
Life Science Journal 2012;9(4) http://www.lifesciencesite.com

63

Object Oriented Metrics for Prototype based Languages

Syed Ahsan, Faisal Hayat, Muhammad Afzal, Tauqir Ahmad, Khadim H. Asif, H.M. Shahzad Asif, Yasir Saleem

Department of Computer Science & Engineering
University of Engineering and Technology, Lahore (Pakistan)

Ahsancs.gmail.com

Abstract: Prototype (classless) based object oriented programming approach has several advantages for
representing default knowledge and dynamically modifying concepts over traditional class based languages. Many
modern languages like C#, JavaScript and others are in part or completely utilizing astounding features of
prototypes. With this growing interest in adoption of prototypes a sheer need is emerging to redesign software
metrics for prototype based languages. These paper highlights issues for prototype based software metrics for object

oriented programming.
[Syed Ahsan, Faisal Hayat, Muhammad Afzal, Tauqir Ahmad, Khadim H. Asif, H.M. Shahzad Asif, Yasir Saleem.
Object Oriented Metrics for Prototype based Languages. Life Sci J 2012;9(4):63-66] (ISSN:1097-8135).
http://www.lifesciencesite.com. 10

Keywords: Software life cycle, software complexity, design metrics, prototype object modeling

1. Introduction

Espousing of prototype based features such as
delegates in part or completely in modern languages
like C#, JavaScript led towards consideration for
prototype based approach for object oriented
programming. When compared to class-based
languages, prototype-based languages are conceptually
simpler, and have many other characteristics that
make them suitable especially to the development of
evolving, exploratory and distributed software
systems. Significant work has previously been done
and many languages have already been designed
implementing prototypes: SELF [1-4], KEVO [5-6],
AGORA [7], GARNET [8-9], MOOSTRAP [10-11],
CECIL [12], OMEGA [13] and NEWTON-SCRIPT
[11] are such languages which represent another view
of the object oriented programming. This approach is
advantageous in sense that one does not need to rely
so much on advance categorization and classification,
instead the focus should be to make the concepts in
the problem domain as tangible and intuitive as
possible. In turn prototypes may give rise to a broad
spectrum of interesting technical, conceptual and
philosophical issues. Although interest in espousing
prototypical features is increasing, yet no serious
attempt has been made towards designing software
metrics for prototype based languages till now. For
class based approaches various software metrics
related to quality assurance have been proposed in the
past and are still being proposed but none of them
explicitly discuss prototype based language.

Many metrics have been proposed explicitly in
context of class based object-oriented programming

such as class, coupling, cohesion, inheritance,
information hiding and polymorphism. As the
development of object-oriented software is rising,
more and more metrics are required for object-
oriented languages but the applicability of metrics
developed previously are mostly limited to
requirement, design and implementation phase
instead of data representation and nature of problems.
According to Moreau [10-11] traditional metrics are
inappropriate for OO systems for several reasons.
First, the assumptions relating program size and
programmer productivity in structured systems do not
apply directly to OO systems. Second, the traditional
metrics do not address the structural aspects of OO
systems. Third, the computation of the system's
complexity as the sum of the complexity of the
components is not appropriate for OO systems. The
Significance of software measurement along-with the
increasing interest in prototypical features leads
towards reconsideration of software metrics and to
answers the questions associated with the effectiveness
of applying traditional software metrics to OO
systems.

Functionally object oriented metrics can be
divided into three categories from prototype
perspective:
1. Some metrics needs to be redesigned for

prototype based languages.
2. Some metrics needs no change as some features

of class based and prototypes based languages
are similar.

3. For some metrics old day’s structural languages
metrics can be used.

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

64

4. Some metrics are no longer needed for
prototype based languages.

5. Some new metrics needs to be presented for
novel features of prototypes.

Table 1: Comparison of Object Oriented and Prototype languages [13]

No. Features Cass-Based Techniques Prototype based techniques

1 Basis
Mathematical concept – set of

knowledge representation
Knowledge representation through object

observation

2
Object Modeling

Parameters

(i) defined an object by distinct
parameters structure and state
(ii) Object is not defined in an

incremental fashion

(i)defines an object by a single parameter
prototype and doesn’t differentiate between
structure (or meta data) and state (or data)

of the object.

3
Organization of

objects of a system

Objects are organized into a
hierarchical structure, called a class

lattice

Objects are not organized in any
hierarchical structure – no class-latice

4
Tracing of changes
to a specific object

Not possible
Possible since each change to an object is

stored in a separate prototype

5
Knowledge sharing

mechanism
Inheritance mechanism, and it is static

mechanism
Delegation mechanism and it is dynamic

mechanism

6
Fixation of

Message Passing
Pattern

Message passing pattern is fixed at
compile time

Message passing pattern is fixed at run
time

7
Retention control

while message
passing

Control remains with the self class
while the search goes to the next super

class

Control is passed to the next prototype with
the search delegation

8
Flexibility and

Efficiency

(i) In case of simple inheritance
and single parent delegation, both
mechanism are equally powerful

(ii) Otherwise it is less flexible
and less powerful than the delegation

mechanism
(iii) Efficiency is predictable

(i)In case of simple inheritance and single
parent delegation, both mechanism are

equally powerful
(ii)More flexible and powerful than the

inheritance mechanism
(iii)Efficiency is not predictable.

Type 1. Metrics to be redesigned: In the

traditional object oriented systems knowledge sharing
between object and classes is typically done by a
mechanism called inheritance, initially used by the
language Simula and later adopted by most of the
modern object oriented languages. Every class
contains a common behavior for a set of objects
along-with the description of what characteristics are
allowed to vary among objects. It is important to note
that all instances of a class share the same behavior,
but can maintain unique values for a set of state
variables pre-declared by the class. There are a
number of metrics available for object oriented
systems to deal with inheritance. Some of such
metrics are Attribute Inheritance Factor (AIF) [11],
FAN-IN [9], Method Inheritance Factor (MIF) [2]
and Number of Methods Inherited (NMI) [12]. Here
AIF counts the ratio of the sum of inherited attributes
in all classes of the system under consideration to the

total number of available attributes for all classes. FIN
is the number of classes from which a class is derived
and high values indicate excessive use of multiple
inheritances. MIF is the ratio of the sum of the
inherited methods in all classes to the total number of
available methods for all classes and NMI measures
the number of methods a class inherits.

Type 2: While on the other hand prototypical
approach for sharing knowledge in object oriented
systems is based on an alternative mechanism called
delegation, appearing in several languages [7],
[5],and [8]. In this approach the distinction between
classes and instances is removed in sense that any
object can serve as a prototype. To create an object
that shares knowledge with a prototype, an extension
object is constructed, which contains a list of its
prototypes which may be shared with other objects.
When an extension object receives a message, it first
attempts to respond to the message using the behavior

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

65

stored in its personal part. If the object's personal
characteristics are not relevant for answering the
message, the object forwards the message on to the
prototypes to see if one can respond to the message.
This process of forwarding is called delegating the
message. Keeping in mind this difference of sharing
knowledge among objects and classes the traditional
metrics being used for inheritance needs to be
changed with more sophisticated metrics for
delegation. For instance the prototypical version for
above mentioned metrics can be designed such as in
AIF instead of counting the ratio of inherited
attributes/objects, number of delegated objects can be
calculated. FIN is the number of classes from which a
class is derived while in class-less languages
prototype is used instead of classes so FIN can be
redesigned for number of prototypes from which other
prototypes are delegated. Similarly a prototypical
version of MIF and NMI can also be designed.

Type3: Source Lines of Code (SLOC or LOC)
is one of the most widely used sizing metrics in
industry and literature. Size is one of the most
important attributes of a software product. It is not
only the key indicator of software cost and time but
also a base unit to derive other metrics for project
status and software quality measurement. According
to [7] survey on cost estimation approaches, size
metric is used as an essential input for most of cost
estimation models. SLOC is the traditional and the
most popular sizing metric. Its long-standing tradition
is due to the fact that SLOC is the direct result of
programming work. In the early age of software
development, most of software cost was spent on
programming, and SLOC emerged as the most
perceivable indicator of software cost. Unfortunately,
SLOC has a number of shortcomings [3]. One
significant deficiency is the lack of precise and
methodical guideline for determining what SLOC
means. Another feature lacking in SLOC counts,
reducing its usefulness as an effective size measure
for understanding a piece of code is that it doesn’t
account for complexity of a line of code.

These ambiguities of complexity between
difference lines of code is addressed in the new metric
of S/C (size/Complexity) described by Pant [3]. The
S/C measure is based on the notion that, in a high-
order programming language, decision making and
iterative statements are normally more complex than
assignment statements. This metric count’s one for
simple statements, one for each binder and one for
each simple predicate. It also takes into account the
number of mental paths within the control flow
structure and allows for nested structures. Contrary to

this notion prototype languages donot take advantage
of such complex or nested structure instead all
statements in the languages are used just like simple
message passing statement and functionally same
behavior is followed by most statements in prototype
languages. This analysis implies that in prototype
languages there is no need to use the enhanced
version of SLOC and the older version of this metric
can easily be deployed to measure size of the program
as each statement uses equal level of complexity.

Type 4 Metrics: There are many metrics in
used to measure cohesion and complexity of classes
such as attribute hiding factor[4], class cohesion[5]
and class entropy complexity[6] etc. Hereby attribute
hiding factor measures the ratio of the sum of
inherited attributes in all system classes under
consideration to the total number of available classes
attributes. While class cohesion measures relations
between classes and class entropy complexity
measures the complexity of classes based on their
information content. Dony, Malenfant & Cointe [2]
outlined two primary arguments in favor of prototype-
based object oriented programming. First, it is easier
to figure out concrete examples before generalizing
concepts into abstract definitions. Second, classes add
unnecessary constraints by preventing the
customization of individual object instances as well as
the inheritance of member data values. Although the
first issue tends to be more of a philosophical or
process-oriented distinction, the second issue
regarding class constraints deals with a potential
limitation in the available programming constructs
that support the abstraction and encapsulation of
concerns in software. In order to remove this
limitation there is a sheer need to use classless
approach which entails to omit the use of metrics used
for measuring classes.

Type 5 Metrics: One of the notable feature of
prototype based languages is that the object system are
dynamic in that the objects can be created, updated
and destroyed during program execution and even the
type of values can be changed [8,9]. Every object is
self-describing and can be changed independently and
each change to an object is stored in a separate
prototype. In class based systems any object cannot be
created or associated with class at run time. Although
this might seem handy, it also means that you have to
be very careful when you update a prototype object.
You have to know the object dependency graph of the
objects derived from the prototype object, in order to
do a safe update. The object systems also support a
part-owner hierarchy, by which objects can be
grouped together [9]. For instance, the graphics in a

Life Science Journal 2012;9(4) http://www.lifesciencesite.com

66

window are added as parts of the window.

References
1. O. Agesen, L. Bak, C. Chambers, B.W. Chang,

U. Holzle, J. Maloney, R.B. Smith, D. Ungar
and M. Wolczko. The Self 3.0 Programmer’s
Reference Manual. Sun Microsystems Inc and
Stanford University, 1993.

2. O. Agesen, L. Bak, C. Chambers, B.W. Chang,
U. Holzle, J. Maloney, R.B. Smith, D. Ungar
and M. Wolczko. The Self 4.0 Programmer’s
Reference Manual. Sun Microsystems Inc and
Stanford University, 1995.

3. Moreau, A Programming Environment
Evaluation Methodology for Object-Oriented
Systems, Ph.D. Dissertation, University of
Southwestern Louisiana, Sep. 1987 .

4. D. R. Moreau and W. D. Dominick, "Object-
Oriented Graphical Information Systems:
Research Plan and Evaluation Metrics," Journal
of Systems and Software, vol. 10, pp. 23-28,
1989.

5. D. R. Moreau and W. D. Dominick, "A
programming environment evaluation
methodology for object oriented systems: part I -
the methodology," Journal of Object-Oriented
Programming, vol. 3, pp. 38-52, May/Jun. 1990.

6. B. Boehm, C. Abts, S. Chulani, “Software
development cost estimation approaches: A
survey”, Annals of Software Engineering, 2000.

7. Pant, H. Sellers and Verner, 1995, S/C: a
software size /complexity measure, chapter 50 in
software quality and productivity , theory,
practice, education and training

8. K.L. Morris, “Metrics for Object-Oriented
Software Development Environments”, Master
thesis, M.I.T., 1988.

9. R.S. Chidamber & C.F. Kemerer, “Towards a
metrics suite for object–oriented design”,
Proceedings of the OOPSLA ’91 Conference,
1991, pp 197-211.

10. J. Bansiya & C. Davis, “Using QMOOD++ for
object-oriented metrics”, Dr. Dobb’s Journal,
December 1997.

11. The Prototype-Instance Object Systems in
Amulet and Garnet, Brad A. Myers, Rich
McDaniel, Rob Miller, Brad Vander Zanden,
Dario Giuse, David Kosbie and Andrew
Mickish, To appear in:James Noble, Antero
Taivalsaari and Ivan Moore, eds., Prototype
Based Programming, Springer-Verlag, 1998.

12. Inheritance vs. delegation: Is one better than the
other? Peter Bosch April 6, 1993

13. Syed Ahsan “ Development of and Extensible
DBMS for Biological Data”. PhD Dissertation
2009.

8/8/2012

