
Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com http://www.sciencepub.net/life 1234

A review of the present state of art in FPGA-Based Adders

Nasser Lotfivand 1,a, Mohd Nizar Hamidon 1,2,b, Maryam Mohd Isa 2,c, Nasri Sulaiman 2,d, Vida Abdolzadeh 3,e

1. Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2. Department of Electronic Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
a Ahoora4444@hotmail.com , b mnh@eng.upm.edu.my , c misa@eng.upm.edu.my , d nasri@eng.upm.edu.my , e

S.V.Abdolzadeh@Iaut.ac.ir

Abstract: Adders are the most fundamental arithmetic circuits that are used in processors and play key role in VLSI
circuits. Power consumption and speed of these circuits are important quality factors for high performance
integrated processing circuits. Floating-point operators, integer multipliers, and modular adders need large adders.
On the other hand, Field programmable gate arrays (FPGAs) due to the excellent features such as low power
consumption, flexibility, reusability, reasonable cost, easy upgrading, have become a favored platform for VLSI
design. At this article recent advances and state of the art techniques in FPGA-Based Adders are reviewed.
[Lotfivand N, Hamidon MN, Isa MM, Sulaiman N, Abdolzadeh V. A review of the present state of art in FPGA-
Based Adders. Life Sci J 2012;9(3):1234-1238] (ISSN:1097-8135). http://www.lifesciencesite.com. 175

Keywords: Adder; FPGA; FPGA-Based Adder

1. Introduction

Adders are building block in digital
processing systems. Design and implementation of
these circuits have received much research attention
from designers. A large spectrum of architecture is
available for adders such as ripple-carry, carry-look-
ahead, carry-skip adders [1], [2]. Utilizing of each
approach in design is depending on the application,
throughput and latency. When base on the application
the latency is not design major factor ripple-carry
architecture can be used while the other two
architectures are proper to perform high throughput
with small latency. In some of systems assigned
adders are expected to have high throughput while
latency is not so limitation factor, at such systems it
may be commodious to follow architectures that are
less complicated than carry-skip or carry-look-ahead
adders [1], [2].

In this paper, we discuss the various designs
of FPGA-based adders.

2. FPGA technology

Nowadays Field Programmable Gate Array
(FPGA), have produced in varicose processing
platforms, with high speed microprocessors,
memories and data transfer links. FPGAs have an
array of logic modules, programmable routing
resources and input/output blocks. FPGAs in
compare with CPU have low power dissipation.
CPUs run applications as a flow of instructions but
FPGA segments application into several optimized
and independent logic blocks. A study about CPU
and FPGA has been done in [4].

3. State of art FPGA-based adders
One of the earliest structural algorithm and

design procedure for a 32-bit FPGA-based adder was
introduced by Hashemian (1995). This algorithm was
based on the carry select technique and for fast
response operands was divided into slices. The slice
carries by a parallel processing technique were
transferred into a multiplexer based structure. By this
parallel processing, the final carry terms was
produced logarithmically, rather than linearly. This
logarithmic approach was for the carry propagation
delays decreasing while the data size increase. Base
on this algorithm one gate delay is added to the
overall time for the addition with each doubling of
the operand size [5].

A fault-tolerant adder was offered by
Alderighi et al. (2001). On this design fault tolerance
at lower design costs and by shifting and rotating the
operands given in input to the replicated ALUs, and
by adopting a scheme for the full-adder block was
accomplishing [6].

Morris et al. (2005) reported two FPGA-
based reduction methods for reducing multiple sets of
sequentially delivered, floating point values in
optimal time without stalling the pipeline. The serial
method was a time-division multiplexed
implementation of a full binary reduction tree (figure
1). In the parallel method two α-stage adders had
used. One of the adders was for reducing all the
values for a given set. After arriving the last value in
a set, there were multiple partial reductions in the
pipeline, if all adders were busy, new values were
buffered until an adder became available [7].

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com http://www.sciencepub.net/life 1235

Figure 1: Serial Reduction Architecture

A design methodology for floating-point

adder with leading-one predictor (LOP) was
presented by Malik & Ko (2005).Figure 2 shows an
implementation of this algorithm. LOP was for
prediction of the shift amount for post normalization
in parallel with the addition. Shifter was for pre-
normalization and post-normalization. The LOP was
the critical path for the addition operation [8].

Figure 2: implementation of floating point adder
algorithm

Figure 3 depict Maslennikowa et al. (2006)
offered structure for the q-operands multi-operand
modular adders. These adders were based on a carry-

propagate adder tree and had read-only memory
(ROM) units for correction of partial results [9].

Figure 3: multi-operand modular adders’ structure

For designing floating point components in
FPGAs, Karlstrom et al. (2006) offered a method.
This method was based on using parallel
normalization approach to reduce the number of
pipeline stages needed to perform the normalization
operation. Figure 4 shows the adder architecture. In
the first step, the operands are compared and
swapped (if require) and the smallest number enters
the path with the alignment shifter. Also the implicit
one is added at this step, if the input operands are
non-zero. In the second step, by the exponent
difference, the smallest number is shifted down so
that the exponents of both operands match. Add or
sub operations are executed in the next step. The final
step is the normalization. At this method, due to the
earlier comparison and swap step, sub operation
never causes a negative result [10].

Figure 4: Karlstrom’s adder architecture

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com http://www.sciencepub.net/life 1236

Kikkeri & Seidel (2007) reported a double
precision floating-point adder on the full gate-level
verification and FPGA implementation without
considering parameterized floating-point adder
implementations. For optimization in the design
several methods such as nonstandard separation into
two paths, unification of rounding cases for addition
and subtraction, sign magnitude computation of a
difference based on one’s complement subtraction,
and circuits for approximate counting of leading
zeros from borrow-save representation had used [11].
Ng et al. (2008) described an adder for bit-stream
signal processing. This circuit was customized for
quad-level sigma-delta modulated signals (figure 5).
This adder was based on ripple carry adder and one
bit of output was fed back to the adder to suppress the
truncation error [12].

Figure 5: Quad-level bit-stream adder

A 3-input floating-point adder was reported

by Guntoro & Glesner (2008). With the purpose of
distributing the critical paths and improving the
performance the design was based on a 5-level
pipeline stage [13]. Malik et al. (2008) studies
showed that the standard floating-point adder
algorithm is area-efficient, but has more levels of
logic and greater overall latency. Leading-one
predictor algorithm adds parallelism to the design and
thus reduces levels of logic significantly, but because
of added hardware and significant routing delays it
does not significantly improve overall latency in
FPGAs [14].

Yousuf & Najeeb-ud-din (2008) introduced
a methodology for carry select adder. In this
methodology, sum was calculated for carry-in of
‘0’and other sum for carry-in of ‘1’. These sums were
calculated by making use of one XOR gate and an
inverter. Final sum-out was obtained by making use
of multiplexer whose strobe signal was the carry of
the previous stage (Cin). Likewise, Carry-out is
generated by making use of a multiplexer whose
strobe signal is Sum0. Further; optimization of the
proposed logic was made by replacing each logic

element of the proposed logic with NAND gates.
Figure 6 illustrate a carry select adder [15].

Figure 6: Basic Carry Select Adder Cell

A study on the carry-chain type BCD adders
was reported by Biou et al. (2009). Base on this study
for big operands the decimal adder works faster than
an equivalent binary implementation and furthermore
the coding / decoding processes are no more needed.
The time delays for BCD adders are slightly better
while the hardware requirements, depending on
algorithm selection, range from three to four times
that of a binary ripple-carry adder. For very great
numbers the time saving is more significant [16].

Ortiz et al. (2009) by taking advantage of
the specialized carry-logic studied implementations
of carry-save adders on FPGA devices. They showed
that it is possible to implement redundant adders with
a hardware cost close to that of a carry propagate
adder. Specifically, for 16 bits and bigger word
lengths, redundant adders are clearly faster and have
an area requirement similar to carry propagate adders.
Among all the redundant adders had been studied, the
4:2 compressor was the fastest one, presented the best
exploitation of the logic resources within FPGA
slices and the easiest way to adapt classical
algorithms to efficiently fit FPGA resources [17]. Liu
et al. (2009) different parallel prefix trees used in the
design of an end-around carry (EAC) adder targeting
FPGA technology [18].

Kamp et al. (2009) introduced adders with a
redundancy in representation to eliminate carry
propagation, providing near constant addition delay
irrespective of the operand width [19]. Rani et al.
(2009) introduced a fast adder based on Quaternary
Signed Digit (QSD) number system. In QSD, each
digit can be represented by a number from -3 to 3 and
carry free addition and other operations on a large
number of digits such as 64, 128, or more can be
implemented with constant delay and less complexity
[20].

Bystritskaya et al. (2010) investigated 36-bit
ripple-carry, carry-skip, carry-select and carry-look-
ahead adders intended for using in field
programmable gate arrays. This study showed that

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com http://www.sciencepub.net/life 1237

36-bit ripple carry adder has the maximal delay but,
in spite of its minimal size, parameter β (β equals to a
product of maximal delay and a total number of
transistors of adder) is maximal, i.e. the advantage in
area does not compensate for the loss in speed.
Carry-select adder has maximal parameter β amongst
the remaining adders: its size is maximal, but speed is
less than that shown by carry-look-ahead adder. The
usage of such adder is not profitable in presence of
any limiting factors [21].

Bhattacharjee et al. (2011) did a study on
low power arithmetic circuits for digital signal
processing (DSP) applications in respect to delay,
power requirement and implementation costs of the
different 8, 16, 32 and 64 bit circuits that can be
realized for implementing the basic fixed-point
arithmetic units in FPGA [22]. Nguyen et al. (2011)
did a study on FPGA-specific arithmetic
optimizations for the mapping of carry select and
carry-increment adders targeting the hardware carry
chains of FPGAs. Different trade-offs between
latency and area was explored [23].

Preußer et al. (2011) presented the carry-
compact addition scheme. While its central concept
was inspired by the carry look-ahead addition, it was
distinguished by its internal use of compacted
pseudo-addends and its selective formation of
compaction groups. A carry-compact addition
already outperforms the basic ripple-carry adder for
operand widths starting at 50 bits [24].

Martinez et al. (2012) introduced a fault
tolerant parallel-prefix adder with capability of both
fault detection and correction. This design was using
a Sparse Kogge-Stone (SKS) Adder. In figure 7 red
highlighted parts shows the error correction and
detection logic [25].

Figure 7: Block diagram of Fault Tolerant Sparse
Kogge-Stone Adder

4. Conclusion
 The recent growth in the number of
available resources on FPGAs makes them excellent
candidates in many computing applications. FPGA
can be used for the applications that require high
speed, high precision floating point arithmetic. At
this article the state of art techniques in FPGA-Based
Adders was discussed.

Corresponding Author:
Nasser Lotfivand
Institute of Advanced Technology, University Putra
Malaysia, 43400 Serdang, Selangor, Malaysia
E-mail: Ahoora4444@hotmail.com

References

1. J.M. Muller, Arithmetique des Ordinateurs
(Paris: Masson, 1989).

2. I. Koren, Computer Arithmetic Algorithms
(Englewood Cliffs, N.J.: Prentice-Hall,
1993).

3. Hartenstein R., A decade of reconfigurable
computing: a visionary retrospective, Proc.
Conf. On Design, Automation and Test in
Europe, 2001, 642 – 649.

4. Craven S., P. Athanas, Examining the
Viability of FPGA Supercomputing, Journal
on Embedded Systems, 2007,
doi:10.1155/2007/93652

5. Hashemian R., An algorithm and design
procedure for high speed carry select adders
using FPGA technology, Proc. 37th
Midwest Symposium on Circuits and
Systems, 1994.

6. Alderighi M., D'Angelo S., Metra C., Sechi
G.R., Novel fault-tolerant adder design for
FPGA-based systems, Proc. 7th Conf. On-
Line Testing Workshop, 2001, 54-58.

7. Morris G.R., Zhuo L., Prasanna V.K., High-
performance FPGA-based general reduction
methods , Proc. 13th IEEE Conf. on Field-
Programmable Custom Computing
Machines, 2005, 323 – 324.

8. Malik A., Seok-Bum Ko, Effective
implementation of floating-point adder using
pipelined LOP in FPGAs, Proc. Conf. on
Electrical and Computer Engineering, 2005,
706 – 709.

9. Maslennikowa N., Maslennikow O.,
Berezowski R., Lienou J.-P., Design Of
Fpga-based Multi-operand Modular Adders
For Residue Number System Converters,
Proc. Conf. on Mixed Design of Integrated
Circuits and System, 2006, 264 – 268.

10. Karlstrom P., Ehliar A., Liu D., High
Performance, Low Latency FPGA based

Life Science Journal 2012;9(3) http://www.lifesciencesite.com

http://www.lifesciencesite.com http://www.sciencepub.net/life 1238

Floating Point Adder and Multiplier Units in
a Virtex 4, Proc. Conf. on Norchip, 2006, 31
– 34.

11. Kikkeri N., Seidel P.-M., An FPGA
Implementation of a Fully Verified Double
Precision IEEE Floating-Point Adder, Proc.
IEEE Conf. on Application -specific
Systems, Architectures and Processors, 2007,
83 – 88.

12. Ng C.W., Wong N., Ng T.S., Quad-level bit-
stream adders and multipliers with efficient
FPGA implementation, Electronics Letters,
44(12), 2008, 722 – 724.

13. Guntoro A., Glesner M., High-performance
fpga-based floating-point adder with three
inputs, Proc. Conf. on Field Programmable
Logic and Applications, 2008, 627 – 630.

14. Malik A., Dongdong Chen, Younhee Choi,
Moon Lee, Seok-Bum Ko, Design tradeoff
analysis of floating-point adders in FPGAs,
Canadian Journal of Electrical and
Computer Engineering, 33(3), 2008, 169 –
175.

15. Yousuf R., Najeeb-ud-din, Synthesis of
carry select adder in 65 nm FPGA, Proc.
IEEE Conf. on TENCON, 2008, 1 – 6.

16. Bioul G., Vazquez M., Deschamps J.P.,
Sutter G., Decimal addition in FPGA, Proc.
5th Conf. on Programmable Logic, 2009,
101 – 108

17. Ortiz M., Quiles F., Hormigo J., Jaime F.J.,
Villalba J., Zapata E.L., Efficient
Implementation of Carry-Save Adders in
FPGAs, Proc. 20th IEEE Conf. on
Application-specific Systems, Architectures
and Processors, 2009, 207 – 210.

18. Feng Liu, Forouzandeh, F.F., Mohamed,
O.A., Gang Chen, Xiaoyu Song, Qingping
Tan, A Comparative Study of Parallel Prefix
Adders in FPGA Implementation of EAC,
Proc. IEEE Conf. on Digital System Design,

Architectures, Methods and Tools, 2009 ,
281 – 286.

19. Kamp W., Bainbridge-Smith A., Hayes M.,
Efficient implementation of fast redundant
number adders for long word-lengths in
FPGAs, Proc. Int. Conf. on Field-
Programmable Technology, 2009, 239 – 246.

20. Rani R., Singh L.K., Sharma N.,FPGA
implementation of fast adders using
Quaternary Signed Digit number system,
Proc. Int. Conf. on Emerging Trends in
Electronic and Photonic Devices & Systems,
2009, 132 – 135.

21. Bystritskaya N.A., SmolyannikovI.A.,
Kurganskii S.I., Investigation of properties
of 36-bit adders for creation of DSP blocks
on FPGA, Proc. Int. Conf. on
Micro/Nanotechnologies and Electron
Devices (EDM), 2010, 143 – 146.

22. Bhattacharjee S., Sil S., Basak B.,
Chakrabarti A., Evaluation of power
efficient adder and multiplier circuits for
FPGA based DSP applications, Proc. Int.
Conf. on Communication and Industrial
Application (ICCIA), 2011, 1 – 5.

23. Hong Diep Nguyen, Pasca B., Preusser T.B.,
FPGA-Specific Arithmetic Optimizations of
Short-Latency Adders, Proc. Int. Conf. on
Field Programmable Logic and Applications
(FPL), 2011, 232 – 237.

24. Preußer T.B., Zabel M., Spallek R.G.,
Accelerating Computations on FPGA Carry
Chains by Operand Compaction Preusser,
Proc. 20th IEEE Symposium on Computer
Arithmetic (ARITH), 2011, 95 – 102.

25. Martinez Chris D., Bollepalli L. P. Deepthi,
Hoe David H. K., A fault tolerant parallel-
prefix adder for VLSI and FPGA design,
Proc. 44th Southeastern Symposium on
System Theory (SSST), 2012, 121 – 125.

1/26/2012

