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Abstract: Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer 
global mechanical load to mechanical stimuli to cells through its architecture. The manufacturing process may cause 
the deformation and internal defects in multi-layered ceramic scaffold (MLCS) that results in the malfunction for 
tissue engineering applications. This work aims to investigate the deformation of MLCS that composed of nearly a 
hundred of ceramic and metal powder films interleaved and stacked due to high pressure at constant elevated 
temperature. On theoretical analysis, classical laminated plate theory, linear elastic assumptions and equilibrium 
equations were adopted. Associated with the practical process three types of boundary conditions (BCs) were used, 
such as all edges simple-supported, two edges simple-supported and the other two free, and four edges free. Also, 
two more conditions need be added, including four fixed points at corners and the elastic foundation at bottom. As 
for the numerical simulation the finite element method (FEM) incorporated with software ANSYS was used to 
obtain the displacement field of MLCS to validate the analytical prediction. Compared with the numerical results the 
analytical solutions were found satisfactorily acceptable, i.e., the errors were about 0.1%- 6.2% for the BCs of four 
edges free and four corners fixed. The errors about 0.13%- 6.15% were also acceptable for the BCs of two edges 
simple-supported and the others free. However, the analytical solution for the case of all the edges simple-supported 
did not agree with the numerical results. Finally, the proposed theoretical methodology alternatively provides an 
analytical method, instead of FEM and ANSYS, to analyze a nearly and over hundred layered MLCS for tissue 
engineering scaffolds. 
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1. Introduction 

The physical characteristics required of scaffolds 
for tissue engineering necessitate the application of 
novel processing techniques for its design and 
fabrication. Scaffolds have been studied and 
fabricated using conventional techniques such as 
fiber bonding, solvent casting, particulate leaching, 
membrane lamination and melt molding [1]. In 
scaffold-based tissue engineering (TE) strategies, the 
successful regeneration of tissues and organs from 
matrix-producing connective tissue cells or 
anchorage dependent cells relies on the application of 
suitable substrates or scaffolds [2]. The scaffolds, built 
from synthetic or natural materials, serve as 
temporary surrogates for the native extracellular 
matrix (ECM). The challenge in scaffold-based TE is 
to construct biologic replicas in vitro such that the 
engineered composite becomes integrated for 
transplantation in vivo for the recovery of loss or 
malfunctioned tissues or organ. The composite 
should subsequently function coordinately with the 
rest of the body without risk of rejection or 
c o m p l i c a t i o n s  [ 3 ,  4 ] . 

Numerous studies have been conducted on forming 

particular porous microarchitectures inside scaffolds 
and foam structures to obtain acceptable mechanical 
properties [5-7]. In addition, several groups have 
developed porous bone substitutes using various 
biomaterials including polymers, ceramics, metals 
and composites in an attempt to obtain biomechanical 
properties matching natural bone [8-10]. Bioceramics, 
especially calcium phosphates (CaP), are known as 
bone-resembling materials with excellent 
biocompatibility but limited mechanical strength 
[10–12]. Although porous ceramic materials are 
remarkably stiff and strong compared to polymers 
and composites, they are typically too brittle to resist 
significant cyclic loading [10, 13].  

Computer-aided tissue engineering (CATE) is a 
newly emerging field that can be classified within 
three major categories: computer-aided tissue 
modeling, computer- aided tissue informatics and 
computer-aided tissue scaffold design and 
manufacturing [14, 15]. Application of CATE allows us 
to explore many novel ideas in modelling, design and 
fabrication of tissue scaffolds with enhanced 
functionality and improved interactions with cells. 
This is particularly useful in modeling and design of 
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complex bone tissue scaffolds and replacement 
structures that require us to simultaneously consider 
many biological and biophysical design requirements 
[16–18]. Available methods for characterization of 
mechanical properties of porous scaffolds and 
heterogeneous tissues were primarily based on using 
experimental approaches [19, 20], finite element 
numerical calculation [21-23], or effective property 
modeling. However, although the asymptotic 
homogenization theory has been well developed 
[24–27], the application of the theory requires a finite 
element implementation and the associated 
computational algorithm for its numerical solution. 

In theoretical derivation by force method we 
assume that the thin plate resting on an elastic 
foundation [28]. For elastic foundation problem, 
Adewale [29] studied that the singularity function 
method to solve the semi-infinite orthotropic 
rectangular plates on a Winker-type elastic 
foundation. Jayachandran and Vaidyanathan [30] 
investigated the postbuckling response of the 
isotropic square thin plate subjected to biaxial 
compression resting on elastic foundations by the 
finite element method. Shen [31] presented the 
performances of perfect and imperfect, 
antisymmetrically angle-ply and symmetrically 
cross-ply laminated plates under combined loading 
and resting on Pasternak-type or softening nonlinear 
elastic foundations from which the results for 
Winkler elastic foundations were obtained as a 
limiting case. Horibe and Asano [32] reported the 
method for calculating the large deflection of a 
rectangular plate on an elastic foundation by the 
boundary integral equation method. Finally, our work 
is to determine the deflection of MLCS due to high 
pressure at constant elevated temperature with the 
assumption of laminated plate resting on an elastic 
foundation theoretically and validated numerically. 
The numerical simulation by FEM with software 
ANSYS was used to obtain the displacement field of 
MLCS for verification.  

 
2 Theoretical Formulation 

For simplicity, assume a homogeneous, isotropic 
and linearly elastic multi-layered thin plate of 
uniform thickness h, dimensions a, b, modulus of 
elasticity E and Poisson’s ratio v. The plate rests on 
an elastic foundation and is subjected to a biaxial 
inplane loading Nx, Ny and a transverse distributed 
load q as shown in Fig. 1. Also, the intensity of the 
reaction p at every point of the bottom plate is 
proportional to the deflection w at that point, as p=kw 
with k being the modulus of foundation. The 
deflection due to vertical pressure should be balanced 
by the reactive deformation of elastic foundation 
from the force method. Accordingly, the differential 

equation for deflection in rectangular coordinates is 
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where D=Eh3/[12(1-v2)] is the flexural rigidity of the 
plate, E is Young’s modulus, and v Poisson’s ratio.  

Associated with the texts [28] and practical 
manufacturing process, three types of BCs were 
discussed, such as all edges simple-supported 
(S-S-S-S), two opposite edges simple-supported and 
the other two free (S-F-S-F), and four edges free 
(F-F-F-F). Also, two more conditions need be 
necessarily added, including four corners fixed and 
the bottom plate as elastic foundation.  

For the case of BCs S-S-S-S as shown in Fig. 1(c), 
the load distributed over the surface is  
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where q0 is the intensity of the load at the center of 
the plate. The BCs for simple-supported edges are  
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To satisfy with all BCs the deflection can be 
expressed as  
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Substituting Eqs. (2) - (4) into Eq. (1) with 
rearrangements [33] and neglecting the details, we 
receive  

 










...5,3,1 ...5,3,1

422

2

22

2

2

2

2

26

0

])[(

sinsin
16

m n yx

D

k

bD

nN

aD

mN

b

n

a

m
mn

b

yn

a

xm

D

q
w







 (5) 

Next, consider the case of S-F-S-F as illustrated in 
Fig. 1(d) where ax 0 and 2/2/ byb  . The 

BCs are  
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where EI is the flexural rigidity of plate. The 
deflection is in the form as  
w=w1+w2 
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Eqs. (7) and (8) are satisfied with the BCs. The four 
constants in Eq. (8) can be determined by satisfying 
the BCs and the symmetry. Similarly, the deflection 
of plate is found [33] and expressed as  
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Substituting 0 into Eq. (10), we obtain the 
constants in Eq. (9) for the case of S-F-S-F.  
    Finally, for the case of F-F-F-F as illustrated in 
Fig. 1(e) where 2/2/ axa   
and 2/2/ byb  .  

In such case the BCs are  
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The deflection of w can be expressed as  
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where  / and
n

A ,…,
n

D are some constants and 

n=1,3,5,…. In a particular case of EI=0, n=1, 

 / =1,
11

BA  , 
11

DC  , and aDEI / , we have 

a square plate carrying a biaxial inplane loading and a 
uniform pressure and supported only at the corners. 
After calculations the constants, 

3868.5479
1
B and 3362.33354

1
D , are obtained 

[33].  
 
   From the above-mentioned investigation, the 
deflection w associated with three BCs of MLCS can 
be accomplished.  
 

 
Figure 1. Scheme of MLCS under vertical and lateral 
pressures on elastic foundation at various boundary 
conditions  

 
Figure 2. The geometry of 83-layered MLCS 

 

 
Figure 3. Scheme of MLCS under vertical and lateral 
pressures (a) side view (b) top view (c) loading 
positions for nine locations in MLCS  
 



Life Science Journal, 2012;9(2)                                    http://www.lifesciencesite.com 

 

163 

 
Figure 4. The displacements of u, v and w subjected 
to uniformly vertical pressure by loading positions 
for nine locations in MLCS  
 
3 Numerical Simulation  

Figure 2 shows the geometry of MLCS, and the 
dimensions of a ceramic film are 
1.368mm 0.345mm  2.25μm (L W  T), and a 
metal powder film 1.188 mm 0.175 mm 1.6μm, 
respectively. The Young’s moduli of both films, such 
as  EBaTiO3=3.53GPa and ENi=4.09GPa, were 
obtained by nanoindentation testing [33], however, the 
Poisson’s ratio and coefficient of thermal expansion 
were adopted from [35], 0.33 for ceramic and 0.26 for 
metal powder films, and the coefficients of thermal 
expansion are 9.8ppm/0K and 13.3ppm/0K, 
respectively. The SEM micrographs of ceramic film 
and printed metal powder film were also obtained [33]. 
It can be observed that the grain boundary becomes 
more and more clear with the increase of temperature 
and time. That means almost no phase changes occur 
in the manufacturing process of MLCS.  

The MLCS were subjected to high hydrostatic 
pressure at elevated temperature in processing. Two 
types of vertical loading were investigated, such as 
the uniform pressure and slant pressure of 1° 
inclination. The vertical pressures include 8000, 
10000, 12000, 16000 and 20000psi. Also two lateral 
pressures were added, such as the uniform and 
linearly distributed pressures. The temperature was 
kept at constant of 850C. The BCs include fixed at 
bottom and other sides free as shown in Figure 3.  

For Simplicity, the sample is reasonably assumed 
elastic, isotropic and homogeneous. The friction and 
gap between layers can be ignored. A pre-study was 

performed by using software, ANSYS. Eight-node 
solid element (Solid 45) and twenty-node solid 
element (Solid 95) were used [34, 35]. In order to assure 
the preciseness of simulation the convergence 
analysis was reasonably done in advance. By the 
results of convergence analysis, the errors at special 
area obtained from both coarse and refined meshes of 
the metal electrode were less than 0.002%. In order to 
observe and focus on the special zone that the 
mapped mesh method was properly adopted.  
 
4 Results  

In nanoindentation two test points were so close 
that an error of Young’s modulus was found. After a 
series of tests of the point distances of 10, 50 and 
100μm, it is suggested that two test points should be 
at least 100μm  apart. Only two load-displacement 
curves were deviated away, then these two unloading 
curves couldn’t be adopted for Young’s modulus 
calculation [33].  

The numerical results of deformations, i.e., ux, uy, 
uz of metal electrode at the first layer(bottom), 
20th ,40th ,60th , and 80th (top)layer, subjected to 
uniformly vertical pressure, 69MPa( 10000psi) of 
practical use, were showed in Fig. 4, as an example. 
The results due to other pressures, such as 
8000-20000psi were omitted. Also, it is found that 
the deformations and stresses do not change 
significantly due to a 1° inclination of vertical 
pressure. Hence, the results of slightly inclined 
pressure were neglected. It needs be mentioned that 
the locations of maximal deformation were also 
marked according to Fig. 3(b).  
The theoretical analysis for S-S-S-S, S-F-S-F and 
F-F-F-F plates subjected to uniformly vertical 
pressure combined with biaxial compression and 
resting on elastic foundations. For all cases the 
material properties, dimensions and uniform pressure 
are E=3.810GPa, v=0.3, h=429.55μm, a=b=0.15m 
and q=69MPa, respectively. Young’s modulus E and 
Poisson’s ratio v are obtained by the rule of mixtures 
of two parts. The theoretical results of deformations, 
uz, of metal electrode at the top layer, subjected to 
uniformly vertical pressure, 69MPa and a biaxial 
inplane loading for various BCs were selected and 
listed in Table 1. The errors of the numerical results 
compared with the analytical solutions were listed in 
Table 2.  
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Table 1.  The deformation, uz, of analytical solutions of the top layer subjected to uniformly vertical pressure, 
69MPa by various boundary conditions  

  Deflection of measured point (μm) 

location B. C. 1 2 3 4 5 6 7 8 9 

LU 

S-S-S-S 0 0 0 0 0.03 0.06 0 0.05 0.09 

S-F-S-F 0 1.36 1.32 0 1.53 1.55 0 1.53 1.55 

F-F-F-F 0 1.08 1.27 0.57 1.4 1.45 0.86 1.56 1.53 

LC 

S-S-S-S 0 4.72 9.66 0 4.72 9.66 0 4.72 9.66 

S-F-S-F 0 1.92 1.9 0 1.92 1.9 0 1.92 1.9 

F-F-F-F 1.26 1.96 1.97 1.26 1.96 1.97 1.26 1.96 1.97 

LD 

S-S-S-S 0 0.05 0.11 0 0.03 0.05 0 0 0 

S-F-S-F 0 1.53 1.55 0 1.53 1.55 0 1.36 1.32 

F-F-F-F 0.99 1.63 1.57 0.49 1.36 1.42 0 1.08 1.27 

CU 

S-S-S-S 0 0 0 1.38 1.38 1.38 2.07 2.07 2.07 

S-F-S-F 1.37 1.37 1.37 1.56 1.56 1.56 1.56 1.56 1.56 

F-F-F-F 1.36 1.36 1.36 1.52 1.52 1.52 1.61 1.61 1.61 

CC 

S-S-S-S 251 251 251 251 251 251 251 251 251 

S-F-S-F 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 

F-F-F-F 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 

CD 

S-S-S-S 2.38 2.38 2.38 1.19 1.19 1.19 0 0 0 

S-F-S-F 1.56 1.56 1.56 1.56 1.56 1.56 1.37 1.37 1.37 

F-F-F-F 1.61 1.61 1.61 1.52 1.52 1.52 1.36 1.36 1.36 

RU 

S-S-S-S 0 0 0 0.06 0.03 0 0.09 0.05 0 

S-F-S-F 1.32 1.39 0 1.55 1.56 0 1.55 1.56 0 

F-F-F-F 1.27 1.11 0 1.45 1.42 0.57 1.53 1.58 0.86 

RC 

S-S-S-S 9.66 4.83 0 9.66 4.83 0 9.66 4.83 0 

S-F-S-F 1.9 1.96 0 1.9 1.96 0 1.9 1.96 0 

F-F-F-F 1.97 1.96 1.26 1.97 1.96 1.26 1.97 1.96 1.26 

RD 

S-S-S-S 0.11 0.05 0 0.05 0.03 0 0 0 0 

S-F-S-F 1.56 1.56 0 1.55 1.56 0 1.32 1.39 0 

F-F-F-F 1.57 1.65 0.99 1.42 1.38 0.49 1.27 1.11 0 

Notes:  
 please refer to Fig. 4(b) for positions (U: upper, C: central, D: lower, L: left, R: right)  
 please refer to Fig. 3 for measured points  

 
Table 2.  The errors of compared with numerical results and analytical solutions of the top layer at various 

locations on S-F-S-F and F-F-F-F 
  Error of deflection of measured point (%) 

location B. C. 1 2 3 4 5 6 7 8 9 

LU 
S-F-S-F  -- 0.48 0.57  -- 1.04 2.65  -- 3.83 0.51 

F-F-F-F  -- 20 3 28 9.3 4.1 2.4 1.9 1.3 

LC 
S-F-S-F  -- 1.58 2.37  -- 5.08 2.81  -- 1.73 2.37 
F-F-F-F 33.4 0.5 1.1 32.6 3.1 0.6 33.4 0.3 1.1 

LD 
S-F-S-F  -- 3.8 0.53  4.07 6.15  -- 1.55 0.57 

F-F-F-F 12.3 2.6 1.3 41 14.8 2.5  -- 21.7 3 

CU 
S-F-S-F 4.28 0.13 4.28 5.51 0.95 1.95 1.29 5.14 1.29 

F-F-F-F 3.4 0.7 3.4 3.4 2.9 0.1 2 2 2 

CC 
S-F-S-F 0.74 2.5 1.74 0.3 4.62 0.3 0.74 2.63 1.74 

F-F-F-F 0.6 2.6 0.6 0.2 4.7 0.2 0.6 2.7 0.6 

CD 
S-F-S-F 1.31 5.13 1.31 1.97 4.22 5.53 4.28 2.24 4.28 

F-F-F-F 2 1.9 2 0.1 6.2 3.4 3.4 3.1 3.4 

RU 
S-F-S-F 0.6 2.5  -- 2.7 2  -- 0.5 2.4  -- 

F-F-F-F 3 18.4  -- 4.1 7 31.6 1.3 1.2 2.4 

RC 
S-F-S-F 2.4 0.5  -- 2.8 1.7  -- 2.4 0.7  -- 

F-F-F-F 1.1 0.8 33.4 0.6 1.9 32.6 1.1 0.9 33.4 

RD 
S-F-S-F 0.5 2.4  -- 6.1 1.1  -- 0.6 0.3  -- 

F-F-F-F 1.3 3.2 12.3 2.5 12.6 37.9 3 20.1  -- 

Notes:  
 “ -- ”denotes the data of the fixed edge can neglected.  
 please refer to Fig. 4(b) for positions (U: upper, C: central, D: lower, L: left, R: right)  
 please refer to Fig. 3 for measured points  

 
 



Life Science Journal, 2012;9(2)                                    http://www.lifesciencesite.com 

 

165 

5 Discussion  
From Figure 3 it is obvious to see only the first 

quadrant of MLCS needs be analyzed due to the 
geometric symmetry, and also six locations, such as 
LU, CU, RU, RC, RD and CC, are considered. After 
simulation the largest deformation of ux occurs at 
locations RC and LC, and uy at locations CU and CD 
similarly, since both largest ux and uy look the same 
after a rotation 90°, i.e., they are compressed by 
vertical pressure of 69MPa and subjected to lateral 
pressure simultaneously. However, the largest uz 
occurs at location CC with both-side lateral pressure 
balanced. From Figure 4 it is easily found that the 
deformation, uz, of electrode films decrease as the 
lateral pressure number increasing, i.e., more 
pressure cumulatively acting on the top layer. Also, 
the deformations become larger at the corners of 
electrode because of the well-known free-edge effect.  

For practical applications, both vertical pressure 
(69MPa) and lateral pressure are applied 
simultaneously. All the deformations, ux, uy and uz, 
are increasing from the bottom to the top, especially 
the maximal values occur at the top layer.  

The trends of stress and deformation fields due to 
other pressures, i.e., 8000, 12000, 20000psi, are 
similar to those results as above mentioned for 
69MPa, since our priory assumptions for both films 
are linear and elastic. Nevertheless, the pressure over 
20000psi will crush the films, i.e., it is too high to 
fabricate MLCS.  

The MLCS green sheets were divided into nine 
measure points per one region with suitably different 
boundary conditions. Compared with the numerical 
results and the analytical solutions of nine measure 
points were found satisfactorily acceptable. As 
shown in Table 2, the errors were about 0.1%- 6.2% 
for the boundary conditions of four edges free and 
four corners fixed. The errors about 0.13%- 6.15% 
were also acceptable for the boundary conditions of 
two opposite edges simple-supported and the others 
free. However, the analytical solutions did not agree 
with the numerical results for the case of all the 
boundary conditions simple-supported.  
 
6 Conclusion 

The deformation field in MLCS subjected to 
vertical and lateral pressures at high temperature 
were obtained by theoretical analysis and numerical 
simulation incorporated with FEM and ANSYS. The 
duration of high temperature tests were performed to 
assure no phase changes in both ceramic and 
electrode films. Also, nanoidentation tests were done 
to obtain the Young’s modulus of both films as the 
input data for simulation. Finally, the concluding 
remarks can be summarized as follows:  
 The material properties of both ceramic and 

metal powder films, as the input data, were 
obtained by nanoindentation.  

 The assurance of no phase changes of both 
films was confirmed by high temperature tests 
in advance.  

 The analytical prediction of deflection and 
stress fields was validated by the numerical 
simulation of FEM and software ANSYS with 
very small errors.  

The achieved analytical methodology can be used 
to multi-layered plate instead of conventional 
numerical methods with commercial softwares for 
applications of tissue engineering scaffolds.  
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