), given by

Since, from Lemma 2.1,

[2a] <

The equality, with

F (2)=L(d,0f (2), G (2)=L(d,c)g, (2) :é,

F F !
b, (2)=(1- ) ZG ((ZZ)) i p (ZG?E? :

_@+%kz_@_%kz
4 2)1-z 4 2)1+z

L(d,c)g(z)=z +§:an“ and
n=2

Proof. Let
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p(Z)=1+ZCnZn. Since geCy [a,A B]

it easily follows from

$(1-a)(A-B),

and pePB][a,AB],

known results [4] that |Cn| <

n>1 and
|b2| < (l—a);A—B).
Now
(1- ,8)[2+Z ())“ La z" [1+an 2"
n-1

L+ zn(d)"laznl Z+Z;bz]

n-1

:[1+icnz”][z +ibnz”][l+inbnz”“].
n=2 n=2 n=2

Equating coefficient of 7> onboth sides, we have

20-p)d +4up) . _
; a,=-2(1- p)b,

—pb, +3b, +cC ,

or
a,| < (1+ B)|b,| +[c,|.

Using the coefficient bounds of |b2| and ‘C]‘

2d(1+,8)|
C

as given earlier, we have

2d(1+ B) ) < 1+ —za)(A— B) +§(1_a)(A— B)
C

:%(l—a)(A— B)[k +1+ f3].

That is
a|< (1-a)(A-B)(C)(k+1+ f)
2 4d(1+ B) '

This completes the proof.

Special Case

We note that for A=1 B=-1, aa=0, we
have coefficient bound for the class BJ(a,cC),

see [15].
The next result shows that the class

f “[B,c, A,B] is closed under convolution with

convex functions in E.
Theorem 3.3. Let f € Qf’C[ﬂ,a, A,B] and let
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Y  be convex univalent in E. Then
(P*f)eQ[B,a,AB] in E.

Proof. We first show, that for g € C, [, A, B],
(¥+g) Cy. s ABI,
which implies that

L(d,c)g eCla,A,B]cC.

S((‘)P *L(d,c)g)=L(d,c)(¥*g)eCla, A B].
Let

also Dbelongs to

N(z)=z(L(d,c)f(2)),
D(z)=L(d,c)g(z), DeC
and therefore starlike in E. Since
z(Ld,c)(¥W* f)'(z) ¥+ (L(d,0)9)(2)
L(d,c)(¥*g)2)  (¥*L(d,0)g)(2)

and so it is in the convex hull of the image of E

under % . Similarly,
(z(L{d,c)(¥=f))'(2)
(L(d,c)(¥*9))'(2)

is in the convex hull of E under %. Since

Pla,A,B] isaconvex set, it follows that

{(1 ﬁ’)—+ﬂ

and consequently

(P*f)eQ°[B,a,AB] for zeE.

}ep [a, A, B]

Remark 3.1. (i) It follows from Theorem 3.3 that the
class f “[B,c, A,B] is invariant under the

integral operators defined by  f.(2), 1=1,2,3,4

i @)= * 1)) :31 f (0.4, () =2 [2-+log(1-2),

(i) f ()= (4 * F)(2) = jf(t)dt 4.(2)=—log(1-2),

(i) f,(2)= (¢*f)(z)—”"jt“f(t)dtﬂz) Zlic
1-xz
1-z

f(t) f(tx)

(i 1,@)=(g* 2= dt\x\<l,¢4(z>:mlog
Since @ €C, the proof is immediate when we
apply Theorem 3.3.

(ii) Let D,,D,

the class A, as follows:

be the linear operators defined on

http://www lifesciencesite.com

2", (Rec>-1)

D(F)=2f", [2] Dxf)=(iy,ﬂ6l

Both of these operators can be written as

D.(f)=h=*f, where

= g
hl(z)_nz;nz “

and
2

- (n+1) _, z2-%
hz(z):%:( > ), :(1—2)2'

We note that the radius of convexity of h1 and

h

, are

r.(h)=2-+/3 and rc(hz):%
Thus, it follows from Theorem 3.3 that, if
f eQ[B,a,A,B], then
D,(f)eQ¢“[B,a, A B]
for |z|<2—\/§ and
D,(f)eQ{°[B.a,AB] for |z|<1i.

In the next result, we shall use the notation

E’C[ﬂ,a,l,—l] = QE’C(ﬂ,a).

Theorem 3.4.For 20,

Q™ (f,a) QM (0,a),
o - 20+ o, 5= Reh,(2) 32)
T,
and
h,(2) = 2LE90@) ) 4 oazyec,

L(d.c)g(2)

Proof. The case [ =0 is trivial, so we suppose
£>0. Let f EQE’C(,B,OC) and let
2(L@dOf @)y,
L(d,c)9(2)

=(Z j(Z) (———jh(Z) (33)

forsome L(d,c)geC(a)cCcS".
Differentiate (3.3) logarithmically, we have

(z(Ld,0 f(@)) _ h(z)+ ()
(L(d,0)g(2)) h,(2)

lifesciencej@gmail.com
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with h, = 2EE:00@) b

().
L(d,c)g(2)
Since f eQ*(B,a), wehave
zh'(2)
(1—ﬂ)h(z)+ﬂ{h(z)+ hO(Z)j
_ Bh'(2)
—(h(Z)-i‘ hO(Z) jepk(a)a

and using convolution technique, see [17,18], it
follows that, for ZeE, i=1,2

ﬂZhil(Z)
(hi(Z)'FWj € P(a)
writing h(2)=(1-a)p,(2)+a,

from (3.4)

we have,

[(1—al)pi(z)+al —a+ﬂ(1—al)m}e P.

h,(2)

Y(u,v),

We now form the functional

choosing U= p.(2), V=2p,(2),

by

(lI-a)v
lP(U,V):(l—al)u-i‘((ll —a)'i‘ﬁTZl).

The first two conditions of Lemma 2.3 are clearly
satisfied. We verify (iii) as follows:

B(-a )V, Reh,(2)
Ih,(2)f
Reh,(2)
Ih(2)f

Now, for V< S+ U; ), we have

ReW(iu ,v) =(a —a)+

=(a,—a)+p(-a Vo, 6 =

ReW(iu ,v) <(, _a)_%ﬁé‘l(l_al)(l—l_uj)’
:%[(20{1 ~2a)~ f5,(1-a,)~ f5,(1-a,)u? ]

:%(L+Mu§),
where

L=2Q2a, ~2a)-f5,(1-a),
M =5 (1-¢)<0.
Re‘P(iuz,Vl)SO, if L<O0

as defined by (3.2) . Applying

Therefore and

this gives us a
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Lemma 2.7, we conclude that

E,i=L2 and so he P(a ). Consequently

heP, (a'l). This
Au

f Q. (0, al).

Theorem35.For 0</ </,

S(BLa) QB ).

B, =0, the proof is immediate from

B, >0

There exist two functions,

Rep,(2)>0 in

completes the proof that

Proof. For

Theorem 3.5 Therefore we let and

f EQS’C(ﬁlsa)'
H,H eR(a) suchthasfor geC, (a),

2(L@.0)f @) (Z(L(d,c)f(z))')'}
L(d,c)g(2) (L(d,0)g(2))’

1

H2(2)={(1—ﬂ1)

z(L(d,0) f (@)

M= 400

€ P, (), by Theorem 3.4.

We use the fact that P, (cr) isa convex set and

p HL@Of@) |, (L0 f@))

{(l P dosn P L@ oe@y }
=&H (l—&]H

i (2)+ i 2(2),

we obtain the required result that

f eQ (B, ).
Remark 3.2. Since ¢(d,C)(2)
0<c<d, c+d=>=2 by virtue of Lemma 2.1

and the class of close-to-convex functions is closed
under convex convolution, we have

40 (B,a) = Q¥°(0,a) = K(a) = K = S.

is convex for

We now derive a covering theorem.

Theorem 3.6. Letfor 0<c<d, d+c>2,
f eQI(B,). It B is the boundary of the
image of E under f, then every point of

B is at distance at least

2u(1+p)
(1-a)(1+ )3+ B) +4ul+p)

from the origin.
Proof. Let C=#0,

that f(z2)#c

be any complex number such

for zeE. Then, by

lifesciencej@gmail.com
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@ . k Bh(2) ( k 1 ) A0 |
Remark 3.2, f(2)=——F""— ) is univalent in (4 zj{h( )+ h(2) 773 h,(2) + o)
E. Let f begivenby (1.1).Then
of (2) R 1 where h,h, € P.
C——f(Z) =7+ (az + E)Zz +ee, From this it follows that
and hence '
1 {hi(z)-i—m}epfori:l,l
a, +E <2. ho( )

Now using triangular inequality and coefficient

Using well-known results [2] for the class P and
bound of |a2| for class E’C[,B,a, A B] as g [2]

P(X) th
proved in Theorem 3.2 in the above, we have (2) that
2d(1+ , hj (2) 1-r
lc|> 1+/) ‘zhi(z)‘ 7' ,Reh (2)>-——,
(1-a)(©)3+ ) +4c(l+ p) —r’ 1+r
which is the required result.
The following result deals with the converse case of Reh,(z) > —,
Theorem 3.4. 1-r
Theorem 3.7. Let f eQ!°(0,2) in E. we have
h,
Then f eQi“(B,a) for |z]<r,, where {h(z)+ﬂ (2 )} edh(z)- PN 54
. hy(2) hy(2)
ry, = ) (3.5) 2p "}
s >Reh(z)31-—"—
This result is sharp.
1-1+2p)r
Proof. Since f eQ)°(0,@), there exists a =Re hi(Z){%}' (3-8)
function L(d,c)g(z)eC < S" (), such that From (3.7), it is clear that
z(L f(z X
M_(l a)h(2)+a, hGP (3.6) Re hi(z)+m >0, forr<rﬂ
L(d,c)g(2) h,(2)
Differentiating (3.6), we have and consequently it follows that
' ' zh'(z
(@L@.Of )) = (L@~ (@) {h(z)+%}e P, for |7 <.
VA
0
H(-a)h(2) +a}(L(d,c)g(2)) Hence f e QM (B,a), where Iy is given (3.5).
Since Q,? “(0,) , we have We obtain the sharpness of this result by taking
' " 1+z
I {(1_m 2@, @) | (L0 @) _a} h@= 1 (2 )—1—
l-a L(d,c)g(2) (L(d,c)9(2)) Th letes th f
is completes the proof.
zh'(z
~h(z)+ £, _
h,(z ) Conclusion:
2(L(d.0)g(2)) | We introduce a subclass of analytic functions by
where hO(Z) = T@oga € P(?)- using Hadamard product along with Janowski
Now using the same convolution technique, we have functions.  Some inclusion results, radius  of
univalence and other interesting properties of this
h(z) ¢/3( ) h (2)+ ﬂZh (2) class are discussed.
h ( ) In future work we intend to use formal approaches to

prove theorem based on developed formal tools. The
formal methods have many application in real life
problems [19-32].
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