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Abstract: Image denoising problem can be addressed as an inverse problem. One of the most recent approaches to 
solve this problem is sparse decomposition over redundant dictionaries.  In sparse representation we represent 
signals as a linear combination of a redundant dictionary atoms. In this paper we propose an algorithm for image 
denoising based on Non Negative Matrix Factorization (NMF) and sparse representation over redundant dictionary. 
It trains the initialized dictionary based on training samples constructed from noised image, then it search for the 
best representation for the source by using the approximate matching pursuit (AMP) which uses the nearest neighbor 
search to get the best atom to represent that source. During that it alternates between the dictionary update and the 
sparse coding. We use this algorithm to reconstruct image from denoised one. We will call our algorithm N-NMF. 
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1. Introduction 

Images always contaminated with noise in the 
image acquisition process and transmission phases, and 
denoising is an essential step to improve the image 
quality by removing the noise without affecting the 
important image features as much as possible. 
Commonly, noise removal has been done by using 
many denoising schemes, from the earlier smoothing 
filters like adaptive Wiener filter to the frequency 
domain denoising methods (Gonzalez and Woods 
2002) to the lately developed methods which uses 
multiscale and directional transformations 

like wavelet, curvelet and ridgelet (Jean-Luc, Candes 
et al. 2002; Chen and Kegl 2007; Liu and Xu 2008; 
Sveinsson, Semar et al. 2008)  

The success of the wavelet-based models is due to 
the tendency of images to become sparse in the wavelet 
domain, which implies that the image can be 
represented by using a small subset of the wavelet 
coefficients 

One of the WT drawbacks when representing an 
image with a rich amount of local features is that only 
one fixed dictionary cannot represent well all this local 
features and some artifacts will appear in the denoised 
image. 

To overcome this drawback in wavelet transform, 
a dictionary learning methods had been proposed to 
learn the dictionary from the data instead of using fixed 
dictionary. Elad and Aharon (M.Aharon, M.Elad et al. 
2006; M.Elad and M.Aharon 2006) proposed sparse 
redundant representation and K-SVD based denoising 
algorithm by training a highly over-complete 
dictionary. Foi et al.(A.Foi, V.Katkovnik et al. 2007) 
applied a shape-adaptive discrete cosine transform 
(DCT) to the neighborhood, which can achieve very 

sparse representation of the image and hence lead to 
effective denoising. Other techniques uses factorization 
methods like PCA and SVD to do blockwise analysis 
in order to conduct image denoising by modeling each 
pixel and its neighborhood as a vector variable(Zhang, 
Dong et al. 2010). 
 
2. Sparse signal representation 

Sparse representations for signals become one of 
the hot topics in signal and image processing in recent 

years. It can represent a given signal 
nRxÎ  as a 

linear combination of few atoms in an overcomplete 

dictionary matrix 
KnRA ´Î  that contains K atoms 

ai{ }
i1

K
   (K > n). The representation of x may be 

exact x=As or approximate, x » As , satisfying 

x  As
p
  , where the vector s  is the sparse 

representation for the vector x. 
To find s  we need to solve either  

AsxsP  subject to  min )(
0s

0        (1) 

Or 

 
20s

,0  subject to  min  )( AsxsP    (2),  

where 
0

is the l0  norm, the number on non-zero 

elements.   
Sparse representation in the presence of noise 
Suppose that we want to estimate the source signal 
z from the observed noised version x  

x  z  n , 
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where n is a white Gaussian noise. If we assume that 
the source signal z  has a sparse representation over an 

overcomplete dictionary A , i.e. 

z  As , 
where s is the sparse representation of z  over the 

dictionary A , then the problem can be formulated as 
in equation ( 2). 
In this paper we use an algorithm for solving this 
problem. Our algorithm likes the known K-SVD 
algorithm but instead of using the SVD decomposition 
for dictionary atoms update and the Orthogonal 
Matching Pursuit (OMP) for sparse representation for 
the data matrix, we use the Non-Negative Matrix 
Factorization the dictionary atoms update and the 
Approximate Matching Pursuit the sparse 
representation for the data matrix. Also we choose the 
Gabor dictionary  as an initial dictionary instead of the 
DCT dictionary used on the K-SVD. 
 
2.1 Approximate Matching Pursuit 

Given an input signal 
MRxÎ , and a dictionary, 

KMRA ´Î , we want to found a vector of coefficients 

sÎRK  that minimizes 
2

Asx  . The approximate 

matching pursuit (AMP) algorithm is described in 
Algorithm1. This algorithm is similar to the orthogonal 
matching pursuit algorithm (OMP) except that it 
addresses the main computational bottleneck for large 
dictionaries by using nearest neighbor search by 
allowing any adequately near neighbor to be selected 
as a component instead of compute a large amount of 
inner product. 
 
Algorithm 1. Approximate Matching Pursuit 

-Input: dictionary 
KM

K RaaaA ´Î ],...,,[ 21 ,  

  data x ÎRM . 

-Initialization: Let r  x,  s  0,  L=Æ,  err=x'x  

- While err >  do 

   - Find any i such that ai and r  are Near Neighbors 

   - L  LÈ  i 

   -Solve å
Î

ii
Lis

i saxs
i ,

minarg  

  

    - r  x  aisi
iÎL

å  

   -End while 
-Output s  
 
3. Non-Negative Matrix Factorization 

Factorization the data into simple, fundamental 
factors allows humans to identify the most meaningful 
components of data. Many real-world data are 

nonnegative and the corresponding hidden components 
have a physical meaning only when nonnegative. In 
practice, both nonnegative and sparse decompositions 
of data are often either desirable or necessary when the 
underlying components have a physical interpretation. 
For example, in image denoising, involved variables 
and parameters may correspond to pixels, and 
nonnegative sparse decomposition is related to the 
extraction of relevant parts from the images (Lee and 
Seung 1999),(Lee and Seung 2001). 

The basic NMF problem can be stated as follows:  

Given a nonnegative data matrix 
TIRX ´

Î  (with 

xit ³ 0  or equivalently X ³ 0 and a reduced 

rank J (J  min(I ,T )) , find two nonnegative 

matrices 
TI

K RaaaA ´
Î ],...,,[ 21 and  

S  BT  [b
1
,b

2
,...,b

J
] which factorize X   as well as 

possible, that is X  AS  E  AB
T
 E , where the 

matrix 
JIRE ´Î  represents approximation error. 

 
4. Image denoising based on N-NMF 

In this section, we introduce our N-NMF, which 
uses Nearest Neighbor search with the Nonnegative 
Matrix Factorization for image denoising. We choose 
the Gabor dictionary as an initial dictionary for some 
reasons. Firstly, choosing Gabor functions allows us to 
avoid some of the artificial block edge effects of the 
DCT basis, which used in the K-SVD, since Gabor 
functions tend to   decay smoothly at the edges.  
Separability is another nice property, since it reduces 
the computation necessary to perform the matching 
search(Neff and Zakhor 1995). The other reason is that 
the Gabor dictionary gives a recovery rate higher than 
the DCT dictionary(Schnass and Vandergheynst 2008). 
We generate an initial dictionary A  of size 
M ´ K (K>>M) from the Gabor basis functions. For a 
noised image of size M ´M we generate blocks of 

size M ´ M  by using a sliding window moving 
over the image, and then each block is used as a 
column of the data matrix X , which used after that for 
learning the dictionary. Then we use the N-NMF 
algorithms, which alternate between the sparse 
representation of the data with fixed dictionary and 
updating the dictionary with fixed representation to get 
the best dictionary to represent the important 
component in the image. At the end we use the learned 
dictionary to reconstruct the source image. 
 
Algorithm 2. N-NMF algorithm. 
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1. Initialization: Set an overcomplete dictionary 
KM

K RaaaA ´Î ],...,,[ 21 from the Gabor 

wavelet basis (GW) s.t. k allfor  1ka . 

2. Repeat until met the error goal 
 Sparse coding: find the sparse 

represent--ation S  [s1, s2,..., sN ] for data 

matrix X  [x1,x2 ,..., xN ]  based on the 

fixed dictionary A by using the approximate 
matching pursuit algorithm (AMP).  

For each column i=1,2,…,N solve 

 iii
s

i Asxss
i

 s.t.  minargˆ
0

 
 

 Dictionary update: update the dictionary 

atoms while fixing the data matrix X and 
the sparse representation s by using the 
Nonnegative Matrix Factorization (NMF) 
for the overall representation error. 

3. Reconstruction: reconstruct the denoised 

image  Id  As
  

 
5. Experiments and Results 

In this work, we used an overcomplete Gabor 
dictionary as an initial dictionary of size 64x256 

generated by using Gabor filter basis of size 8x8, each 
basis was arranged as an atom in the dictionary. The 
dictionary was learned by alternating between sparse 
coding with the currant dictionary and dictionary 
update with the current sparse representation. For 
doing that, we use the N-NMF algorithm and the 
approximate matching pursuit. We applied the 
algorithm to Lena image (as in Fig. 1), Barbra image 
and a face from the ORL database of faces (first face in 
the s1 set as shown in Fig. 2), which can be found in 
the following link (http://www.cl.cam.ac.uk/research 
/dtg/attarchive/facedatabase.html). 

The results showed that using the overcomplete 
Gabor dictionary with the nonnegative matrix 
factorization to learn dictionaries for sparse 
representation gave a good results. We used that 
method for image denoising and evaluate our method 
by calculating the PSNR and compare our results with 
the K-SVD methods, which showed that our method 
gave better results over the K-SVD especially with low 
level noise energy. Also the approximate matching 
pursuit gave a fast computation compared to the 
orthogonal matching pursuit used in the K-SVD 
algorithm. 
 

 
Fig. 1. (a) The original image. (b) The noised image by adding Gaussian noise with sigma=30. (c) The denoised 
image by using N-NMF algorithm and (d) the denoised image by using K-SVD. 
 



Life Science Journal, 2012;9(x)                                                 http://www.lifesciencesite.com 

http://www.lifesciencesite.com         editor@ Life Science Journal.org 340

 
                                        

Fig. 2. (a) The original image. (b) The noised image by adding Gaussian noise with sigma=20. (c) The denoised 
image by using K-SVD and (d) the denoised image by using N-NMF algorithm. 
 

Table 1. The PSNR computed for 3 images with different noise variance level (sigma). 

S
ig

m
a Face  Lena Barbara 

KSVD N-NMF KSVD N-NMF KSVD N-NMF 

10 35.5636 38.8481 33.3948 37.0749 32.9430 36.5061 

15 33.2755 35.0193 31.1033 32.6425 30.6654 32.0532 

25 31.0559 32.2762 28.4547 28.8607 27.7425 27.8119 

30 27.2468 27.5401 27.2819 27.5758 26.6532 26.5589 

 
6. Discussion and Conclusion 

In this paper, we address the image denoising 
problem based on sparse coding over an overcomplete 
dictionary. Based on the fact that both nonnegative and 
sparse decompositions of data are often either desirable 
or necessary when the underlying components have a 
physical interpretation, which implies on real images. 
We presented an algorithm N-NMF, which used the 
technique of learning the dictionary to be suitable for 
representing the important component in the image by 
using the nonnegative matrix factorization technique 
for updating the dictionary in the learning process and 
using approximate matching pursuit algorithm for 
finding the sparse coding of the data based on the 

current dictionary. Experimental results show 
satisfactory recovering of the source image. Future 
theoretical work on the general behavior of this 
algorithm is on our further research agenda. 
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