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Abstract: In this paper, we consider the problems of sensitivity analysis and estimates of the steady-state 
performance for an M/G/1 queueing system. By studying its embedded Markov chain, we give the sensitivity 
formulas expressed by the potentials of the embedded Markov chain. note thatNon-Markov-type queueing systems 
are often used as mathematical models in studying some practical engineering problems, such as communication 
networks. we study an M/G/1 queue with equal classesof customers, the server selects a customer to serve from 
among all customers waiting in the system with equal probability,Specifically, if there are n customers waiting in the 
system when the server selects a customer to serve, each customer is selected with probability భ೙	. we give the 
sensitivity formulas expressed by the potentials of the embedded Markov chain. Based on the performance potential 
theory and these formulas, we propose an algorithm to compute system potentials and performance derivatives for 
M/G/1 queueing systems. 
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1. Introduction 
A queueing system is one of the most fundamental 
models for many discrete event dynamic systems 
(DEDSs). Many practical systems can be well described 
by Markov chains. The Markov chain model has been 
widely used in queueing systems, communication 
systems, manufacturing systems, and reliability studies. 
General systems can often be sufficiently approximated 
by Markov chains via the well known“method of 
stages”. Performance analysis of DEDS is a practical 
problem. We often need to compare different designs or 
to find the best designs, which is usually done based on 
a given performance measure. Markov chains are often 
used as mathematical models of natural phenomena, 
with transition probabilities defined in terms of 
parameters that are of interest in the scientific question 
at hand.Based on the performance potential theory, we 
studied the problems of sensitivity analysis of the 
steady-state performance for some Markov-
typequeueing systems and gave the sensitivity formulas 
of the performance (see [1–4]). The state evolvement of 
these queueing systems usually can be described as a 
Markov process. But in many theoretic and practical 
problems, a non-Markov- type queueing system is often 
used as a mathematical model. Its state process can be 
described as a general stochastic process, such as semi-
Markov process. In this paper, we study the problems of 
the performance sensitivity analysis for M/G/1queueing 

systems which are special semi-Markov processes. 
Though the state evolvement of the M/G/1queueing 
system can be described as a semi-Markov process, the 
system has no memory at some special time. In other 
words, we can use a Markov chain (called embedded 
Markov chain) to describe most characters of the 
system, and the semi-Markov process which is used to 
describe its state evolvement has the same steady-state 
probabilities as its embedded Markov chain (see 
[5]).Many queueing problems can be modeled by 
Markov chains of M/G/1 type. One of the major 
problems in Markov chains is the computation of the 
probability invariant vectorߨ, that is, the solution of the 
infinite system ߨ= Pߨ. Many quantities of physical 
interest, such as the steady-state distribution of 
probability, when this exists, can be expressed 
conveniently in terms of the fundamental matrix G of 
the Markov chain. This paper studies the classification 
problem of the Markov process of M/G/1 type with a 
tree structure, which is a special case of the Markov 
process of matrix M/G/1 type with a tree structure 
introduced in (see[6]). A simple criterion is found for a 
complete classification of the Markov process of M/G/1 
type with a treestructur.Gajratet al. (see[7]) studied a 
Markov process of random strings which is a hybrid 
model of the M/G/1 type and the GI/M/1 type Markov 
processes with a tree structure. They obtained necessary 
and sufficient conditions for the Markov process to be 
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positive recurrent, null recurrent, or transient, in terms 
of positive solutions of a finite system of polynomial 
equations.we only consider the steady-state 
performance sensitivity, we can discuss it by studying 
its embedded Markov chain. In view of this, we give the 
steady-state performance sensitivity formulas which are 
based on the potential of the embedded Markov 
chain.The remainder of this paper is organized as 
follows. In Section 2, we discuss the problems of the 
performance sensitivity analysis for Markov 
chains.Derivativeestimation is an important problem in 
performanceanalysis of discrete event dynamic systems. 
Derivative estimation of stationary performance 
measures is difficult since it generally requires the 
consistency of estimators. In Section 3, we give some 
results for M/G/1queueing systems.In Section 4, we 
giveMarkov chain of M/G/1 type with a tree structure.  
 
2. Sensitivity analysis of Markov chains 
Sensitivity analysis is an important way to quantify the 
effects of changes in these parameters on the behavior 
of the chain. Many properties of Markov chains can be 
written as simple matrix expressions, and hence matrix 
calculus is a powerful approach to sensitivity analysis. 
Perturbationanalysis is an important tool for 
understanding howthose parameters determine the 
properties of the chain, and in predicting how changes 
in the environment(sensulato)will change the outcome. 
For applications, the analyses should be easily 
computable, and flexible enough to handle a variety 
ofdependent variables. In this section,We first study the 
sensitivity analysis of the steady-state performance for a 
class of Markov processes.We will discuss the problems 
of the sensitivity analysis of the steady-state 
performance for a Markov chain. 
     Consider a positive recurrent, irreducible Markov 
processY = { ௧ܻ; ݐ ≥ 0	}with a state spaceΦ =
{0, 1,… }and an infinitesimal generator A= [ܽ௜௝	], 
satisfying Ae =0.Whereܽ௜௜ ≤ 	0; 	 ௝ܽ௝ ≥ 0, ݅ ≠
݆,			݅, ݆	߳	Φ,		݁ =
(1, 1, . . . )ఛthe"߬	"representsthetranspose.We assume that 
Y has standard transfer probabilities ௜ܲ௝(ݐ), ݅, ݆	߳	Φ,		 
According to the Markov theory, Y has a unique steady-
state probability 
measure(࢏)࣊and(࢏)࣊ > ૙, for	any	݅	߳	Φ.	Denote the 
steady-state probability measure by a row vectorߨ =
,(0)ߨ) ,(1)ߨ … ),		then we haveܣߨ = 0, ݁ߨ = 1. 
Definition 

1.	݀୧୨ = ∫}ܧ ቂ݂ ቀ ௧ܻ
{௝}ቁ − 	݂ቀ ௧ܻ

{௜}ቁቃ݀ݐ, ݅,்{೔,ೕ}

଴ ݆	߳	Φis 
called a perturbationrealization factor of the 
Markovprocess Y with respect to the performance 
function f ; the matrixܦ(୤) = [݀௜௝]is called a realization 
matrix. 
From the definition, we have(ܦ(୤))τ  (see[5 ]) (௙)ܦ−	=

For any i, j߳	Φ,letܻ{௜} = { ௧ܻ ∶ 	 ଴ܻ = ݅; 	ݐ ≥ 0andܻ{௝} =
{ ௧ܻ ∶ 	 ଴ܻ = ݆; 	ݐ ≥ 0}be two Markov processeswith the 
initial state i and j respectively. We suppose 
thatܻ{௜}andܻ{௝}are independent for any i, 
j߳	Φ.DefineZ{୧,୨} = (ܻ{௜} 	, ܻ{௝}) , thenZ{୧,୨}is a Markov 
process with a state spaceΦ ×Φ. Z{୧,୨}is positive 
recurrent and  irreducible sinceܻ{௜}andܻ{௝}are.Thus, the 
first passage time from any state to any other state has a 
finite mean. Let S={(K, K): K ߳	Φ }, defineܶ{௜,௝}= inf{t 
: t ≥ 0, Z{୧,୨}	߳	ܵ	}. 
 
݀୧୨ =
lim୘→∞{ܧ[∫ ݂ ቀ ௧ܻ

{௝}ቁ݀ݐ] − E[∫ ∫݂ቀ ௧ܻ
{௜}ቁ݀ݐ]}୘

଴
୘
଴ ݆	߳	Φ.                          

(1) 
Proof. (See [8]). 
From Lemma 1, we have 
݀୧୨ = ݀୧୩ + ݀୩୨	,	݅, ݆, ݇	߳	Φ                                                                                                            
(2) 
This property is similar to that of the potential energy in 
physics. In view of this, we may pick up any 
integerܭ∗	߳	Φand any real number c and define a 
quantity xi for any i߳	Φ , i ≠  :as follows ,∗ܭ
∗௄ݔ = 		∗௄ݔ	ୀ	௜ݔ          , ܿ +	݀௄∗௜	.                                                                                                        
(3) 
Definition  2.The potential vector   ݔ(௙)satisfies the 
Poisson equation 
                Ax = -f +݂݁ߟ. 
Now we suppose that the infinitesimal generator A is a 
differentiable function with respect to the parameter  ߠ 
on the interval J ⊂ ܴ, that is to say, all of  ܽ௜௝ = ܽ௜௝(ߠ), 
i, j ߳Φ are differentiable functions with respect toߠ.We 
also assume that  f  depends on  ߠ and is a differentiable 
function with respect to ߠ. Then from (4)  we have 
ܣ݀
ߠ݀ ݔ

(௙) + ܣ
(௙)ݔ݀

ߠ݀ +
݂݀
ߠ݀ = 	

݂ߟ݀
ߠ݀ ݁.	 

Multiplying both sides with ߨ on the left and noting 
that݁ߨ ,0 = ܣߨ = 1,	we get 
 
ௗఎ௙
ௗఏ

= ߨ ௗ஺
ௗఏ
(௙)ݔ + ߨ	 ௗ௙

ௗఏ
.                                                                                              

(5) 
Proof. (See [5]) 
     The results about Markov processes can be easily 
translated into those of Markov chains. Consider a 
positiverecurrent, irreducible Markov chain  X = 
{ܺ௡; ݊ ≥ 0}	on a state space Φ = {0, 1,… }  with a 
transition probability matrix P = [ ௜ܲ௝].  X has a unique 
steady-state probability measure. Denoting the steady-
state probability by a row vector ߨ = ,(0)ߨ) ,(1)ߨ … ), 
then we have ݁ߨ = 1 and 
 
                          Pe= e,               ܲߨ =                                                        .ߨ
(6) 
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Now we suppose that the transition probability matrix P 
= [ ௜ܲ௝]  is differentiable with respect to the parameter ߠ 
on the interval J ⊂ ܴ, that	is	to	say, all	of ௜ܲ௝ =
	 ௜ܲ௝(ߠ), i, j	߳Φ are differentiable functions with  respect 
toߠ. We also assume that  f  depends on  ߠ and is a 
differentiable function with respect to ߠ . 
 
 Let  A = P – I, where I is a unit matrix of infinite 
dimension. Obviously A can be used as an 
infinitesimalgenerator of a Markov process. Consider a 
Markov process Y = { ௧ܻ; ݐ ≥ 0} on the state spaceΦ 
with the infinitesimal generator A, whose embedded 
Markov chain is X. Y is positive recurrent, irreducible 
since X is. And Y has the same steady-state probability 
vector as X. Thus Y and  X have the same steady-state 
performance measure ݂ߟ.From (5), we can get 
ௗఎ௙
ௗఏ

= ߨ ௗ௉
ௗఏ
(௙)ݔ + ߨ	 ௗ௙

ௗఏ
,                                                                         

(7) 
Whereݔ(௙)  is the potential vector of the Markov chain 
X, that is to sayݔ(௙)satisfies the Poisson equation 
       (P – I) x = = -f +݂݁ߟ                                                                                               
(8) 
3. M/G/1 queueing systems 
       Many queueing problems can be modeled by 
Markov chains of M/G/1 type, that is, Markov chains 
whose  probability transition matrix has the structure       

 
  
                                                                       
(9) 

 
Where ܤ௜ାଵand  ܣ௜( i≥ 0	)  are K×  nonnegativeܭ
matrices such that ∑ ∞௜ܤ

௜ୀଵ  and  ∑ ∞௜ܣ
௜ୀ଴  are 

columnstochastic. One of the major problems in 
Markov chains is the computation of the probability 
invariant vector ߨ, that is, the solution of the infinite 
system ܲߨ = .ߨ ฮߨฮ = 1.For the matrices of structure 
(9), the computation of ߨcan be reduced to the 
computation of the minimal nonnegative solution  G  of 
the nonlinear matrix equation 
X = ∑ ܺ௜ܣ௜∞

௜ୀ଴ ,                                                                                          
(10) 
 
Where x K×  matrix. In the case when the matrix P isܭ
irreducible and positive recurrent, Eq. (10)has a unique 
nonnegative solution G, which is column stochastic. We 
will assume that 1 is a simpleeigenvalue and the only 
eigenvalue of G of modulus 9. 
 
 In this section, we will give some results about M/G/1 
queueing systems. Consider an M/G/1 queueing  

system, the arriving of the customer is a Poisson process 
with the intensity ߣ, the service time of the customers is 
independent and has the same distribution G. We 
suppose that the service time is independent of the 
arriving process and the service discipline is FCFS. Let 
 
0< ଵ

ఓ
	≡ 	∫ (ݔ)ܩ݀ݔ < 	∞∞

଴                                                                                   
(11) 
where μ is the mean service rate of the system, 
satisfyingߩ = 	 ఒ

ఓ
< 1.Denote the number of the 

customers in the system after the recent customer left at 
time t by ௧ܻ , then Y = { ௧ܻ; ݐ ≥ 0}	 is a semi-Markov 
process on the state space 
 
 

 
                                                      (12) 
 

ܹℎ݁݁ݎ	
(ݐ)௞ݍ = 	∫

௘షഊೣ(ఒ௫)ೖ

௞!
௧
଴ ݇				,(ݔ)ܩ݀	 = 0, 1,….                                             

(ݐ)௞݌ = ∫ ௞ݍ
௧
଴ (t – x)	ି݁ߣఒ௫݀ݔ,				݇ = 0, 1, ….			                                              

(14) 
Denote X = {ܺ௡; ݊ ≥ 0} as the embedded Markov chain 
of the semi-Markov process Y, whereܺ௡  means the 
Customer numbers staying in the system when the nth 
customer left. Let  
 
ܽ௞ = lim௧→∞ ௞ݍ ,(ݐ) ݇ = 0, 1, ….                                                           
 
be the probability of k customers arriving in the interval 
when one is being served, it is independent of the one 
being served, then  ߩ = ∑ ݇∞

௞ୀ଴ ܽ௞ is the mean of 
arriving customer numbers when one is being served. It 
can be proved that the embedded Markov chain X is 
positive recurrent, irreducible and aperiodic under the 
condition of ߩ < 1, so is the semi-Markov process Y 
too and X has a unique steady-state probability vector 
ߨ = ,(0)ߨ) ,(1)ߨ … ), satisfying  ߨ(݇) > 0, ݇߳Φ, ݁ߨ =
1		and 
 
ܲ)ߨ − (ܫ = 0                                                                                                                     
(16) 
ܹℎ݁݁ݎ 
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                                                 (17) 
 
 

is the transition probability matrix of the embedded 
Markov chain X. It can be proved thatlim௡→∞ ௞݌ (ݐ) =
	lim௡→∞ ௞ݍ (ݐ) = 	ܽ௞ , ݇ = 0, 1, …. 
The semi-Markov process Y has a unique steady-state 
probability vector, and its steady-state probability vector 
is alsoߨ (see [9]). For the same performance function f 
:Φ → ܴ, Y and  X  have the same steady-state 
performance measure  ݂ߟ =  so we can discuss the , ݂ߨ	
steady-state performance sensitivity of the system by its 
embedded Markov chain X. We suppose that the 
distribution G of the customer service time is 
adifferentiable function with respect to the parameter  ߠ 
in the intervalJ ⊂ ܴand the performance function f is 
dependent on parametersߣ andߠ. Moreover, it is a 
differentiable function with respect to ߣ andߠ too. 
Therefore, the sensitivity formulas of the steady-state 
performance ݂ߟ with respect to ߣand ߠcan be obtained 
by (7) in an M/G/1queueing system. (see[5]) 
 
4. Markov chain of M/G/1 type with a tree structure 
 
In this section, a discrete time Markov chain of M/G/1 
type with a tree structure is defined. This Markov chain 
is a special case of the Markov chain of matrix M/G/1 
type with a tree structure introduced in (see[10]).  
Continuous time Markov processes of M/G/1 type with 
a tree structure will be defined. 
 
First, we define a K-ary tree. A K-ary tree is a tree in 
which each node has a parent and K children, exceptthe 
root node of the tree. The root node of the tree is 
denoted as 0. Strings of integers between 1 and K 
areused to represent nodes of the tree. For instance, the 
kth child of the root node has a representation of k.The 
jth child of node k has a representation of kj.(see[11]). 
Letℵ = ࡶ} ∶ ࡶ = ,࢔ࡷ	…૛ࡷ૚ࡷ ૚ ≤ ࢏ࡷ ≤ ૚,ࡷ ≤ ࢏ ≤
࢔,࢔ > 0} ∪ {૙}.Any string Jࣕ	ℵis a node in the K-ary 
tree. The length of a string J is defined as the number of 
integers in the string and is denoted by|ࡶ|.When J = 
|	ࡶ	|,0 = ૙. The following two operations related to 
strings in ℵare used in this paper. 
Consider a discrete time Markov chain {ܺ௡; ݊ ≥ 0}for 
which  ܺ௡	takes	values	inℵ. ܺ௡	is referred to asthe node 
of the Markov chain at time n. To be called a 

(homogenous) Markov chain of M/G/1 type with a tree 
structure, ܺ௡	transits at each step to either the parent 
node of the current node or a descendent of the parent 
node. All possible transitions and theircorresponding 
probabilities are given as follows. Suppose that J = 
௃|and ܺ௡|ܭ	…ଵܭ = ܬ +  .ܭ
 
7. Conclusions 
     In this paper, we study the problem of the steady-
state performance sensitivity analysis in M/G/1 
queueing systems. For an M/G/1 queueing system, the 
semi-Markov process which is used to describe the 
system state evolution and its embedded Markov chain 
have the same steady-state probabilities. Since we only 
consider the steady-state performance sensitivity 
analysis, we can do it by studying the embedded 
Markov chain and give the sensitivity formulas 
expressed by the potential of the embedded Markov 
chain.  
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