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Abstract: Scheduling systems are an integral part of edge nodes in modern communication systems. These nodes 
aggregate the incoming traffic flows and groomed traffic is sent to core network. The aggregation is done on the 
basis of scheduling criteria. In this work, we have analyzed a scheduling system where high priority traffic is 
exhaustively served. The modelling approach we have used is Markov chain modelling. It is assumed that buffers 
available are of finite nature. Important performance measures such as blocking and waiting probabilities and 
mean flow time have been analyzed to give an insight into the system behavior. To prove the accuracy of analytical 
modelling, all results have been simulated. 
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1. Introduction: 

In modern communication networks, edge 
node’s major functionality is to provide a fair service 
to all incoming flows which are using edge nodes as 
access points. This fairness is achieved using some 
scheduling mechanism. A lot of scheduling policies 
have been proposed and it depends upon the particular 
scenario which policy suits the system requirements. 
There are several mathematical treatments possible to 
model a scheduling system. In general, such a system 
is many queue single server queueing system. Many 
results from queueing literature can be extended to 
analyze such a system. It is very helpful to categorize 
the research in this context. The recent survey has 
been given by [35]. This categorization is based on 
type of service, switch over rates, and the system size. 
There are other categorizations, presented by [25]. 
The most common types of service are exhaustive, 
non-exhaustive or gated service. In exhaustive service 
there are also many flavors. In general, in exhaustive 
service, the server provides service to a particular 
queue till the queue is empty. In a gated service 
system, the server switches to a queue and serves 
exhaustively only those customers which were present 
in the queue at switch-over time. In non-exhaustive 
systems, the server serves only one customer in a 
queue but queues can be polled in many different 
fashion like in a cyclic manner or some pre-defined 
order [13]. The switchover time is also an important 
parameter. It is the time taken by server to switch to 
another queue after service completion. This time is 
usually very small as compared to service time and is 
ignored in many studies; however this can affect the 

performance of a scheduling system where it cannot 
be ignored in comparison with service time. The 
capacity of system is also an important parameter to 
take into account. Most of studies have assumed 
infinite queue capacities for modelling such 
scheduling systems. However, real systems always 
have finite capacities, therefore queues with finite 
capacities should be considered for true performance 
evaluations. Blocking probability, which is an 
important performance measure in real networks is 
only applicable when system has limited capacity. In 
literature, first study of multi-queue single server was 
done by [19]. The first study on communication 
networks was done in early 70s in order to model the 
time-sharing systems. Leibowitz in [16] first studied a 
cyclic queueing system with constant switch over 
times. Exhaustive and gated service with null switch-
over times have been analyzed by Cooper and Murray 
[5], [6]. Bux and Truong [3] gave a very general 
analysis for exhaustive service discipline with any 
number of queues. Models with asymmetric service 
were also presented by many authors like Lee [15]. He 
presented an analysis for two-queue system. Lee 
analyzed one queue for exhaustive service and limited 
discipline was used for the other queue. Kuehn [13] 
analyzed the round-robin queueing system. He derived 
results for GI/G/1 queues based on cylic service time 
and general switch-over rates. He also extended the 
results for batch service and re-transmission with 
constant bit-error rate [14]. All studies discussed 
above used infinite queue capacity. The models with 
exhaustive and non-exhaustive service discipline with 
finite queue capacity are not so common in the 
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literature. Single buffer systems were first discussed 
by Chung [4] and Takine [29], [30], [31]. Magalhaes 
in [20] used M/M/1/1 queues for a multi-queue 
system. Titenko [32] calculated moments of the 
waiting time for single buffer multi-queue system. 
Takagi [26] used M/G/1/n for finding Laplace 
transforms of cycle times with exhaustive service. 
Tran-Gia have done several studies in this regard 
[33], [34]. He used imbedded Markov chain for 
analysis of a non-exhaustive queueing system with 
finite buffers. In [1] authors presented a markov chain 
analysis of cyclic finite queue system, with non-zero 
switch-over times. A very good extension of early 
work was presented by Takagi [27]. In addition [35] 
covers a good overview of available models. Closed-
form solutions have been given by some authors but 
mostly these results are available for single-buffer 
systems. There are several ways to give priority to 
involved queues in a scheduling system [25], which 
includes schemes using more visits to higher priority 
queues or exhaustive/gated service of higher priority 
queues. These schemes are known as queue priority 
schemes. Manfield [21], [22] studied one exhaustive 
queue and n - 1 limited service queues. Message 
priority schemes are another form of priority schemes, 
in which priority is done within one queue [25]. A 
priority scheme in which the highest priority is served 
while visit to a queue was analyzed by [37], Karvelas 
and Leon-Garcia [12]. Regarding application areas, 
Nagle in [24] proposed and analyzed fairqueueing 
system which is mapable to many scheduling 
algorithms without any priority considerations. Ibe 
and Trivedi [11] purposed stochastic Petri Net models 
for exhaustive, gated and limited service queue 
scheduling discipline. Takagi [28] proposed three 
main areas in communication networks where polling 
models can be used for modelling scheduling policies. 
Bruneel and Kim [2], Grillo [9] and Levy [17] 
analyzed several examples of communication 
networks including ATM. In late 90s, people also 
studied many recent systems using multiqueue models 
like [38] and [36]. They analyzed polling systems 
involved in communications over IEEE 802.11 
WLANs. Bluetooth systems were studied using multi-
queue polling models by [23]. In this paper an 
exhaustive priority scheduling system with non-
negligible switchover time and queues with finite 
capacity is considered. The paper is originally 
presented in [10] and it is extended here with more 
results. and discussions. Additionally, background of 
the work is properly extended to have reference for 
future research. The system is a multi-queue single 
server system and is evaluated with very high switch-
over rate as compared to the service rate; therefore its 

effect is ignored when switch-over happens with a 
service in the current queue. However, when the 
server switches without any service the switch-over 
time has to be taken into account. The main quantities 
of interest are the mean number of customers, the 
mean waiting time, and the mean blocking in a queue. 
 
2.  Materials and Methods: 

 
       Fig. 1. Model for queueing system 
 

An n-queue single server system is used 
model scheduling problem under consideration. The 
size of queues is represented by si where (i = 0, 1, …,  
n - 1). Single server provides the service with 
exponentially distributed service time which is 
represented by µi  and it is the same for all types of 
customers. The arrival rate in different queues is 
shown by λi where index i serves for the same purpose 
as above. The server switches from one queue to the 
next and switch-over time is only taken into account 
when the server jumps to the next queue from an 
empty queue. It means that we are ignoring 
switchover time when a service takes place and server 
jumps to the next queue with a service in the current 
queue. Switchover rate is represented by ε. and it is 
also considered a single parameters for all queues. 
The queues are numbered ; 0; 1; 2 … :n - 1. And 
descending order is used to show priority. It means a 
queue with number 0 has the highest priority. The 
working of system is explained below. The server 
starts with the queue 0 and service all available 
customers exhaustively if queue is not empty, after the 
highest queue is empty it jumps over to the next queue 
in priority and serves one customer from it. After 
serving one customer it again polls the queue 0 for 
any available customer. If a queue is empty, the server 
switches to the next queue with delay of switch over 
time. The server keeps on going down to priority if all 
high priority queues are empty. As a thumb rule the 
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server jumps to the queue 0 after serving one in any 
queue and it goes down to lower priority queue if 
higher priority queues are empty. The switch over 
time is only used when the server switches over 
without serving any from the current queue.  
 
2.1 Analysis of Model  

To analyze the model consisting of a single 
server and multiple priority queues as described in the 
last section above, we take a vector T = [Q1;Q2; … 
;Qn; i], where i is used as queue index and is also used 
in diagram to show the queue being served. The 
process involved here is modelled then with the help 
of a Markov Chain. For an n-queue system n + 1 
parameters are used to represent a state of the Markov 
process in the steady state. To explain better using 
Fig. 2, we can draw the state diagram for a two queue 
system. Three parameters Q1,Q2,L are used, to 
represent the state as shown in Fig. First parameter 
describes the number of customers in queue in the 
first queue, second parameter represents the number 
of customers in the second queue and the last one 
describes the state of server. L = 1 shows first queue is 
being served which is having capacity s1 and L = 2 
shows the server is busy with queue 1. First two 
parameters range upto si +1, where si is the queue size 
and 1 shows an extra customer in with server. The 
state space is having three-dimensions and it is 
visualized as shown in Fig. The state space shown 
actually helps to understand the flow of process, 
however, it cannot be extended for more queues. 
Nevertheless, the same rules can be used to formulate 
the problem in computer programs to extend the 
Markov chain for large number of queues. The 
symmetry of the system also helps to generalize the 
rule of evolution of Markov process involved. Using 
state space, the state probabilities p can be calculated 
by solving a system of linear equations given by: 

 

Where  P = [p1, p2, …], is probability vector 
and Q is an infinitesimal generator matrix given 
by

 

 
 
Fig. 2. State space of a system with two queues 
 

Using state probabilities, the mean number of 
customers in a queue and the mean number of 
customers in the system can be found using equations 
below. Mean number of customers in the system: 

 
Mean number of customers in the queue: 

 
From above equations using Little’s law [18], it can 
be found Mean flow time (time spent in system) 

 
Mean waiting time (time spent in queue): 
 

 
 

State space is easy to extend to form a 
generalized system for n-queues. It requires now n + 1 
parameters to represent a state. It is not at all easy to 
draw state diagram for large number of queues, 
however, the same construction rules evaluated for 
two dimensional state diagram may be extended to 
formulate a system of linear equations for higher 
dimensions. The various performance measures can 
also be given in a general form as shown by equation 
given below. The mean number in the system and the 

(5) 

(4) 

(3) 

(2) 

(1) 
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mean number in queue are given by 

 
 

 
 

The waiting probability can be calculated 
using equation 8, which sums up all state 
probabilities, where a queue is neither empty nor full 
and blocking probability can be calculated by 
summing up all the state probabilities where a queue 
is full as given in equation 9. 
 

 
 
 

 
 

3. Results and Discussion:  
Various characteristics measures have been 

used to analyze the behaviour of presented system. 
Mean queue sizes, flow time, waiting and blocking 
probabilities have been studied using different arrival 
rates or total load to the system in this section. 
Additionally, the effect of arrival rates of lower 
priority queues on high priority queue has been 
demonstrated to show the validity of exhaustive 
priority scheduling. The model assumes ignorable 
switch over times as compared to service time. 

Maximum queue sizes for all the plots are same and 
equal to 10. For clarity and ease of understanding, all 
figures except Fig. 3 and Fig. 4 are plotted using three 
priority classes. All results have been plotted with 
simulations points on analytical curves. Fig. 3 and 
Fig. 4 are using a scheduling system with four priority 
classes. Fig. 3 shows the mean number of customer in 
all queues for varying arrival rates. It is clear that the 
highest priority queue has minimum number for all 
arrival rates. The mean number of customers in all 
queues grows slowly for low arrival rate or total load, 
but increases rapidly after a certain load for low 
priority queues which is different for different queues. 
However, the high priority queues continues to show 
the same steady behaviour. The low priority queues 
reaches to the saturation point, which is 
approximately equal to 1. The behaviour of exhaustive 
priority discipline is quite clear from the plot. The 
same conclusions can be drawn from Fig. 4. Here, all 
high priorities experience comparative blocking 
probabilities and low priorities approach to 1 much 
earlier for all different arrival rates. In Fig. 5. the 
mean flow time is plotted against varying arrival rates 
in all queues of the priority system. It is quite clear 
that low priorities face comparatively high flow time. 
The customer which are blocked are not included in 
the calculations of flow time. Fig. 6 depicts the same 
kind of behaviour where the difference is only that 
now customers blocked have been included in 
calculations. In Fig. 7, the mean flow time has been 
plotted against varying arrival rates. The arrival rate 
of the highest priority queue is fixed and we can easily 
observe that increase of arrival rate in lower priority 
queues does not much influence the flow time of 
highest priority queue. Next in Fig. 8 the mean 
waiting probability has been plotted against varying 
arrival rates in all queues. The same behaviour is 
observed as the mean flow time plot discussed earlier. 
The waiting probability increases and after a certain 
saturation point it tends to decrease for all queues. 
The decrease in lowest priority queue is most rapid, 
and the reason of that is the sharp increase in 
blocking probability which resultantly reduces the 
mean waiting time of waiting customers. Fig. 9 shows 
that only increasing the arrival rate in lower priority 
classes has negligible effect on highest priority which 
validates the exhaustive service scheduling again. In 
the last Fig. 10 switch over time has been plotted 
against blocking probabilities for a system of three 
queues with fixed arrival rate in all queues equal to 
0.3. It can be seen that increasing the switch over time 
has very little effect on the performance measures. 
Definitely this can only be assumed if the chosen 
switch over rate is much higher than service rate. 

(8) 

(9) 

(7) 
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Fig. 3. Effect of varying all arrival rates on queue 
sizes with maximum queue capacity = 10 for a four-
queue system. 
 

 
Fig. 5. Mean flow time E[Tf ] with maximum queue 
capacity = 10 for a three-queue system vs arrival rate. 
all rates are varied simultaneously and blocked  
customers are not taken for mean flow time 
calculations. 
 

 
Fig. 6. Mean flow time E[Tf ] vs arrival rates, where s 
= 10 for a three-queue system. Blocked customers are 
considered for mean flow  
time.

 
Fig. 7. Varying only λ1; λ2, mean flow time E[Tf ] of 
all queues with maximum queue capacity = 10 for a 
three-queue system. Blocked customers are not taken. 
 

 
Fig. 8. Waiting probability Pw vs arrival rates where 
all rates are varied simultaneously with s = 10. 
Blocked customers are included in calculations. 
 
 
 

 
Fig. 9. Varying λ1; λ2,  for Arrival rates vs blocking 
probability Pb s = 10 and system is a three-queue 
system. 
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‘ 

Fig. 10. Switch over time vs blocking probability Pb 
with maximum queue capacity = 10 and 

 λi = 0:3 ; i = 0; 1; 2 
 

4. Conclusion: 
In this paper, a Markov chain model is 

introduced to model an exhaustive priority scheduling 
system where the involved buffers are limited and 
switch over time is only considerable when it happens 
with empty queues. The Markov chain is extended to 
a system with few queues but it is computationally not 
feasible to extend the analysis for very large number 
of queues. However, the analysis presented a real 
insight into the system behavior under consideration.  
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