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Abstract: In this paper the Block Maxima and the Peak Over Threshold methods are used to model the air pollution 
in two cities in Egypt. A simulation technique is suggested to choose a suitable threshold value. The validity of full 
bootstrapping technique for improving the estimation parameters in extreme value models has been checked by 
Kolmogorov-Smirnov test. A new efficiency approach for modeling extreme values is suggested. This approach can 
convert any ordered data to enlarged block data by using sup-sample bootstrap. Although, this study is applied on 
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regions in any country.  
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1. Introduction 

The traditional method of analyzing extreme 
values is based on the extreme value limiting 
distributions, which were derived by Gnedenko 
(1943) and Reiss and Thomas, (2003). These limits 
are known as Extreme Value Distributions (EVD) 
and they arise as limiting for distribution of 
maximum sample of independent and identically 
distributed (iid) random variables (rv's). EVD are 
often used to model natural phenomena such as sea 
levels, river heights, rainfall and air pollution. Two 
main methods for modeling, the Block Maxima (BM) 
method and the Peak Over Thresholds (POT) method, 
have been developed (Coles 2001). 

In the BM method it is supposed to have 
observed maxima values of some quantities over a 
number of blocks. A typical example is a block is 
year or day and the observed quantities may be some 
environmental quantity such as the wind speed or air 
pollutant at a specific location. In this method, the 
block maxima is modeled by EVD. The choice of 
EVD is motivated by the facts: (i) The EVD are the 
only ones which can appear as the limit of linearly 
normalized maxima. (ii) They are the only ones 
which are  max-stable, i.e., such that a change of 
block size only leads to a change of location and 
scale parameters in the distribution. 

In the POT method it is supposed to have all 
observed values, which are larger than some suitable 
threshold. These values are then assumed to follow 
the Generalized Pareto Family of Distributions 
(GPD). The choice of GPD is motivated by two 
characterizations: (i) The distribution of scale 
normalized exceedance over threshold 

asymptotically converges to a limit belonging to 
GPD if and only if the distribution of BM converges 
(as the block length tend to infinity) to one of EVD. 
(ii) The distributions belonging to the GPD are the 
only  stable ones, i.e., the only ones for which, the 
conditional distribution of an exceedance is scale 
transformation of the original distribution. 

A number of studies have shown a positive 
association between air pollution and human health 
effects (Goldberg et al., 2001 and Kim et al., 2004). 
We choose in this study three pollutants: Sulphur 

Dioxide ,3SO  Ozone 3O  and Particulate Matter 

10PM  in 
th10  of Ramadan and Zagazig cities. 

The study of the Ozone pollutant was restricted on 
th10  of Ramadan city. The first city is one of the 

largest industrial cites in Egypt and the second is one 
of the most populous. Devices have been installed to 
monitor these pollutants in different places in these 
two cities. The places of these devices have been 
selected by experts in environmental measurements. 

The measurement units of the pollutants is ./ 3mgm  

The data for these pollutants were recorded every 
hour on the twenty-four hours through year 2008 for 
the two cities, except Ozone was recorded every half 
hours. The detail description of these pollutants and 
the collected data can be founded in (Barakat et al., 
2011). This study considered the BM and POT 
methods, which are used to evaluate the 

measurement ,3O  2SO  and 10PM  in two cities 

in Egypt. Bootstrapping technique for improving the 
estimation parameters in extreme value model is 
used and its validity is checked by the 
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KolmogorovSmirnov test. A simulated technique 
is suggested to choose a suitable value of threshold 
in the POT method. Moreover, a new efficiency 
method for modeling extreme values is suggested. 
This method, based on the work of Athreya and 
Fukuchi (1997), can convert any ordered data to 
enlarged block data by using sup-sample bootstraps. 
This method enables the engineers to analys the rare 
events to construct dam for rivers, breakwater for sea 
defence, and to design nuclear power plant against 
earthquakes, where the number of available maxima 
about the relevant phenomena of these activities are 
often limited.  

 
2. Mathematical Models 

 Let nXXX ,,, 21   be iid rv's with 

common df ).(=)( xXPxF   Suppose that 

}.,,,{max= 21 nn XXXM   The cornerstone 

of extreme value theory is the Extremal Type 
Theorem (ETT) (see, Reiss and Thomas, 2003), 
which states that: If there exist sequences of 

constants 0>na  and nb , such that 

)(=)( nn
n

n

nn bxaFx
a

bM
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
 weakly 

converges to a nondegenerate df ),(xG  then G  

should be of the same type of the Generalized 
Extreme Value Distribution (GEVD)  
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which is a unified model for the EVD. Apart 
from a change of origin (the location parameter  ) 

and a change in the unit on the x axis (the scale 
parameter 0> ) the GEVD yields the three EVD, 

according as 0,>  0<  and 

0),( 0=   which are known as Frechet, 

Weibull and Gumbel families of df's, respectively. In 
this case, any suitable standard statistical 
methodology from parametric estimation theory can 
be utilized in order to derive estimate of the 
parameters  ,  and .  In this paper, we used 

the maximum likelihood method (ML) and improved 
the obtained estimates by the bootstrap technique. 
The bootstrap is a data-driven method that has a very 
wide range of applications in statistics. This 
technique is initiated by Efron (1979). The classic 
bootstrap approach uses Monte Carlo simulation to 
generate an empirical estimate for the sampling 
distribution of the statistic by randomly drawing a 
large number of samples of the same size n  from 
the data, where n  is the size of the sample under 

consideration. Therefore, the bootstrap is a way of 
finding the sampling distribution, at least 
approximately, from just one sample. Here is the 
procedure: 
 
Step 1: Re-sampling.  

A sampling distribution is based on many 
random samples from the population. In place of 
many samples from the population, create many 
re-samples by repeated sampling with replacement 
from this one random sample. Each re-sample is of 
the same size as the original random sample. 
 
Step 2: Bootstrap distribution.  

The sampling distribution of a statistic collects 
the values of the statistics from many samples. The 
bootstrap distribution of a statistic collects its values 
from re-samples. 

The BM approach is adopted whenever the data 
set consists of maxima of independent samples. In 
practice, some blocks may contain several among the 
largest observations, while other blocks may contain 
none. Therefore, the important information may be 
lost. Moreover, in the case that we have a few 
number of data, block maxima can not be actually 
implemented. For all these reasons, the BM method 
may be seen restrictive and not very realistic. In our 
study, we used this method to get the preliminary 
result, to help simulate data with the same nature as 
the real data. 

An alternative approach, POT method, to 
determine the type of asymptotic distribution for 
extremes is based on the concept of GPD. This 
approach, which was initiated by Pickands (1975), is 
used to model data arising as independent threshold 
exceedances. Actually, the POT method is based on 
the fact that the conditional df 

)>|<(=)(][ uxuxXPuxF u   may be 

approximated for large u  (i.e., the threshold u  is 

close to the right endpoint 1}<)(:{sup=)( xFxFw ) 

by the family ,)(11=);(

1


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provided that the df of BM weakly converges to the 

limit ,G  which is defined by (2.1). In this case we 

have  =  (Reiss and Thomas, 2003). This 

family is connected by the GEVD by the simple 
relationship 

1.>);0,(log),;0,(log1=);(    xGxGxW

 It is worth to mention that the left truncated GPD 
yields again a GPD, namely:  

.=   where ),;(=);( **][ cxWxW c     2.2  

Notice that the GPD nests the Pareto, 
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uniform and exponential distributions. Evidently, in 
the statistical modeling of threshold exceedance data, 
the whole data are used, in opposite of the case of the 
BM method. Possibly, the most important issue in 
statistical modeling of threshold exceedances data is 
the choice of threshold .u  Did we choose a high 
enough threshold? the threshold should be hight 
enough to justify the assumptions of the model but 
low enough to a capture a reasonable number of 
observations. A threshold choice based on the 
observed sample is required to balance these two 
opposing demands. In this paper we used a 
simulation technique to choose a suitable threshold 
value. Namely, we first note that the GPD are the 

only continuous df's W  such that for a certain 

choice of constants ub  and ,ua  

 )(=)( ][ xWxabW uu
u   

is again the exceedance df at u  (Reiss and 
Thomas, 2003). This property is the (POT)-stability 

of GPD. Now, let 00 ,  and 0  be the 

preliminary estimates of the parameters  ,  and 

,  respectively (which is obtained by the BM 

method). Then, simulate data with the same size n  
as the real collected data from the GPD 

),;(
][ *

0
0

 x
c

W  with },,...,,{min= 21 nxxxc  

where nxxx ,...,, 21  is are the real data (this choice 

of c  grantees that the simulated and realistic data 
have nearly the same range) and 

)(= 000
*
0   c  (in view of (2.2)). In view 

of the POT stability property of GPD, the simulated 
data will have the same nature as the real collected 
data. Moreover, any POT u  from the simulated 
data follows the GPD with the same shape parameter. 
Therefore, we choose the value of u  which makes 
the estimate of the known shape parameter as best as 
we can. Finally, we take this value of u  as a 
suitable threshold for our real data. 

All the described models so far can be fitted 
by the method of ML, Cox and Hinkley (1974). 
Actually, the log likelihood function of the GEVD is 
given by  
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provided 0,>)/(1   ix  for each ,i  

otherwise (2.3) is undefined. For the maximization of 

),,;( 

xl  for a general model indexed by 

parameters ,,,   this may be performed using a 

packaged nonlinear optimization subroutine, of 
which several excellent versions are available. Also 

the log likelihood function for GPD is given by  
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where k  is the number of POT. Finally, 
we should say something about the theoretical status 
of the approximations involved. The asymptotic 
theory of ML for the GEV model is valid provided 

0.5>   (see Smith, 1985). Cases with 

0.5  correspond to an extremely short upper 

tail and hardly ever occurs in environmental 
applications. A more serious problem is that even 

when, 0.5,>   the asymptotic theory may give 

rather poor results with small sample sizes. 
The KolmogorovSmirnov test (K-S test) 

is a nonparametric test for the equality of continuous 
one-dimensional df that can be used to compare a 
sample with a reference df (one-sample K-S test). 
The Kolmogorov  Smirnov statistic quantifies a 
distance between the empirical df of the sample and 
the reference df. Assume we have the 

hypothesis-testing situation FFH ˆ=:0  for all 

,x  where F̂  is a completely specified continuous 

df. The differences between F  and F̂  should be 
small for all ,x  except for sampling variation, if the 

null hypothesis is true. For the usual two-sided 

goodness-of-fit alternative ,ˆ:1 FFH   for some 

.x  Large absolute values of these deviations tend to 
discredit the hypothesis. All computations are 
achieve by Matlab package, where we have four 
functions ].,,,[ CVKSSTATPH  Namely, H  is 

equal to 0 or 1, P  is the p value, KSSTAT  is 

the maximum difference between the data and fitting 
curve and CV  is a critical value. Therefore   

    • We accept ,0H  if 0,=H  CVKSSTAT     

and >P  level of significant,  
    • We reject ,0H  if 1,=H  CVKSSTAT  >  

and P  level of significant.   
 
Sub-sample bootstrap technique 

Although the bootstrap has been widely 
used in many areas, the method has its limitation in 
extremes. It was shown in some cases that a 
full-sample bootstrap does not work for extremes. 

Namely, assume ,1,2,...,= , mjX j
*

 where 

,)(= nmm  as    ,n  are 

conditionally iid rv's with  

,1,2,...,=                 ,
1

=)|=( 1 nj
n

XXXP nj
*
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where ),...,,(= 21 nn XXXX  is a random 

sample of size n  from the unknown df .F  Hence 
*

1 ,...,XX *
 is a re-sample of size m  from the 

empirical df }.{#
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 A 

full-sample bootstrap is the case when .= nm  In 
contrast, a sub-sample bootstrap is the case when 

.< nm  If the df of BM converges to the limit ,G  

which is defined in (2.1), Athreya and Fukuchi (1997) 
showed that the bootstrap df mnH ,  is weakly 

consistent estimate for ,G  if )(= nm   and it is 

strongly consistent, if ).
log

(=
n

n
om  Otherwise, 

mnH ,  fails to approximate .G  For the maximum 

order statistics under power normalization, this result 
is extended by Nigm (2006). More recently, Barakat 
et al. (2011) extended the same result to the 
generalized order statistics. Actually, this result 
suggests an efficiency estimate for the GEVD by 
using the BM method, even if the data do not consist 
of blocks (in this case the bootstrap replicates of size 

,m  from ,nF  are treated as blocks). For applying 

the suggested technique, we have to choose a 
suitable value of m  (i.e., the size of bootstrap 
replicates or the blocks size). Actually, the suitable 
choice of the value m  is the cornerstone of this 
technique. However, this value should be small 

enough to satisfy the stipulation )
log

(=
n

n
om  

and in the same time should be large enough to 
satisfy the stipulation ,m  as .n  To 

determine a suitable value of ,m  we first simulate 

data with the same size as the realistic data, from the 

known GEVD ).,(.; 000
G  Then put 

n

n

log
 

in the form ,(10) ca b   where ba,  and c  are 

integers such that 10,<1 a  .(10)0 1 bc  

Thus in view of the above two stipulations, we can 

take .(10)=ˆ 1 bamm  Consequently, to choose 

such suitable value of ,m̂  we select a value from an 

appropriate discrete neighborhood of m̂  (see 

Example 2.1) that gives the best estimate 0̂  for the 

shape parameter .0  The estimate 0̂  is obtained 

by withdrawing, from each of the originals samples, 
a large number of bootstrap replicates (each of size 
m ) and determined the corresponding maxima. Then, 
we used these maxima, as a sample drawn from the 

parametric ,
0

G  to estimate the shape parameter 

,0  by using the ML method. 

 

 Example 2.1. Suppose we have 20000,=n  

then 3=2,= ba  and 19.490588.=c  

Consequently, 200.=m̂  In this case we can select a 
suitable value of m  from the discrete 

neighborhood }00,250,300{100,150,2  that gives 

the best estimate 0̂  comparing the other values in 

the neighborhood, provided that this value does not 
equal 100 or 300. Otherwise, we should enlarge this 
neighborhood.  
 
Data Treatments And Simulation Study 

 This section aims to answer the three 
questions. The first question is: Did the bootstrap 
improve the estimation of the parameters of the 
extreme models? The second question is: How can 
we choose a suitable POT number for every pollutant? 
The third equation is: How can we to choose the 
sub-sample m ? 

To answer the first question, we use the 
observed maxima values over 365 blocks (daily 
maximum through one year) for each pollutant and 
estimate the shape, scale and location parameters of 

G  in (2.1) (see, Table 1). Applying the 

full-bootstrap 50000  times for the data and again 
estimate the same parameters for each pollutant (see, 
Table 2). For fitting the real data, concerning 

10 ,2 PMSO  and ,3O  we use the K-S test and 

calculate its functions KSSTATPH  , ,  and 

,CV  with and without bootstrap (see, Table 3). In 

the case of  without bootstrap Table 3 shows that, 
we have not goodness of fit for 2SO  and 10PM  

in Zagazig and th10  of Ramadan cities, respectively, 

where 1,=H  CVKSSTAT >  and P  level 

of significant. On the other hand, in the case of  
with bootstrap we have goodness fit for the both 
pollutants in the two cities. Moreover, the maximum 
distances between fitting curve and the data 

(KSSTAT ) in the case of  with bootstrap are less 
than those distances in the case of  without 
bootstrap, see Figures 1-5 (Figures 1-5 compare 



Life Science Journal, 2012;9(1)                   http://www.lifesciencesite.com 

http://www.sciencepub.net/life                       lifesciencej@gmail.com 128

between the empirical GEVD and ),(.; 000
G  

curves, for all pollutants after bootstrap). Therefore, 
the bootstrap works to improve the parameters 
estimation. 

To answer the second question, we generate 
2000 random samples, each of them has the same 
size n (say) as the realistic data of the pollutant 

under consideration, from the GPD ),(.; *
00


cW  

see Table 4a and 4b (as we have shown previously in 
Section 2). Note that the size of the generated 

samples actually is less than 8760,=24365  

for 2SO  and 10,MP  or 17520,=48365  for 

,3O  this is due to the inactivation and maintenance 

of the monitor devices in some hours at some days. 
In view of the imposed stipulations on the threshold 

u  (and consequently on the number of POT k ) in 

Section 2, we vary the number of POT k  over the 

values ],
4

[],...,
19

[],
20

[
nnn

 where ][  is the 

integer part of ,  see Table 4. Actually, we only 

wrote 7 values of k  in Table 4a and 4b, including 

]
20

[
n

 and the best value. Then, we look for the value 

of k  (or u ), which gives the best estimate 0̂  of 

the shape parameter (its true value 0  is known), 

where the estimate 0̂  here is the mean value of 

2000 estimates, which are calculated as we have 

shown in Section 2. When two values of k  give the 
same best mean estimate, we favor between them by 
the coefficient of variations (C.V). For example, in 

the case of ,2SO  in 
th10  of Ramadan in Table 4a 

and 4b, we see that the values 2047=k  and 

2132=k  give the same best estimate 

0.0987=ˆ
0  (the true value is 0.1=0 ). Since, 

the second value corresponds the C.V=1.389, which 
is less than the C.V=1.4044 concerning the first 

value, we then choose the second value, i.e., the 

suitable number of POT is 2132.=k  In this case, 
the corresponding threshold u  is the upper quantile 

of order 6397=][0.7500586=][ nn  (note 

that 
8530

21328530
=



n

kn å

; ). Now, by using 

the determined suitable threshold values, from Table 
4, we can apply the POT method on the realistic data 
for each pollutant to determine its extreme value 
model, see Table 6. Finally, apply the full bootstrap 
technique (50000 times) to improve the obtained 
estimates, see Table 7. To answer the third question, 
we generate 2000 random samples, each of them has 
the same size n  as the realistic data of the pollutant 
under consideration, from the GEVD 

),,(.; 000
G  see Table 5. Determine, for each 

pollutant the value 
1(10)=ˆ bam  (as we have 

shown in Section 2). We can see that 90,=m̂  for 

the 2SO  and 10,PM  i.e., for the first four rows of 

Table 5, while 170,=m̂  for the ,3O  i.e., for the 

last row of Table 5. Thus, for the first four rows, by 
checking the discrete neighborhood 

,120},90,100,110{60,70,80,  we find that the 

best value of m  (according to the given method in 
Section 2) is the lower value 60. Thus, we consider a 

new discrete neighborhood, 60},{20,30,50,  

which yields the value 30.=m  In Similar way, for 
the last row of Table 5, we checked the the discrete 

neighborhoods ,210},50,170,190{110,130,1  

}90,100,110{60,70,80,  and 60}.{20,30,50,  

The last neighborhood gives the value 30.=m  
Therefore, for all pollutants the value 30 is more 
suitable value of .m  Take this value and apply the 
sub-sample bootstrap technique on the realistic data 
to get a more suitable extreme value models for these 
pollutants (as we have shown in Section 2), see Table 
8. 

 
 

Table 1: Zagazig and 10th of Ramadan for GEVD 
ML parameters estimation 

 
2SO  10PM  3O  

 
0  0  0  0  0  0  0  0  0  

Zagazig 0.16 21.9 11.72 0.099 196.78 66.01    
th10  of Ramadan 0.11 81.24 39.49 0.22 249.75 67 -0.087 54.9 9.6 
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Table 2: Zagazig and 10th of Ramadan for GEVD, after bootstrap 
ML parameters estimation 

 
2SO  10PM  3O  

 
0  0  0  0  0  0  0  0  0  

Zagazig 0.15 21.6 11.6 0.094 197 67.5    
th10  of Ramadan 

0.1 81.3 39.4 0.21 249.8 65.9 -0.1 54.98 9.5 

 
Table 3: Kolmogorov-Smirnov test for the data with and without bootstrap    

Data of 2SO  in Zagazig 

 H  P  KSSTAT  CV  Decision 

without bootstrap 1 0.0446 0.0656 0.0644 reject the null hypothesis 
with bootstrap 0 0.0709 0.0605 0.0644 accept the null hypothesis 

Data of 2SO  in 
th10  of Ramadan 

 H  P  KSSTAT  CV  
Decision 

without bootstrap 0 0.2962 0.0507 0.0706 accept the null hypothesis 
with bootstrap 0 0.3065 0.0502 0.0706 accept the null hypothesis 

Data of 10PM  in Zagazig 

 H  P  KSSTAT  CV  Decision 

without bootstrap 0 0.4389 0.0450 0.0706 accept the null hypothesis 

with bootstrap 0 0.4614 0.0442 0.0706 accept the null hypothesis 

Data of 10PM  in 
th10  of Ramadan 

  H  P  KSSTAT  CV  Decision 

without bootstrap 1 0.0305 0.0752 0.0706 reject the null hypothesis 

with bootstrap 0 0.0548 0.0697 0.0706 accept the null hypothesis 

Data of 3O  in 
th10  of Ramadan 

 H  P  KSSTAT  CV  Decision 

without bootstrap 0 0.1845 0.0565 0.0707 accept the null hypothesis 

with bootstrap 0 0.2537 0.0528 0.0707 accept the null hypothesis 

 
Table 4: Simulation study for choosing a suitable number of POT (k). Note that k*is the best value 

  2SO  in Zagazig: GPD with  0.15,= 0   8.48,= *
0   0.226,= c   8633= n  

 k    431  1033   1549   1721   1979 *2056    2151  

 0̂    0.144  0.1504  0.1506  0.1505  0.1504  0.1502 0.1505  

C.V  0.624  0.538  0.738  0.565   0.544  0.4144  0.336  

*
0̂   

 13.45  11.67   10.99   10.8  10.59  10.5  10.45  

 2SO  in ht10  of Ramadan: GPD with  0.1,= 0   31.5,= *
0   2.5,= c   8530= n   

 k    432  1027   1549   1707   1962 2047 *2132   

 0̂   
 0.0934  0.098  0.0982  0.0985  0.0986  0.0987 0.0987  

C.V  4.69  2.322  2.708  1.585   1.4156  1.4044  1.389  

        

*
0̂   

 42.7  38.68   37.67   37.02 36.5  36.35  36.21  

10PM  in Zagazig: GPD with  0.094,= 0   49.2,= *
0   2,= c   8540= n  

 k    460  970   1480   1735   1990 2075 *2160   

 0̂   
 0.0857  0.0891  0.0901  0.0911  0.0913  0.0914 0.0914 

C.V  4.94  3.84  4.12  3.77  3.3  2.95  2.93  
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*
0̂   

 65.22  60.66   58.63  57.36  56.6  56.39  56.187  

 10PM  in ht10  of Ramadan: GPD with  0.21,= 0  14.8,= *
0  3.6,= c   8720= n   

 k    440  962   1484   1745  
 

*2006  
2093  2180  

 0̂   
 0.2047  0.2092  0.2092  0.2097  0.2098  0.2096 0.2097  

C.V  1.33  0.5372  0.4247  0.3832   0.3727  0.3736  0.3239  

*
0̂   

 27.92  23.52   21.48   20.74  20.33  20.14  19.8  

 3O : GPD with  0.1,= 0    14.25,= *
0   7.46,= c   17000= n  

 k    850  2040   3060   3400   3910 4080  
 

*4250   

 0̂   - 0.1053  -0.1026  -0.102  -0.1018  -0.1018  -0.1018 -0.1017  

C.V  0.68  0.52  0.36  0.23   0.2003  0.2333  0.2427  

*
0̂   

 10.6  11.56   12.03   12.266  12.32  12.38  12.43  

 

Table 5: Simulation study for chosen m sub-sample bootstrap. Note that 
*m  is the best value 

  2SO  in Zagazig: GEVD with  0.15,= 0  11.69,= 0  21.6,= 0  8633= n  

   m      0̂            VC.    

 20 0.147 0.352 
*30  

0.152 0.374 

50 0.1402 0.421 
60 0.1355 0.507 

 2SO  in 
th10  of Ramadan: GEVD with  0.1,= 0  39.4,= 0  81.3,= 0   8530= n          

  m 
 0̂     VC.  

 20 0.0844 0.742 
*30  

0.0994 0.517 

50 0.0925 0.622 
60 0.087 0.76 

 10MP  in Zagazig: GEVD with  0.094,= 0   67.5,= 0  197,= 0   8640= n  

  m 
 0̂     VC.  

 20 0.0854 0.5911 
*30  

0.0987 0.7977 

50 0.0782 1.741 
60 0.074 0.941 

10MP  in 
th10  of Ramadan: GEVD with  0.21,= 0  65.9,= 0  249.8,= 0   8720= n  

  m 
 0̂     VC.  

 20 0.2017 0.2987 
*30  

0.2064 0.2890 

50 0.1906 0.3552 
60 0.1909 0.3652 

 3O : GEVD with  0.1,= 0    9.5,= 0   54.98,= 0   17000= n  

  m 
 0̂     VC.  

 20 -0.1122 0.4165 
*30  

-0.1077 0.4033 

50 -0.1168 0.3807 
60 -0.1178 0.4212 
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Figure 1: SO2 in Zagazig                               Figure 2: SO2 in 10th of Ramadan 

 
Figure 3: PM10 in Zagazig                            Figure 4: PM10 in 10th of Ramadan 

 
Figure 5: O3 in 10th of Ramadan after bootstrap 

 
 
 

Table 6: Zagazig and 10th of Ramadan for GPD 
ML parameters estimation 

 
2SO  10PM  3O  

             

Zagazig 0.164 7.16 0.047 57.64   
th10  of Ramadan 

0.046 33.44 0.13 68.27 -.08 38.8 

 
 

Table 7: Zagazig and 
th10  of Ramadan for GPD after bootstrap 

  ML parameters estimation 
 

2SO  10PM  3O  

             

Zagazig 0.157 7.13 0.052 57.3   
th10  of Ramadan 

0.062 32.4 0.14 67.9 -0.087 8.89 
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Table 8: Zagazig and 10th of Ramadan for GEVD 
   ML parameters estimation by sub-sample  

  2SO   

    VC.      VC.      VC.   

 Zagazig  0.176 0.253  26.39     0.0134  7.34 0.0463  
th10  of Ramadan  

0.119 0.258   108.9 0.187 32.02 0.0489  

  10PM  

    VC.      VC.       VC.   

 Zagazig  0.117 0.3728  264.41 0.0121   55.05 0.043  
th10  of Ramadan  

0.26 0.17  340.67 0.0124 70.587 0.088  

  3O  

    VC.      VC.      VC.   

 
th10  of Ramadan  

-0.08 0.739   64.36 0.0056 6.8 0.044  
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