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1. Introduction  

There are a catalogue of surfaces that can be 
described by integrable equations such as surfaces of 
constant negative Gaussian curvature, surfaces of 
constant mean curvature, minimal surfaces, affine 
spheres. This paper continues the program by adding 
Hasimoto surfaces to the catalouge. These surfaces are 

obtained by evolving a regular space curve x  in 
3R  

as it evolves over time according to this evolution 
equation:  

btsxxtsx ssst ),(==),(      (1) 

 this is an evolution of the curve in its 
binormal direction with velocity equal to its curvature. 
Eq.1 Known as the vortex filament flow or Localized 

Induction Equation (LIE). Here, ),( tsx  is a position 

vector for a point on the curve, t  is the time, s  is 
the arc--length parameter,   is the curvature of x , 

b  is the unit binormal and the subscripts indicate the 
differentiation with respect to the indicated variables. 
The subject of how space curves evolve in time is of 
great interest and has been investigated by many 
authors. Hasimoto [1] showed that the evolution of a 
thin vortex filament regarded as a moving space curve 
can be mapped to the nonlinear Schrodinger equation. 
Rick Mukherjee and Radha Balakrishnan [2] are 
studied moving curves of the sine-Gordon equation. 
Nassar, et al [3, 4, 5, 6] studied evolution of plane 
curves, motion of hyper surfaces and evolution of 

space curves in 
nR . The authors in [7] constructed 

Hasimoto surface via integration for Frenet--Serret 
equations using fundamental existence and uniqueness 
theorem for space curves. Here we take another method 
different from them, the outline of this method is to 
construct six fundamental quantities 

},,,,,{ 221211221211 LLLggg  for Hasimoto surface 

after then we integrate Gauss-Weingarten equations 
numerically. Since the surface generated form the 
evolution of the curve so in the next section we 
introduce geometry of space curve evolution.  

Our Goal. The goal of this paper is to 
construct Hasimoto surfaces and display it via 
numerical integration of Gauss-Weingarten equations.  

The article is organized as follows. In section 
2 we introduce geometry of space curve evolution, 
derive (CNPDEs) which formulates the problem 
directly in terms of the curvatures and get exact 
solution for them. In section 3, we reconstruct the 
curve from its curvatures. In section 4, we introduce 
differential geometry of surfaces. In section 5, we study 
the geometric properties of Hasimoto surfaces. In 
section 6, we reconstruct the surface from its 
fundamental forms via numerical integration of 
Gauss-Weingarten equations and display it.  

 
2. General Curve Evolution 

If ),(= tsxx  is the position vector of a 

curve C  moving in space, then the unit tangent, 
principal normal and binormal vectors ,which are 

denoted by },,{ bnt  respectively vary along C  

according to the well known SerretFrenet relations 
[8]  

 ,= nts   

 ,= btns              (2) 

 ,= nbs   

 where s  measures arc length along C ,   is its 
curvature and   its torsion. The general temporal 

evolution in which the triad },,{ bnt  remains 

orthonormal adopts the form [9],  
 

   ,= bntt    

   
,= btnt            (3) 

  
 

.= ntbt    

 Here  ,   and   are geometric parameters 

which are generally functions of s  and t . These 
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describe the evolution in t  of the Frenet frame 

},,{ bnt  on the curve. For non stretching curves, the 

triad must satisfy the compatibility conditions  

.=,=,= sttssttsstts bbnntt
(4) 

 Using Eqs.(2) and (3) , the compatibility conditions 
become  

 ,=  st  

 ,=  st         (5) (5) 

 .=  s  

 If the velocity vector tv x=  of a moving curve C  

has the decomposition  

,= bnt
x

 




t
   (6) 

 then imposition of the condition stts xx =  yields  

.=

,=

,=0

s

s

s













     (7) 

 where  ,,  as functions of s and t, correspond to 

the normal, binormal and tangent projections of the 
velocity. Below we restrict our attention to a purely 
local form for these velocities as in the form,  

 ,...),,,...,,(= ss   

 ,...),,,...,,(= ss   

 ,...).,,...,,(= ss   

 The dynamical equations for the curvature   and 

the torsion   of the evolving curve C  may now be 
expressed in terms of the components of velocity 

 ,,  by substitution of Eq.(7) in to Eq.(5) to obtain  

 



















)())()((
1

=

)()(=

sssst

ssst
(8) 

 where  

)]()[(
1

= 


  sss  (9) 

 Eqs.(8) link the curves with non linear partial 

differential equations. For a given  ,,  the above 

coupled nonlinear partial differential equations 
(CNPDES) determined the motion of the curve . Now 

let a curve C  moving in the space according to  

.= b
x


t


            (10) 

 Known as the vortex filament flow or localized 
induction equation (LIE). 

For this motion we have  

}{0,0,=},,{           (11) 

 From Eqs.(5), (7) the velocities of the moving frame 
are  

  = , 

 s = ,           (12) 

 





2

=
ss . 

 The evolution of the moving frame w.r.to t  is given 
from Eq.(3) 

 ,= bnt st    

 ,=
2

btn ss
t







     (13) 

 .=
2

ntb ss
st







  

 and from Eq.(8) The evolution equations for curvature 
and torsion are  

.)(2=

,2=

s
ss

sst

sst











     (14) 

 A (CNPDES) (14) was formulated by Da Rios in [10]. 
We used MATHEMATICA package software 
(computational software program used in scientific, 
engineering, mathematical fields and other areas of 
technical computing) for solving the system Eq.(14) 
which apply the tanh and sechmethods [11]. Thus 
the above system has a solution in the form,  

./2=),(sech2= 213212 cccsctcc  
 
(15) 

 where 321 ,, ccc  are arbitrary real constant.  

3. Constructing a Curve from the Curvature and 
Torsion 

 One of the basic problems in geometry is to 
determine exactly the geometric quantities which 
distinguish one figure from another. For example, line 
segments are uniquely determined by their lengths, 
circles by their radii, triangles by side-angle-side, etc. It 
turns out that this problem can be solved in general for 
sufficiently smooth regular curves. We will see that a 
regular curve is uniquely determined by two scalar 
quantities, called curvature and torsion, as functions of 
the natural parameter.  
Theorem 3.1 (Fundamental existence and 
uniqueness theorem for space curves) [12] Let 

)(s  and )(s  be arbitrary continuous functions 

on bsa  . then there exists, except for position in 
space , one and only one space curve C for which 
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)(s  is the curvature, )(s  is the torsion and s is a 

natural parameter along C.  
 The figure 1 in the section 6 represent 

snapshot of the evolving space curve obtained by 
solving the Frenet  Serret Eqs. (2) for a specified 
curvature and torsion using Mathematica [13]. Any 
moving space curve can be studied from two 
perspectives,namely, the shape of the curve and the 
evolution of the curve .At every fixed t , we clearly 
have a representation of the corresponding static space 
curve at that instant.  

 
4. Differential Geometry of Surfaces 

 Let ),(= tsxx  denote the position vector 

of a generic point P on a surface S in 
3R . Then, the 

vectors sx  and tx  are tangential to S  at P , at 

such points at which they are linearly independent,  

||
=

ts

ts

xx

xx
N




               (16) 

 determines the unit normal vector to S . The first and 
second fundamental forms (abbreviated FFF, SFF) on 

S  are defined respectively by 
 

2
2212

2
11

2
2212

2
11

2=.=

2=.=

dtLdsdtLdsLdNdxII

dtgdsdtgdsgdxdxI





 

(17) 

 where ijg  and ijL  are given by  

..=,.=,.=

.=,.=,.=

222212121111

222212121111





NxLNxLNxL

xxgxxgxxg
(18) 

 where ,  is the Euclidean scaler product. The 

Gauss and Weingerten equations give us the rate of 

change of ),,( 21 nXX  associated with the surface 

S , which take the form [8]  

.=

.=

.=

22
2
22

1
22

12
2

12
1
12

11
2

11
1
11

N

N

N

Lxxx

Lxxx

Lxxx

tstt

tsst

tsss







     (19) 

  

tst

tss

x
g

LgLg
x

g

LgLg
N

x
g

LgLg
x

g

LgLg
N

2211121212222212

1211111211221212

=

.=











 

(20) 

 where  
2
122211= gggg  (21) 

 The quantities
k
ij  are called the Christoffel symbols 

of the second kind and given by  

1,2=,,,),(
2

1
= lkjig

u
g

u
g

u
g ijliljlji

klk
ij
















 
(22) 

 where (
ijg ) is the inverse of ( ijg ). In the above, the 

Einstein convention of summation over repeated 

indices has been adopted. The Gaussian curvature g  

and the mean curvature m  are  

,==
2
122211

2
122211

ggg

LLL

g

L
g






     

(23) 

  

.
2

2
= 112212122211

g

gLgLgL
m




    

(24) 

 where )(=),(= ijij LdetLgdetg . The 

compatibility conditions ssttss )(=)( xx  and 

stttst )(=)( xx  applied to the linear Gauss system 

(19) produce the Gauss and Mainardi-Codazzi system  

))()(()

)()((=
2

12
1
12

2
11

1
22

2
12

2
2212

1
22

2
12

1
12

1
12

1
12

2
22

1
11

1
22

1
12

1
2211





ts

ts

g

gL
 (25) 

  

2
1222

1
12

2
2212

1
2211

2212

2
1122

1
11

2
1212

1
1211

1211

)(=

)(=





















LLL
s

L

t

L

LLL
s

L

t

L

 (26) 

  
Theorem 4.1 ( Fundamental existence and 

uniqueness theorem Of Surfaces)  [12] Let 

11g , 12g  and 22g  be functions of s  and t  of 

class 
2C  and let 11L , 12L  and 22L  be functions of 

s  and t  of class 
1C  all defined on an open set 

containing ),( 00 ts  such that for all (s, t), 

(i) 

0>0,>0,> 22112122211 ggggg   

(ii) 221211221211 ,,,,, LLLggg  satisfy the 

compatibility equations (25),(26) Then there exists a 

patch ),(= tsXX  of class 
3C  defined in a 

neighborhood of ),( 00 ts  for which 

221211221211 ,,,,, LLLggg  are the first and second 

fundamental coefficients. The surface represented by 

),(= tsXX  is unique except for position in space.  
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5. Geometric Properties of Hasimoto Surfaces 

 For Hashimoto surfaces ),(= tsxx  the 

tangent vectors are  

bt ts =,= xx  

 The coefficients of the FFF are  

  xx ddI .=  (27) 

  )).((= dtdsdtds tsts xxxx  

 
222= dtds   

 so that  

.=0,=1,= 2
221211 ggg   (28) 

 The unit normal to x :  

nN 



=

||
=

ts

ts

xx

xx
   (29) 

 The coefficients of the SFF are  

  NX ddII .=  (30) 

  )).((= dtdsdtds ts nnbt   

 
222 )(2= dtdsdtds ss    

 where we use the time evolution equations of the 

triad },,{ bnt  with respect to s  and t  respectively 

Eqs.(2), (13) to obtain  

.=,=,= 2
221211   ssLLL (31) 

 It is easily verified that the Eqs. (28), (31) with (15) 
satisfies the compatibility conditions (25),(26) which 
are determined the surface up to its position in space as 
we shall show in the next section. The Gaussian 

curvature g  and the mean curvature m  for 

Hasimoto surface are  




 ss

g


=          (32) 

  

)(
2

1
= 22 






 ss

m       (33) 

 
6. Geometric Visualization of the Hasimoto Surfaces 
and its Generator 

 We recall that a curve in 
3E  is uniquely 

determined by two local invariant quantities, curvature 
and torsion, as functions of arc length. Similarly, a 

surface in 
3E  is uniquely determined by certain local 

invariant quantities called the first and second 
fundamental forms. Now by using Fundamental 
Theorem Of Surfaces 4.1 which states that the 

sextuplet },,,,,{ 221211221211 LLLggg  determines 

the surface S  up to its position in space. The surfaces 

below generated by evolution of space curve obtained 
via solving the Gauss-Weingarten equations (19,20) for 
a specified the coefficients of FFF and SFF using 
Mathematica [14].  

 

  
 

Figure 1: Hasimoto surface corresponding to 

1)=),2(2=(   tssech  

   
   
 

  
(a) 0)=),(2=(  ssech   

  
(b) surface generated by evolution of the above curve 
Figure  2:  Hasimoto surface and its generator 

  
7. Conclusions 

 we constructed the Hasimoto surface from its 
fundamental form coefficients via numerical 
integration of Gauss-Weingarten equations and 
fundamental theorem of surfaces.  
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