
Life Science Journal, 2012;9(3) http://www.lifesciencesite.com

1

Scaling Technique for Web Based Management Systems in Bioinformatics

Syed M. Ahsan, Amjad Farooq, M. Shahbaz, M. Junaid Arshad, M. Aslam

Department of Computer Science and Engineering, UET, Lahore, Pakistan
ahsancs@hotmail.com

Abstract: With the enormous growth in web based management solutions the number of transactions increases
proportionally, as system grows the number of requests increase. With the increase in number of request there
introduce scaling concept. There are number of scaling techniques available but all these techniques focus on
scaling the server by distribute the load on different servers. Many techniques give solutions to reduce the number
of request and load balancing. But all the existing techniques are limited as the number of transactions increases
exponentially. As a remedy we introduce new technique, which helps give a scalable solution without server
maintenance cost. In this technique all users actions stored in the local java script model which then will saved in
the database after some point so that to reduce the traffic. Objective is to make some intelligent client who stores
all transaction at the client side and send only one request to server for all transactions.
[Syed Ahsan, Amjad Farooq, M. Shahbaz, M. Junaid Arshad, M. Aslam. Scaling Technique for Web Based
Management Systems. Life Science Journal. 2012;9(3):1-5] (ISSN:1097-8135). http://www.lifesciencesite.com. 1

Keywords: Techniques; Management System; Web Based; Solutions

1. Introduction

The main issue with web applications is
inability to plan and predict the number of users that
will be accessing this application. Sometimes this
amount of users generate peak load in some special
events or days. In such condition application remain to
continue and work properly without any impact. And
the response time must be average. So in the worst
case application may chock or server crashes because
of the amount of users that access the system. So the
solutions would be such that it handles such worst
condition and handle the dynamic behavior. Many
techniques offer some dynamic behavior of the server,
which distribute its load and give the average response
time. In all techniques they might need some
minimum number of servers but in the worst condition
the number of servers might increase to infinite so it
would increase the maintenance of server and cost of
each instance. Many scaling techniques exists which
helps to improve the server response and load on
server, Like database Sharding which shards the data
with respect to region using different shard key,
Replication of servers, but all the available techniques
have high cost of maintenance and hardware [3]. All
available techniques focus on the server maintenance
or to improve the middle layer. Some techniques are
used to reduce the number of transactions but the
problem of server maintenance still persists. Now we
introduce the new technique that uses the JavaScript
model to store the information at client side and then
send all the transactions made by the user send to the
server in a single request. This system helps to develop

the forms at run time, rich JavaScript capable to draw
the form without compile or upload the page. All the
existing technique makes the server scalable but in our
purposed system we focus to fetch all the data from
database in JavaScript model. This purposed
techniques valid for single transaction system and
partially offline mode.

2. Related Work

Client server model describes the
communication between two instances of computers
where one is termed as client who is on service
requesting end and other is termed as server which is
at service fulfilling end [1]. Client server architecture
is all about sharing resources more specifically it’s all
about sharing server’s resources by clients. Normally
communication between two instances happens
through a certain protocol. That protocol can be
termed as Network. Client and server model can be
applied within a single system or it can be over a
computer network. Client triggers the communication
by requesting server’s resources while server fulfills
entertains client’s requests [5].

Client server architecture approach can also
be applied in software engineering. Multi tier
architecture is one very good example of this
phenomenon. In which multiple layers (Presentation,
Business logic, and database) can communicate with
each other. 3-tier architecture is highly used multi-tier
architecture.

Another example of client server architecture
in real life can be online form submission in school,

Life Science Journal, 2012;9(3) http://www.lifesciencesite.com

2

College or university. In these type of transactions
programs in computer is acting as client while the
computer which is saving the forms is server.

Model-View-Controller is an architectural
design in software engineering which can be used to
separate the software programs in different logical
layers. It separates the application layer and business
logic layer from user interface. Adopting this approach
can leads to less time input for maintenance. If any
amendment is required then instead of going for the
whole application change only specific tier can be
amended.

Client server technique is good enough to be
used for efficient communication but there is some
limitation which needs to keep in view while
implementing this architecture, as this architecture is
based on mutual communication of client and server.
All the clients are sending requests to server which in
returns shares his resources. Too many requests from
too many clients can put an impact on server’s
performance. For any action at client side server has
to respond and bring in the latest data. Good client
server model can be implemented if server is built with
efficient resources. Server should be able enough to
respond to all clients’ requests on real time basis.

Scaling dynamic web sites has been gained
much attention because of growing financial issues.
Most of the existing research on scaling web
applications focuses on either content replication [4],
[5], [7] or dynamic content caching [8] that need site
administrator or manual intervention of user.
Furthermore, the dynamic content need page
fragments via templates and database triggers [4].
Similarly, some current data replications techniques
require specialized application uniformity schemes [4],
[5], [8] and force the consumer to handle conflicting
results [2].

3. Proposed Technique

In the early era of dynamic website
development the request/respond architecture was very
famous. The browser application used to send
synchronous calls to the server and server used to send
response against this request. Later on the
Asynchronous post back or Ajax gained popularity due
to its hidden request/response nature but still the
number of request sent to the server had significance
impact on the performance of the server. The purposed
methodology can be implemented in single transaction
system in which work of one user is not affected by
other users. In these types of systems users normally
work in partial offline mode management software
solution are example of such system where we can
implement this technique to enforce minimum request

on the server and to boost the performance of the
server.

When the user logins into the system all its
data is fetched into model layer and this model layers
classes are then passed to Dynamic JavaScript Code
generation layer that is generated Dynamic JavaScript
code for the GUI this JavaScript code is basically build
the global shared object of Script model layer and then
GUI pages are call required to HTML function of that
class that is generate dynamic HTML depending upon
contents to be displayed on the page.

When the user leaves the page or he wants to
save & reset the state of data the JS class model
returns the XML with all the changes user have made
in the state of data and then this xml is passed to XML
parser which parses this XML and fill the model layer
classes which can then be passed to Data access layer
for further operations in database.

The proposed design method has the
following components as shown in Fig. 1:

GUI: This component fetches data from JS
Class model in the form of html and displays the
content on the page. Other functions like validation,
getting input from the user, is performed here and all
the actions taken by the user is recorded in JS class
model main object of JS class model is shared among
all the pages and also redirection is also be performed
on the client side to keep this shared object alive.

Class Model Using JavaScript: This
component is replica of ERD that is used to tack all
the changes users have made in the state of data it
received from database. The whole model returns a
global object that contains the user data and this object
are shared on all the pages. Every change will be
highlighted in this object and when user will leave the
system or wants to Save and Reset state of data.

Business Logic Layer: The main purpose of
this layer is to monitor the incoming and outgoing
traffic between GUI and other components. This layer
builds the JS class model after getting dynamic code
from Dynamic JavaScript Code Generation Layer and
when data has to be saved into database it fetches xml
sting from JS class model and passes this string to
XML parser for further processing.

Dynamic JavaScript Code Generation
Layer: This layer gets the classes from model layer
and creates JavaScript code to populate data into
JavaScript classes. This JS code is thrown on the page
dynamically to generate the contents of the page.

XML Parser: The XML parser gets the XML
document as an input from GUI and populates all the
data in Server side classes of model layer to be saved
in database.

Life Science Journal, 2012;9(3) http://www.lifesciencesite.com

3

Figure 1: Architecture of the Proposed Technique

Model layer: Model layer models the ERD
model on server side classes. These classes have same
relationship as database entities and are used to
populate to populate user data into memory. If we are
using Asp.Net framework then Un-typed dataset are
best fit with the methodology.

Data Access Layer: This layer handles all the
operations that are relegated to database like fetching
data from database. Inserting data into database or
deleting data from the database

Database: Database is the essentials parts of
dynamic web sites. All data and other supporting
information are stored in the database as we store for a
normal application. The main point that needs to be
more focused while designing database is that all the
entities and there relationship should be clearly
defined. The same ER model is used to built model
layer and Class model using client side scripting. Any
change in any entity is needed to be incorporate into
model layer and scripting class model.

The proposed technique has very appreciating
values of certain parameters such as load balancing,

speed, server-interaction and client-intelligent
behavior. Using this architecture the number of request
sent to the server is less than ordinary request/response
architecture so load on the server will be minimized.
Everything is directly rendered on client and all the
data will be available on client side as well so this will
boost the speed of system as well. Request to the server
will be sent either on the demand of user or when he
will leave the system. Furthermore, all managerial
tasks like adding, updating or removing any record
will be handled on client side and sate will be saved
into database on logout or user’s demand so user will
be working in partially offline mode.

4. Case Study

To verify the correctness and completeness of
proposed technique, we have taken a library
management system in which a librarian login into the
system and perform various actions like issue new
book, update book status and add new student into
library etc, the some formal description of class model
of case study is listed below:

Life Science Journal, 2012;9(3) http://www.lifesciencesite.com

4

function Grid (id, name, className, rowCount)
{
this.ID = id;
this.Name = name;
this.ClassName = className;
this.Rows = rowCount
this.Columns=new Array ();
this.RowResponse=new Array ();
this.AddRowResponse = function (col)
this.AddColumn = function (col)
 this.toXML = function (mod,SSsequence,label) {}
this.toHTML = function (Mod, Header, FormID, SectionId,
SubSectionID, label) {}
}

function Question (id, text, type, sequence, pageBreak, label)
{
this.ID = id;
this.Sequence = sequence;
this.Text = text;
this.Type = type;
this.Label=label;
this.Options = new Array ();
this.Answers = new Array ();
this.AddAnswer = function AddAnswer (Obj) {}
this.GetAnswerIndex = function (parent) {}
this.GetUniqueAnswerID = function GetUniqueAnswerID
(QuestionID) {}
this.AddOption = function (o) {}
this.GetUniqueOptionID = function GetUniqueOptionID (QuestionID)
{}
this.toXML = function (mod) {}
this.toHTML = function (mode, FormID, SectionId, SubSectionID) {}
}

function SubSection (id, name, className, sequence, type, label)
{
this.ID = id;
this.Name = name;
this.Sequence = sequence;
this.Label = label;
this.Grid = new Grid ('','','',0);
this.Questions = new Array ();

this.AddGrid = function (grid) {}
this.AddQuestion = function AddQuestion (q) {}
this.DeleteQuestion = function DeleteQuestion (id) {}
this.GetQuestionByID = function GetQuestionByID (id) {}
this.SortQuestions=function SortQuestions () {}
this.toXML = function (mod) {}
this.toHTML = function (mode, FormID, SectionID) {}
}

function Section (id,name, className, sequence, pageBreak, label)
{
this.ID = id;
this.Name = name;
this.ClassName = className;
this.Sequence = sequence;
this.Label = label;
this.SubSections = new Array ();
this.AddSubSection = function AddSubSection (SS){}
this.GetUniqueSubSectionID = function GetUniqueSubSectionID
(SectionID) {}
this.DeleteSubSection = function DeleteSubSection (id) {}
this.GetSubSectionByID = function GetSubSectionByID (id) {}

this.SortSubSections = function SortSubSections (){}
this.toXML = function (mod) {}
this.toHTML = function (mode,FormID) {}

}

function Form(id,title,sequence,istemplate, isComplete)

{
this.ID = id;
this.Title = title;
this.Sequence = sequence;
this.Sections = new Array ();
this.AddSection = function (s) {}
this.DeleteSection = function DeleteSection (id) {}
this.GetSectionByID = function GetSectionByID (id) {}
this.SortSections = function SortSections () {}
this.toXML = function (mode) {}
this.toHTML = function (mode) {}
}

function Study(id, name, xdate, nResponses, IsTemplate,
ProtocoleNumber, ProjectId, StudyDescription, StudyShortName,
Type, StartDate, EndDate, PlannedEndDate, NextFormID,
NextSectionID, Mode)

{
this.ID = id;
this.Name = name;
this.ExpiryDate = xdate;
this.Responses = nResponses;
this.IsTemplate = IsTemplate;
this.StudyShortName = StudyShortName;
this.Type = Type;
this.StartDate = StartDate;
this.EndDate = EndDate;
this.Forms = new Array ();
this.AddForm = function (f) {}
this.DeleteForm = function DeleteForm (id) {}
this.GetFormIndex = function GetFormIndex (id) {}
this.GetFormByID = function (id) {}
this.toXML = function (mode) {}
this.toHTML = function (mode) {}
}

The GUI component can be build dynamically

or statically we can use two approaches to build this
system either we can create all the forms and can set
the value of input/output field from JS Model Layer or
we can get whole html from the JS model to show the
contents on the page. Client model contains the classes
of the entire table that have been created in the
database. Of course the relation like
inheritance/composition between different entities will
also be maintained and all important method are
implemented like for book class we implement
different data manipulation functions. The Business
Logic Layer governs the traffic between GUI and lower
layers. it validates the xml that is given to XML parser
and contains other business logic. The Dynamic
JavaScript Code Generation Layer becomes in action
when user will fetch data from database this will create
dynamic JS code. This dynamic code will build the JS

Life Science Journal, 2012;9(3) http://www.lifesciencesite.com

5

Model.

5. Cconclusion aand Future Work

With the enormous growth in web based
management solutions the number of transactions
increases with the increase in the number of requests.
To server so many requests scaling concept was
introduced. There are number of scaling techniques
available but all these techniques focus on scaling the
server by distribute the load on different servers. The
purposed study focus on to shift the load on client
system and offers a model which can decreases the
number of request sent to the server. This Software is
best fit with those systems where more than one user
does not work on the same data simultaneously. This
technique can be further used to create readymade
ERPs solutions. The model can be enhanced into two
parts one for creation of the website and the other will
be for the normal user of system.

Acknowledgment

This research work has been completed with
the support of the University of Engineering and
Technology, Lahore-Pakistan.

References
[1] Pedro Valderas and Vicente Pelechano, A Survey

of Requirements Specification in Model-Driven
Development of Web Applications, ACM
Transactions on the Web, Vol. 5, No. 2, May
2011.

[2] Acerbis, R., Bongio, A., Brambilla, M., Tisi, M.,
Ceri, S., and Tosetti, E., Developing eBusiness
Solutions with a model driven approach: The
case of Acer EMEA. In Proceedings of the 7th
International Conference on Web Engineering,
pp. 539–544, March 2007.

[3] Atkinson, C. and Kuhne, T., Model-driven
development: A meta-modeling foundation.
IEEE Softw. Vol. 20, No. 5, pp. 36–41, April
2003.

[4] Brambilla, M., Ceri, S., Fraternali, P., and
Manolescu, I., Process modeling in Web
applications. ACM Trans. Softw. Engin. Method
(ACM TOSEM), pp. 360–409, May 2006.

[5] Cachero, C., Una extensi´on a los m´etodos OO
para el modelado y generaci´on autom´atica de
interfaces hipermediales. PhD dissertation (in
Spanish). Universidad de Alicante. Alicante,
Spain, June 2003.

[6] De Troyer, O., Casteleyn, S., and Plessers, P.,
WSDM: Web semantics design method. Web
Engineering: Modelling and Implementing Web
Applications. Human-Computer Interaction Book

Series, Springer, pp. 303–351, 2008.
[7] Garrigos, I., Gomez, J., Barna, P., and Houben,

G. J., A reusable personalization model in web
application design. In Proceedings of the 2nd
Workshop on Web Information Systems
Modelling, (In Conjunction with ICWE’05),
August 2005.

[8] Koch, N., Zhang, G., and Escalona, M. J., Model
transformations from requirements to Web
system design. In Proceedings of the ICWE’06,
May 2006.

2/20/2012

