
Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 527

An innovative algorithm for code Obfuscation

Aslam Muhammad1, Zia-ul Qayyum2, Ahmad Ashfaq3, Waqar M. M.4 Martinez-Enriquez A. M5., Afraz Z. Syed6

1,3,4,6Department of Computer Science & Engineering, UET, Lahore Pakistan
2Department of Computing and Technology, IQRA University, Islamabad, Pakistan

5Department of CS, CINVESTAV, D.F. Mexico
(Corresponding author email: maslam@uet.edu.pk)

Abstract: The cod obfuscation is a process of transforming any program into an incomprehensible form for
protecting it from malicious attempts. To achieve this objective, many algorithms are found in the literature. Some
of them based on program instructions reordering and block reordering which are difficult to implement as well as
resource requirements are very high. In addition, some associated constructs are needed to run such applications and
hence demand more user expertise. In this research paper, we propose a new user friendly obfuscation algorithm
based on insertion of zero impact instructions and additional code insertion. Obfuscation can be carried out of any
code however we choose assembly language programs as reverse engineers always translate high level language
codes to it for stealing the intellectual properties. The algorithm is implemented in Microsoft visual basic for Intel
machines.
[Aslam Muhammad, Zia-ul Qayyum, Ahmad Ashfaq, Waqar M. M., Martinez-Enriquez A. M., Afraz Z. Syed: An
innovative algorithm for code Obfuscation. Life Science Journal. 2012;9(1):527-533] (ISSN:1097-8135).
http://www.lifesciencesite.com. 79

Keywords: Reverse engineering; Source code; Structural complexity; Insertion; Compilation; Obfuscation.

1. Introduction

The need of the safety of intellectual
property of software developers has become clear in
current years of rapid development of multimedia
technologies. Now a days it has become difficult
from attacker’s perspective to understand the source
code due to its availability in binary formats,
however the reverse engineering process has made
the attackers to understand the correct behavior of the
software and to take out the actual logic out of the
program [14], so code obfuscation came into being
and this is a technique which employed to reduce the
risk of the theft of this intellectual property. This
research paper focuses on the methodology proposed
for obfuscation. Reverse engineering is a mechanism
which prevents the implementation of piracy
prevention methodology. This technique actually
allows the user to by pass the code detecting key and
starts from the process of disassembling the code
written in any language. After extracting the logic,
de-compilation procedure is applied and high level
abstraction from this assembly code is found. Most of
the research on code obfuscation has been fixed on
perplexing this de-compilation phase. In contrast of
focusing on this disassembly stage our goal is to
perturb the disassembly procedure to make the
program harder to disassembly. Results obtained by
majorly reverse engineering tools being used portray
the effectiveness of our method.

Compilation is the process of translating a
source code written in any language to machine code.
This process consists of series of steps; each step

produces some low level representation than upper
level step. Reverse engineering is a dual process of
recovering high level structure and semantics from a
machine code program. The compilation and reverse
engineering processes are shown in Fig 1.

Figure1. The Processes of Compilation and Reverse
Engineering

The whole reverse engineering process can be
divided into two parts [2].

(i) Disassembly: which produces assembly

code from machine code
(ii) De-compilation: which reconstruct the

high level semantic structure of the
program from the assembly code?[5]

The most of prior work regarding code

obfuscation was focused on different aspects of de-
compilation; our goal in this paper is to increase the
difficulty level of disassembling the program [2]

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 528

2. Techniques being used for software code
protection

There are numerous publications on
software obfuscation and their accomplishment. A
complete nomenclature of obfuscating
transformations was introduced in 1997 by Collberg
et al. [8]. To gauge the consequence of an
obfuscating transformation, Collberg defined three
metrics: cost, potency, and resilience. Software
complexity metrics ([1, 6, 11, 8, 21, 13, 1]), which
were designed to decrease the complexity of the
software, can be used to assess this in spite of
subjective metric. In compare to potency that gauges
the power of the obfuscating transformation in
opposition to humans, flexibility defines how
beautifully it withstands an assault of an automatic
de-obfuscator. This metric technique evaluates both
the programmer effort (that is much effort was
required to develop a de-obfuscator) and the de-
obfuscator attempt (the try of space and time
necessary for the de-obfuscator to run). An ideal
obfuscating transformation has high strength and
resilience values, but small costs in terms of extra
memory usage as well as greater than before
execution time. In practice, a trade-off among
potency, resilience and costs has to be compromised.
 Preventing disassembling is almost
impossible in situations where attackers have
complete control over the host containing this
software; the ordinary solution is to make the effect
of disassembling valueless for additional static
analysis by preventing the retransformation of control
flow graph. To the end of this [6] and [5] use so-
called branch functions to conceal the target of
CALL instructions: The explained methods substitute
CALL instructions with jumps (JMP) to a general
function (branch function), which function is to call
is decided on run time. Under the supposition of a
static analyzer being the branching function is a black
box, the call objective is not exposed until the real
execution of the code. This successfully prevents the
control flow graph being rebuilding using static
analysis. Nevertheless, the idea of a branching
function does not defend against dynamic
examination. An attacker can run the software on a
variety of inputs and watch its performance. Medou
et al. [13] argues that newly anticipated software
protection models would not survive attacks that
unite static and dynamic examination techniques.
Even now, Dynamic analysis can be made harder
using code obfuscation.
 One more approach to watch cryptographic
keys embedded within software is the utilization of
White-Box Cryptography (WBC), which attempts to
build a decryption methods that becomes challenging

against white-box" attacker, who is smart enough to
monitor each step of the decryption method. In WBC,
the code is implemented as a arbitrary system which
is dependent on any key for lookup tables. The
implementation of white-box DES was firstly
brought into the scene by Chow et al. [7]. On the
Basis of this approach, further AES and DES white-
box implementations have been suggested, but all
have been broken. Billet et al. [4], Wyseur et al. [4],
Jabob et al. [14], and Michiels Gorissen [4]
introduced a method of white-box used cryptographic
method which is able to make any software resistant
against any attempt of tempering it. In this approach,
the software code which is purely executable is used
for the white-box lookup table for the purpose of
cryptographic key. If the code has been changed it
would message as an unacceptable key. On the other
hand, owing to the lack of safe WBC
implementations, the safety and security of the
construction is ambiguous. Hardware-based methods
will permit to shield the real execution of Program
from the attacker completely. However, this merely
moves hits to the hardware tamper resistance, while
challenges like support difficulty for inheritance
systems and elevated costs are rising. For that reason,
hardware-based code protection techniques are
obsolete

2.1 Research Challenges

Collberg’s and Chenxi Wang’s Algorithms
are extensively used in the techniques of obfuscation.
Due to the inclusion of some high level constructs,
building of secondary structures, Inclusion of classic
procedures as input and requirement of additional
sources to make it user friendly, these algorithms are
hard to implement and problems are solved
theoretically. Implementation of the proposed
algorithm using IZII and ACI techniques in the form
of user friendly software which has not been
implemented up till now is the objective of the paper
as available literature presents theoretical solutions
using IR and BR techniques which need some
associated constructs to be implemented which
makes the program very hard to compile. Designed
software’s simplicity is unique in a way it takes an
assembly language and on a single click converts it
into an obfuscated program completely different from
original one and un-understandable as far as its logics
are concerned. Furthermore obfuscated programs get
compiled with the production of same out put as was
before with out any problem. At the end the
comparison of complexity measures of theoretical
solutions discussed above and our implemented
solution is given in tabular form.

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 529

3. Code Obfuscation Techniques
We have two types of methods to protect the

software property (I) legal and (II) technical [12].
Legal methods include all possible laws which are
being acting against illegal users and retailers making
them face some legal actions in the form of fine and
punishment, where as technical methods are Server-
side execution, Code authentication, Encryption and
Obfuscation. Here in this research paper we focuses
only on the last method i.e. code obfuscation. Before
going into the detail of the obfuscation method, we
preceded our research on the basis of following
hypothesis

1. In the complexity point of view machine
code is more suitable than any high level
language code.

2. In quality perspective, the algorithm is not
bad than any so far proposed algorithms.

To prove these hypotheses we developed very
effective obfuscation method for machine code. In
our research work low level of programming was
chosen because of the following reasons.

 The analysis of the machine code is harder
than the code written in HLL.

 Decomposition of the machine code
becomes impossible due to some inherited
properties in compiled code from high
level language [12].

 Obfuscation algorithm becomes very
simple due to easier parsing methods in
machine code.

 Investigation of machine code obfuscation
was not found in reported literature.

Actualization of the main goal was
decomposed into the following sub tasks.

I. Specific analytical methods for
measuring the complexity of the
programs were adopted.

II. Some empirical methods for measuring
the obfuscating method’s efficiency
were worked out.

III. A background for obfuscation algorithm
for machine code was created.

IV. An efficient method for obfuscation of
machine level code was developed.

V. This developed method was
implemented for most renowned
architecture.

VI. After performing some measurements
and experiment some appropriate and

valuable conclusions were drawn.
Our approach is the combination of the

obfuscation techniques working for both dynamical
and static reverse engineering. Where static reverse
engineering is the process of reverse engineering any

software automatically with out executing it actually.
Machine code can be translated into assembly
language by an attacker using a disassembler and the
control flow graph could be redesigned with out
execution of the code. We can make reconstruction of
static flow more difficult by the insertion of indirect
jumps that hides the details of jump target and the
utilization of branching functions. A universal
method for creating an algorithm of obfuscation
working in machine level code can be designed by
knowing two fundamental elements: Obfuscation
transformation and the results of research in the
structure of a specific program. Using this
methodology an algorithm of obfuscation was
designed and then implemented. Following four
activities were under our discussion while proposing
our new methodology.

 Program’s instructions reordering (IR).
 Blocks reordering of the program (BR).
 Insertion of zero impact instructions (IZII).
 Additional code insertion (ACI).

All above activities would be independent of
each other, which means a different result would be
produced by changing the order of execution. On the
basis of methods given above a sample algorithm is
designed which works on Intel* 8086 machines.
From above given methods only two IIZI and ACI
methods were selected for implementation because
these methods have great influence on the quality of
the obfuscation [11].

3.1 Structure of the Algorithm

To initialize the code obfuscation algorithm
following steps are followed:

 All global objects are assigned some starting
values.

 Some additional local variables are added
into the source code and base addresses are
found using assembly language instructions.

 Memory is allocated to obfuscated program
 The process of data flow analysis is

launched
 Main loop of the program as shown in Fig 3

is started.
As stated above that this research paper

focuses only on the implementation of two
techniques used for obfuscation i.e IZII and ACI.
Detail of these is given below.

3.1.1 Insertion of zero impact instructions (IZII)

Some instructions whose over all result is
zero are embedded in the program at particular place.
Zero impact instructions are of following three types.

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 530

3.1.1.1 Jumps of over all zero effects
At particular location within the program is

searched out and a set of jump instructions which
ultimately brings the instruction pointer at the point
where it was before the insertion are inserted. This
makes the program lengthy and hard to understand.
For example.

3.1.1.2 Insertion of free elements

Free elements means any register whose
value does not effect the over all result of the
program, For example add. W d3,d2 as d3,d2 do not
have any significance in the program. This free
element is made independent of all dependencies
between last inserted instructions and the current
instruction and then instruction is added to the
program.

3.1.1.3 Insertion of opaque constructs

Opaque constructs are the set of instructions
which are not clear to understand. For example

Adding few global variables aa, bb, cc, we

can make new opaque constructs. Into the function
Func2 (a,b,c) we can insert for an example the
expression bb = (a + b + c) AND bb, which value
will be always less than 100000. A not used element
and a place of jump from opaque construct are
chosen and after drawing the opaque construct type
instructions are inserted.

3.1.2 Additional code insertion (ACI)
3.1.2.1 Insertion of reversible operations

Reversible operation is one that gives the
value as was before for example following two
instructions are reversible:
AX = BX-5

AX= BX+5
A used element and an operation to be

inserted are picked up. All dependencies on used
elements get cleared and the set of instructions
performing some reversible operation is inserted.

3.1.2.2 Insertion of meaningless code

Meaningless means the insertion of those
registers and flags which are not used in the program.
A block of code that has no meaning is added at
particular location these meaningless codes may be a
string, array or declaration of some not used
variables. This meaningless code reduces the
readability of the original code. Locations where all
above insertions are made are found by our software.
Original assembly program is read from top to
bottom and places are found where IZII and ACI are
implemented. These places are fixed on the following
parameters.

 Where the loop is being started
 Where loop is being terminated
 Where mathematical operation appears
 Look for not used registers
 Where move operation is being performed
 Where an array is declared

The architecture of main loop of the algorithm is
given below in Fig 3.

Figure 3: The main architecture of the algorithm for
code obfuscation

4. Implementation of the Algorithm

The implementation phase of our research is
the most important phase which we have contributed
in present research. To get good performance and
efficiency we designed proper data structure to store
all information needed to run the program and by use
of .NET technology we implemented above
mentioned algorithm. Screen short of our obfuscated
machine is given in Fig 4. Left hand side is the given
source file and on the right hand side the program has

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 531

been obfuscated which is larger in size, difficult to
understand but same in functionality.

The complete structure of program of code
obfuscation consists on following six modules:
Step1. Loading of the source program- Program is
loaded into the obfuscator
Step2. Basic analysis of the program - Investigation
of the number of local variables and all parameters
along with the jump addresses.
Step3. Data flow analysis - calculation of physical
address of every instruction using pointers in the
program and assembly language is very rich to
provide physical address of each instruction..
Step4. Optimization of data flow - Calculation of
loop holes in the context.
Step5. Obfuscation of the program – By scanning
(reading each instruction and deciding the type of
insertion) whole program from top to bottom an
obfuscated program is obtained.
Step6. Saving of the obfuscated program – All
transformations of the program is saved.

The basic thing which has been processed in
this algorithm is an instruction. As obfuscated and
source program are stored in the form of array
structures so it is also possible to obfuscate any
already obfuscated program and this is called
iterative method of obfuscation[11].

 Figure 4 Screen shot of obfuscating machine

5. Results discussion

The most important parameter of
obfuscating algorithm is its efficiency which reflects
the power of the obfuscation process on the capacity
to read the exact meaning of obfuscated program.
Efficiency of obfuscation is directly proportional to
the average complexity of the program Complexity as
defined by Basili, is a measure of the resources
expended by a system while interacting with a piece
of software to perform a given task [15]. If the
interacting system is a computer, then complexity is
defined by the execution time and storage required to
perform the computation. If the interacting system is
a programmer, then complexity is defined by the
difficulty of performing tasks such as coding,
debugging, testing, or modifying the software. The

term software complexity is often applied to the
interaction between a program and a programmer
working on some programming task. For practical
tests and research we have taken 5 sample programs
of various tasks and obfuscated process was applied
on them then the efficiency along with different
parameters is measured. Detailed result discussion of
all these programs is given below.

All given test programs were obfuscated
with the methodology proposed by us and an analysis
of obfuscated and un-obfuscated programs are made
on the basis of following three parameters.

(i) Resources used by the computer for an
un-obfuscated and an obfuscated
program.

(ii) Efforts put by human to extract the
logic from an un-obfuscated and an
obfuscated program.

(iii) Structure of an obfuscated and an un-
obfuscated program.

Comparative study of the resources used by
the computer to run and store an obfuscated and an
un-obfuscated program is carried out and the results
are accumulated in table 5.1.Execution time-
Calculated by C++ function ibmts_calcTimeStamp
(). Storage is the space taken by the program on hard
disk.

Table 5.1 Comparison of resources used by computer

Space taken by obfuscated program is
enhanced due to the fact of addition of some extra
code. Execution time remains almost same with
slight difference which proves that our method of
obfuscation effect no more on execution time and the
performance of the obfuscated program remain
unaffected. A tentative comparison of different
people who try to extract the logic of obfuscated and
un-obfuscated programs is given in table 5.2.

Table 5.2: An average time taken by different people
to extract the logic of the program

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 532

 It is obvious from this table that obfuscated
program becomes harder to the people of different
walks of life for extracting the logic hidden in the
program and obfuscated program becomes less
readable. Third parameter on the basis of which our
obfuscator was tested is structural complexity. It is
the measure of length EL and flow EF.
Measure of length EL(See figure 1) describes specific
length of program P containing N instructions,
considers also number of arguments in instructions,
according to the formula given below.

 

umentsnohasictionWheninstru

umentonehasictionWheninstru

umentsnohasictionWheninstru
cdlacPE i

N

i
iL

arg1

arg5.0

arg0
,

1 











(1)

Values of Ci were selected empirically, starting from
the rule that value 1 corresponds to instructions
which have most often occurring number of
arguments. Remaining values were selected in a way
creating diversified values of measure EL for selected
test programs.

Measure of flow EF (see Equation 2) is a
rational number, describing the average number of
references to local memory in basic block of program
by the formula given below. Basic block is defined as
continuous sequence of instructions lying between
two nodes of control flow graph.

  



M

i
iF a

M
PE

1

1
, (2)

Where M is number of basic block in
program, ai is number of references to local memory
in block i. A comparison of structural complexity of
obfuscated and un-obfuscated programs is given in
table 5.3.

Table 5.3: Values of Structural complexity measures

After obfuscation, value of EL is increased which

shows that the program’s length is increased after
obfuscation making it difficult to understand and
decreased value of logic flow EF indicates that logic
of the program becomes harder for reader to
understand

6. Conclusion and future work

Implementation of our proposed algorithm
for Intel architecture. The proposed approach looks
very promising in the following areas of comparison.
 scalability - Describe the controllability of an

obfuscation process by user
 flexibility - How easy is to use an implemented

algorithm in different development environment
or programming language

 portability - It describes easiness to transfer an
implemented algorithm from one machine to
another

 The low complexity of our algorithm is due to
easiness of semantic analysis of machine
languages and simplicity of implementation of
data flow analysis on the low level of program-
ming: Other available algorithms are not very
portable, use very specific opaque constructs

Our proposed algorithm allows obfuscating already
obfuscated programs. Programs obfuscated in such a
way will have significantly different control flow
graph (in comparison to programs obfuscated one
time only), in the way dependent on the kind of
inserted opaque constructs. The main drawback of all
developed algorithms of obfuscation so far is the fact,
that they remove all effects of code optimization,
done by compilers. In modern processor it causes
very often breaking of data processing stream, which
slows down execution. That’s way critical loops and
highly optimized fragments should not be obfuscated.
Our method of program code obfuscation is very
general - it does not depend on specific properties of
any computer architecture, but to general idea of
context and instruction only. To convert an
implemented algorithm for a new machine, it is only
required to handle the specifications of its
architecture (like special instructions set).

It can be seen that efficient obfuscation is
also possible with low-level approach. Using the
results from empirical research, we estimated
parameters of obfuscation required to obtain well
protected software. The main aim of the work,
production of efficient algorithm of code obfuscation
on the assembler level, simpler than algorithms
making full analysis of structures of programs written
in high-level languages, was made with satisfying
conditions. Our obfuscator was tested on three
parameters resources used by computer, human
efforts, and structural complexity and found our
algorithm efficient and very complex for reverse
engineering.

Our main contribution is the implementation
of the proposed algorithm using IZII and ACI in the
form of user friendly software which has not been
implemented up till now. Whole literature available
provides only theoretical solutions. Software
designed by us is so simple in use that it takes an
assembly language file and on a single click converts
it into an obfuscated program completely different
from original one and un-understandable as far as its
logics are concerned. Screen shot given in Figur4 is

Life Science Journal, 2012;9(1) http://www.lifesciencesite.com

http://www.sciencepub.net/life lifesciencej@gmail.com 533

the demonstration of whole software. Left hand side
is the source file and on the right hand side is the
program that has been obfuscated.

Obfuscation of high level language may be
carried out by finding more cut off points where
insertions could be made. Furthermore obfuscation
process could be made intelligent by merging
obfuscation of all languages in single software and
allowing it to select obfuscating technique
automatically.

Acknowledgements:

Authors are grateful to the Department of
Computer Science and Engineering, University of
Engineering and Technology Lahore, Pakistan

Corresponding Author:
Dr. Muhammad Aslam
Department of Computer Science and Engineering
University of Engineering and Technology
Lahore, Pakistan
E-mail: maslam@uet.edu.pk

References
1. Basili, V.R. Qualitative software complexity

models: A summary. In Tutorial on Models and
Methods for Software Management and
Engineering. IEEE Computer Society Press, Los
Alamitos, Calif., 1980.

2. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 2001.

3. F... Allen, Control flow analysis, SIGPLAN
Notices 5(7):1-19, July 1970.

4. B.S. Baker, n algorithm for structuring
flowgraphs, Journal of the ACM, 24(1):98-120,
January 1997.

5. Ooaz Barak, Oded Goldreich, Russell
Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vad-han, Ke Yang, On the (Impossibility of
Obfuscating Programs, Advances in Cryptology
— CRYPTO’01, Springer Lecture Notes in
Computer Science vol 2139, pp 1-18, Santa
Barbara, CA, November 2001.

6. V. Basili, D. Hutchens, An Empirical Study of a
Complexity Family, IEEE Transactions on

Software Engineering, Volume 9, No 6,
November 1983, pp 664-672

7. Rex Jaeschke, Encrypting C source for
distribution, Journal of C Language Translation,
2(1), 2005.

8. Christian Collberg, Clark Thomborson,
Watermarking, Tamper-Proofing, and
Obfuscation -Tools for Software Protection,
Technical Report #170, Department of Computer
Science, The University of Auckland; also:
Technical Report 2000-03, Department of
Computer Science, University of Arizona (2000)

9. Christian Collberg, Clark Thomborson, Software
Watermarking: Models and Dynamic Em-
beddings, Technical Report, Department of
Computer Science, The University of Auckland
(1998)

10. Christian Collberg, Clark Thomborson, On the
Limits of Software Watermarking, Technical
Report #164, Department of Computer Science,
The University of Auckland (2000)

11. Christian Collberg, Clark Thomborson, Douglas
Low, Breaking Abstractions and Unstructur-ing
Data Structures, IEEE International Conference
on Computer Languages, ICCL’98, Chicago, IL,
May 1998

12. Christian Collberg, Clark Thomborson, Douglas
Low, Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs, SIGPLAN-
SIGACT POPL’98, ACM Press, San Diego, CA,
January 2003

13. Christian Collberg, Clark Thomborson, Douglas
Low, Taxonomy of Obfuscating Trans-
formations, Technical Report #148, Department
of Computer Science, The University of
Auckland, 2006

14. Frederick B. Cohen, Operating System
Protection through Program Evolution, 1992

15. Cristina Cifuentes, Doug Simon, Antoine
Fraboulet, ssembly to High Level Language
Translation, Technical Report 439, Department
of Computer Science and Electrical Engineering,
The University of Queensland, August 1998.

2/12/12

