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Abstract: The time of failure and average life of a component, measured from some specified time until it fails, is
represented by a continuous random variable. Extensively in recent years, one distribution that has been used as a
model to deal with such problems for product life is the Weibull distribution. The objective of this paper is to

consider the estimation problem of the probability P(Y < X)) for Weibull distribution. Based on Classical Type I
censored samples. The maximum-likelihood estimators (MLE) are obtained for stress—strength reliability. Bayes

estimates under various loss functions are researched. Some computational results from intensive simulations are
presented. In the end, in order to investigate the accuracy of estimations, an illustrative example is examined

numerically by means of Monte Carlo simulation.
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1. Introduction

When  modeling data  under classical
stress—strength analysis, the reliability (R ) there is a
system subject to a stress Y and strength X. Both Y and
X are assumed random variables with known
probability distributions. In this system, ( R )
represents the probability (P) that Y exceeds and X, i.e.

P(Y < X). This model has many applications in

various areas. For example, if Y represents the
maximum pressure caused by flooding and X
represents the strength of the leg of a bridge on a
stream, then P is the probability that the bridge will be
solid. Another example, if ¥ and X represent the control
and treatment groups respectively, then P measures the
treatment effect. In this regard, the estimation of P will
be important in making inferences.

Several authors have considered different choices
for stress and strength distributions, including,
[1]-[7].All of those choices were based on the complete
sample study. The monograph by Kotz et al. [8]
provided an excellent review of the development of this
model. However, may not be unrealistic in
experimenters often employ censoring schemes in life
tests to shorten the test time or to reduce the test cost.
However, censoring restricts the ability to exactly
observe failure times. Two censored tests (type I and
type II), are commonly used in industrial engineering
applications. Type I censored test is conducted with a
time censored scheme, in which the life test is
terminated. The determination could be either occurs at

time £, . Or certain number of failures before the
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time #, . Alternatively, the type II censored test is

conducted with a failure censored scheme, in which the
life test is terminated if the first » smallest failure
lifetimes are collected, where the number of failure
lifetimes is predetermined. Survived units at the
termination time of test are considered as censoring.
Lawless [9] provides detailed discussions for life tests
with two censoring schemes, Based on censoring
samples.

Although, extensive work has been done on the
developments of the stress—strength models under

Complete samples, not much attention has been
paid to when the data are censored (. Jiang and Wong
[10] studied inference for stress-strength with truncated
exponential distribution). Abd-Elfattah and Marwa
([11], [12]) studied inference for the stress- strength
under exponentially and Weibull distributed type II
censoring data. Recently, Statistical inference for the
stress—strength parameter based on progressively type
I exponentially censored data was discussed in
Saracoglu, et al. [13]. While Lio and Tsai [14] studied
P(Y < X) under progressively first failure censored

samples when X and Y have two parameters Burr type
XII distributions.

In this paper, we consider the statistical inference
of the reliability stress—strength parameter R = P(X <Y)
when X and Y are independent Weibull random
variables. Based on type-I censored Weibull distribution
for both X and Y.

The comparison between Bayes estimate for R =
P(Y < X) under LINEX and square error loss functions
is the main target for this paper.
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The rest of the paper organized as follows: In
Section2, the Bayes estimate of R under mean square
errors is derived. The Bayes estimate of R under LINEX
loss function is provided in Section 3.The risk function
is provided in Section 4. Simulation results and data
analysis are presented in Section 5. A numerical
example is given for illustration in Section 6. Some
concluding remarks are given in Section 7.

2. Bayes Estimation Of ‘91 and 65 Under Type-I

Censored Data

Recently, the Bayesian approach has received
large attention for analyzing failure data or
time-to-event data, and has been often proposed as a
valid alternative to traditional statistical perspectives.
The Bayesian approach to reliability analysis allows
prior subjective knowledge on lifetime parameters and
technical information on the failure mechanism, as well
as experimental data, to be incorporated into the
inferential procedure. Hence Bayesian methods usually
require less sample data to achieve the same quality of
inferences than methods based on sampling theory,
which becomes extremely important in case of
expensive testing procedures. In this section we are
concerned on the estimation of the unknown

parameters @] and @5 of the Weibull distribution
based on a type-I censored random sample of size #

andm . Suppose that X Lo X ; a random sample of

7 units is testes until the test is terminating at time z,

Times to failure for (), observations are observed

where Q1 is random. Where these lifetimes observed

only if X; < Zl ,i=1,...,n . Therefore

0 if x; > Z1

n
Where Q1 = _Zla)l- ,in the case of Y1 Y, the test
l:

will terminate at zZ, Times to failure for O,

observations are observed where O, is random.

Where these lifetimes observed only when

xj < ZZ ,J =1,..., m . Therefore
Lty <2,

gi=1 2)
0 if yj>Z2
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Where O, = Zl £ ,The likelihood function

]:
nog
9 5 o)
k n
(k=D ay
L(xl’““’xn | 01) = E Exi e ¢l e 4 (3)
o "=
and
m o
o, "BV —zkin-0y)
k m(k-1)¢; 0, 6,
L Yy 10) = 5~ My, e e 4)
0,> 7
nok k
Put 5 =,-§1xl- @+ 2 (n=0p) ,

m i k

Because X, YJ , i=L.,n and j=1,..,m are
independent and identically distributed Weibull random
01 and 0, .

We will use linear transformation in some steps that to

variables with Parameters

study the distributions of Sl and Sp , where X
is Weibull random variable with parameter 6, , then

k k
y=X o+Z (n-0) (5)
equation (5) is  distributed as exponential with

k
parameter ¢, to prove that, put C=Zy (n-0p)
then

k
v=X w+C (6)
1
y - C k
and ( )t =X (7
1)
by using technique of linear transformation
X 1 wy-c 1
— =" (8)
dy a)l.k @,
then
_y=C
1 Hla)
Sy = e W >C €
19
by substitute with the value of ¢ in equation, then
1 y-Zi (=0))
k
fw=——-0ec " yszim-op (10)
010;
This has truncated exponential distribution with
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parameter @ 91 .

So
nok k
L@+ Z) (n=0p) (11
has gamma distribution with (n +1, a)ﬂl) .
l
also, for the case Y ,
mk k
Jélngj tZ,(m=0,) (12)
has gamma distribution with (m +1,& .02) .
J
Then, The distribution of S] and S 2 are:
S
1 n o
g8 )y=—""—"""S ¢ .5 >0 (13)
F(n+ D(@6)" +101 1
1
and
5
S ) 1 s % S >0
= e 5
&(s, 5 5 (14)

C(m+ 1) 0 y"+1
j2

Combining the prior distributions, with the likelihood
functions using Bayes’ theorem, the posterior density of

0; and 0 are as follows:

_la+s (O +c+1)
e 4 (a+S§)
|
7 (6] [ %) = 0 +c (15)
0l T +c+1)
| |
_(b+S (O +d+1)
&
e (b+S )
2
02 T(©O +d+1)
2 2

By using (15), (16) under squared error loss, the

Bayes estimator of &; and ¢, are the posterior

A

mean denoted by éMSEl and HMSE 5

The posterior mean E”l (6) and E”z 6):
a+ S
1

P —
MSB 1 Ql+c

)

And
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b+ S
2

+d
Q2

Busp 2 = (18)

3. Bayes Estimator of ¢ and ¢ Based on LINEX

Loss Function

The loss function plays a critical role in Bayesian
perspective. Most authors use the simple quadratic
(symmetric) loss function and obtain the posterior
mean as the Bayesian estimate. However, in practice,
the real loss function is often not symmetric. For
example, Feynman [15] remarks that in the disaster of a
space shuttle, the management may have overestimated
the average life or reliability of solid fuel rocket
booster. The consequences of overestimates, in loss of
human life, are much more serious than the
consequences of underestimates. In this case, an
asymmetric loss function might be more appropriate.
Varian [16] introduced LINEX ( Linear-Exponential )
loss function, which is the simple generalization of
squared error (SE) loss function and cane be used in
almost every situation (Zellner[18]).
The LINEX loss function is defined as follows:

A
L(A):eu —uA-Lu=#0, (19)

In this section, the Bayes estimators of ]

and &5 will be derived, using LINEX as follows: Since

k k-1 _(xk/al)

f(x)y="—"x e . x> 0k0; >0 (20)
01
and
I —(yk/02>
S ="y e .y >0k0, >0 1)
6
2

are probability density function of X and Y.
Suppose A1 = él / 91 -1, where él an estimate

of 0] . Consider the following LINEX loss function.

A
ll—uA

1M =0

u
L(Al) =e - Ly (22)

bl

The sign and magnitude of ° ¥ ’ represent,

respectively, the direction and degree of asymmetry. A

positive value of ‘%1 ’is used when overestimation is

more costly than underestimation; while a negative

value of ‘4] ’ is used in the reverse situation for ‘ #{ ’

close to zero.
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Also, the same definition for &5  where

A =0 /6’ ~land @, is an estimate of 65 .
2 2/ 2

Again consider the following LINEX loss function.

u_ A

2 2

L(Az) =e —u2A2 —1;u2 =0 (23)

The sign of U treats like the sign of #] .
Using the LINEX loss function (22), the posterior
expectation of the loss function L(A,) with respect

to”l(el/x) for 0] s

ul(é/a—l)
o 1/ 1 a
E[L(A )] = [ (e —u (g -D-Dr (6 | x)do

1 0 1 X 1 1
. 24
u(@ /0) @4

—ul

| R
=e Ee ) 7u1E(%) -1

The value of 6 that minimizes the posterior

expectation of the loss function L(A,) denoted by

A

0 1B1 is obtained by solving the following equation

EILAD] (0 / &) 1
- =e E(—e )—uE(—)=0 (25)
a0, o )

That is, is the solution of the equation:

0
LB1
1 ul(él/gl) w1
E(—e =e E(—) (26)
o o
Provided that all expectations exist and finite, we get the
optimal estimate of él relative to L(A,)

(O, +c+1)
1 u](glb’l) (G+S ) 1 ooe
Be "=—rir] d0,
o, (Q1+L+ ) o HIQI+L+ (27)

(a+S, )+u,6,

(O, +c+1)
(a+Sl) 1 (Q +e+D)

Q1+c+2

(a+S )+ult9LBl)

For the right hand side of equation (27)
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lard) (0, +c+1)
te 1o (at5S) 1
“‘E(—)—e [ de
Q +c+1 !
O 0 T(Q +ec+1)

(a+S)Q“*')(Q +c+1) ®)

(a+§)@?
w (@ +ce+])
(a+S))
Now, from (18) and (19) in (28)
(Q1 +c+1

)
(a+Sl) (Q1+c+1):eu| (Q1+C+1) (29)
(a+S)

Q1 +c+2

(a+S )+u16’LB1)

0
Then 1B1

Otet2 y . Qe
= N 0
e ((a+ 1)+u1 LBI) (30)

can be expressed as follow

@+s)
then

R (a+Sl)

—u/Q +c+2
0 e EA 1/ 71
LB1 ul €

) (31)
is L(A,) . The

posterior expectation of the loss function L(A ) with

Let the loss function of 6,

respect to ”2 (‘92 /J/) of 92 is the value of éz that

minimizes the posterior expectation of the loss function

0
L(A ) denoted by 1B

- +d+2
. ”2/Q2

9:p)

b+S
(b+ 2)(1_

% ). (32)

4. The Joint Risk Efficiency

A A

The risk functions of estimators 1B1 and 1B

which relative to L(A,)and L(A,) are of interest.
These denoted by

joint risk  functions are

Ry (Orp1-91p2) and Ry (Opsep1-Opgsp2) , where
subscript 7 denotes risk relative to L(A,) and

L(A,) . Let us study the joint risk efficiency of

o o i
1B1 and B2 , we will find

Ry (éLBPéLBZ) from equations (31)and (32) as the

following:
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In the same manner, we get

Ry (aMSB MSR) Exy(L(A), L(A))

I I LLADLA (55,

5 0
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by using the equations (13),(14),(17) and (18) in(37)
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u

26, +ime DT
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The risk efficiency of Ry (07p1.0752) with respect

to Ry (Opssp1-0assp2) under LINEX Loss
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L(A,)and L(A,) may be defined as follows:

R @O .0 )
L MSR MSB

RE3 (0 .60 0 0 )= -(40)

L LBl LB2 MSR MSR b )
L LBl LB

4. Simulation Study

We needed to check whether an estimator is
inadmissible under some loss function or not. If so, the
estimator would not be used for the losses specified by
that loss function. For this purpose the risks of the
estimators and risk efficiency have been
computed RE3 . So we will obtain the MLE for the
unknown parameters of the Weibull distribution then
use them to obtain Bayes estimators under LINEX loss
function and Bayes estimator under square errors .The
following steps will be considered to obtain the
estimators:

Step (1): Generate random samples Xy X,
Weibull distribution with sample sizes 5, 10, 15 and 20,

the shape parameters @] , for each value of the sample

size of n we will generate 1000 random samples
from Weibull distribution in the case of time=30.
Step (2): Similarly, we can obtain the generate samples

for Yy Vg from  Weibull  distribution  with

parameters &5 , for each value of the sample size of

m we will generate 1000 random samples from
Weibull distribution.
Step (3): Using the Equation (35) to find the

R;(01p1.01p>) and use Equation (39) to find

Ry 6 VSB1» 0 vsg2) and Finally, Supply the values

of risk function RE3[ from equation (40).
Step (4): we take the average of there 1000 values then

calculate risk function RE3 .
Step(5): repeat steps (1-4)in the case of time=50.
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Table (1)_u; = 0.8,u5=0.8,6) = 2,0, = 2and R = 0.4

(5,5 1.784 2.975 1.438 2.399 2.05E-03 8.38E-04 0.409
(10,10) 2.498 2.93 2.153 2.526 8.03E-04 3.98E-04 0.496
(15,15) 2.651 2.767 2.367 2471 4.12E-04 2.32E-04 0.562
(20,20) 2.587 3.433 2.36 3.132 2.472E-04 1.51E-04 0.613

(5,4) 2.079 2.88 1.676 2.56 2.32E-03 9.34E-04 0.404
(10,8) 2.095 2.426 1.805 2.547 9.552E-04 4.62E-04 0.484
(10,9) 2.16 2.397 1.862 2.34 8.72E-04 4.27E-04 0.49
(20,18) 2.134 2.766 1.947 2.504 2.73E-04 1.64E-04 0.603
(20,19) 2.1 3.092 1.99 2.811 2.591E-04 1.5E-04 0.608

Table (2)u; = 0.8,uy=0.8,8) =1,60, =2and R = 0.333

(5,5 1.136 1.597 0.916 1.45 5.29E-04 5.40E-04 1.017
(10,10) 1.33 2.371 1.146 2.044 3.37E-04 3.41E-04 1.011
(15,15) 1.283 1.089 1.145 1.698 2.067E-04 2.076E-04 1.004
(20,20) 1.12 2.32 0.998 2.119 1.4E-04 1.4E-04 1.001

(5.4 0.688 1.566 0.555 1.78 7.058E-04 5.905E-04 0.978

(10,8) 1.314 1.864 1.132 2.042 3.945E-04 3.831E-04 0.971

(10,9) 1.22 1.805 1.052 1.541 3.637E-04 3.606E-04 0.992
(20,18) 1.1 2.115 1.21 1.915 1.522E-04 1.499E-04 0.985
(20,19) 1.325 1.95 1.013 2.285 1.453E-04 1.443E-04 0.993

Table (3)u; = Luy=1,6; = 1,6, = 2and R = 0.333

(5.5 1.273 2.47 1.167 1.975 1.54E-03 1.60E-03 1.045
(10,10) 1.254 2.192 1.037 1.813 1.13E-03 2.00E-03 1.764
(15,15) 1.626 2.247 1.417 1.958 5.35E-04 9.58E-04 151
(20,20) 13 2.233 1.18 2.005 4.05E-04 5.60E-04 1.381

(5.4 0.982 2.077 0.785 2.328 1.811E-03 3.397E-03 1.005
(10,8 1.474 2.104 1.136 2.001 9.589E-04 9.527E-04 0.993
(10,9 1.609 1.836 1.379 1.557 8.842E-04 8.974E-04 1.015
(20,18) 1.325 2.363 1.244 2.131 3.7E-04 3.705E-04 1.001
(20,19) 1.415 2.571 1.324 2.328 3.5E-04 3.567E-04 1.01

Table (4) uq = —Lu,=—1,6; = 1,6, = 2and R = 0.333

(5,5 1.156 1.764 1.004 1.533 1.55E-03 1.38E-03 0.893
(10,10) 1.356 1.957 1.232 1.779 8.51E-04 7.63E-04 0.896
(15,15) 1.256 2.212 1.02 2.057 5.23E-04 4.75E-04 0.909
(20,20) 1.114 2.6 1.12 2.453 3.50E-04 3.22E-04 0.919

(5,4 1.343 1.652 1.167 1.417 1.744E-03 1.507E-03 0.819

(10,8) 1.12 2.254 1.245 2.02 1.002E-03 8.691E-04 0.867

(10,9) 1.364 2.304 1.232 2.094 9.205E-04 8.126E-04 0.883
(20,18) 1.17 2.554 1.017 2.603 3.845E-04 3.489E-04 0.908
(20,19) 1.253 2.664 1.24 2.507 3.667E-04 3.350E-04 0.914
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Table (5) uy = 0.8,u5= 08,6, = 2,0, = 3and R = 0.4

(5,5) 1.502 2.49 1.835 2.3 5.071E-03 2.95E-03 0.486
(10,10) 2.025 2.95 1.735 2.16 1.932E-03 9.53E-04 0.493
(15,15) 2.351 3.396 2.09 3.018 9.97E-04 5.57E-04 0.559
(20,20) 2.354 2.751 2.139 2.501 5.98E-04 3.65E-04 0.61

(5,4) 1.823 3.345 1.457 3.158 5.54E-03 2.22E-03 0.4
(10,8) 2.234 2.99 1.914 3.011 2.302E-03 1.10E-03 0.48
(10,9) 2.701 3.0247 1.955 3.089 2.10E-03 1.02E-03 0.487
(20,18) 2.123 2.798 2.455 2.533 5.61E-04 3.97E-04 0.6
(20,19) 2.373 3.1 2.165 2.818 2.59E-04 1.58E-04 0.608

Table (6) uy = 0.8,uy=0.8,6; = 1,6, = 2and R = 0.333

(5,5) 0.991 1.83 0.799 1.475 5.2911E-04 5.40E-04 1.017
(10,10) 1.471 2.325 1.268 2.405 3.37E-04 3.4E-04 1.011
(15,15) 0.132 1.923 1.222 1.717 2.1E-04 2.2E-04 1.004
(20,20) 0.999 2.36 1.011 2.153 1.41E-04 1.4E-04 1.001

(5,4) 0.923 1.635 0.744 1.717 7.12E-04 5.9E-04 0.978
(10,8) 1.775 2.669 1.53 2.253 3.934E-04 3.8E-04 0.971
(10,9) 1.7 1.929 1.245 1.647 3.6E-04 3.6E-04 0.992
(20,18) 1.333 2.454 1.111 2.222 1.5E-04 1.5E-04 0.985
(20,19) 1.532 2.478 1.212 2.323 1.5E-04 1.4E-04 0.993

Table (7)u; = Luy=1,0; = 1,0, = 2and R = 0.333

(5,5) 0.725 1.784 0.579 1.524 1.54E-03 1.60E-03 1.045
(10,10) 0.888 1.967 0.657 1.685 8.20E-04 8.48E-04 1.034
(15,15) 0.965 2.452 0.875 2.179 5.03E-04 5.15E-04 1.024
(20,20) 1.121 2.314 0.924 2.014 3.38E-04 3.44E-04 1.017

(5.4 1.149 2.131 0.899 1.704 1.720E-03 1.729E-03 1.005

(10,8) 1.1545 2.553 0.983 2.141 9.589E-04 9.527E-04 0.993

(10,9) 1.254 2.178 0.999 1.866 8.842E-04 8.974E-04 1.015
(20,18) 1.222 2.236 1.021 2.017 3.701E-04 3.705E-04 1.088
(20,19) 1.235 2.353 1.0222 2.131 3.533E-04 3.567E-04 1.01

Table (8) up = —1,142: -1, 91 =1, 62 = 2and R = 0.333

(5,5) 1.533 1.841 1.332 1.6 1.55E-03 1.3E-03 0.893
(10,10) 1.232 2.031 1.222 1.846 8.51E-04 7.6E-04 0.896
(15,15) 1.325 2.194 1.25 2.041 5.23E-04 4.7E-04 0.909
(20,20) 1.424 2.015 1.24477 2.145 3.50E-04 3.2E-04 0.919

(5.4 1.254 2.159 1.33 1.876 1.744E-03 1.5E-03 0.864
(10,8) 1.111 2.162 1.145 1.937 1.002E-03 8.6E-04 0.867
(10,9) 1.675 1.831 1.522 1.654 9.205E-04 8.1E-04 0.883
(20,18) 1.254 2.428 1.425 2.279 3.845E-04 3.4E-04 0.908
(20,19) 1.92 2.921 1.811 2.749 3.667E-04 3.3E-04 0.914
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We can study the different between the cases of
the risk functions in the different case of sample sizes
equal sample sizes and not equals ,in different times;
it will be clear from figures mentioned below:

T=30

Seriesl

18
1.6
1.4

Re 12

Series2

0.8
0.6
0.4
0.2

Series3

R
\

Series4

Figure (1): to Compare between the proposed
estimators of RE3 in different cases of the sample
sizes n,m = 5,10,15and 20 and for different values

of uy,u5 in case of time =30 hours.

T=50
Seriesl

Series2

Series3

Series4

Figure (2): to Compare between the proposed
estimators of RE3 in different cases of the sample
sizes n,m = 5,10,15and 20 and for different values

of uy,u5 in case of time =50 hours.

5. lllustrative Example

The simulation study shows that

preferable than

R (O1p1-091B2) is

Ry (éMSBl , éMSB2) . This section will provide a

true example on the life test from Weibull
distribution with type-I censored data for failure
terminated data given in blow tables come.

These T, ,...., T,, failure times corresponding to
devices x,,.., x,, .and U ,.. U, failure
times corresponding to devices y ..., y,,
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Table 9. Numbers.

77.668 16.263 116.729 399.071
118.077  182.737 102.947 6.17
87.592 12.411 49.022 72.435
6.171 7.400 12.411 21.49
89.601 272.005 199.458 50.668

Using the statistics of total time. we obtain the
following point estimator of the mean life:
Total test time

Mean life = sample numeber (41)
Then for x and y the mean life will be:
3T 859925
Mearlife =% =85B23_599 (42)
and
: YU 1030402
Meanhfey =T = T =103.04. (43)

The reciprocal of mean life, yields the point estimate
of the device failure rate for x and y :

failure rate = —————. (44)
mean life
Then the failure rate for x and y will be:
. 1
fallureraex =959975 = 0.0116. (45)
and
. 1
fallureraey =103.0400 = 0.0097. (46)

We then use the appropriate statistical reliability to
calculate the CI in the Weibull case .The formula to
obtain a Weibull CI for true , but unknown mean for

x and y indexed by 0 , and ) , respectively with

— 0, . .
a confidence level 100 (1-a)% ,is given by.
T i T B
[F 2n2m(—+F (2n,2m)) l,F 2n2m)(——+F  (2n.2m)) l](47)
1o/2 U 12 al2 U 4f2

From the last equation we find the CL is 0.9999
and we use it to obtain 90%confidence bound for the
Weibull mean, the 90% upper bound for unknown
mean:

0, =2.195 46, =2.195

(48)
Then the failure rate is
B= = _ 0 409 (49)
91 + 92

Now we find the failure rate for mean square
error loss function case and LINEX loss function case:
I-for mean square error loss function:

Before finding the value of failure rate

R (6 .0 ) swe should find the value of
L MSB1 MSB?2

from equations (17) and (18) ,so:
(50)

O vsp 1209 065 o

é =0.304 and §
MSB 1 MSB 2

= 0.0158
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Where a,b,c,d > 0,u1,u2 # 0, and for§,, S,

calculated by MATHCAD program and we get their
values as the following

S, =-2.604,5, =-2.794 . (51)

Now from equation (39) we can find the value of

R (0 .0 ) = 0.9505 (52)

L MSB1 MSB?2

[I-for LINEX loss function:

Before finding the value of failure rate

R, (0;51.0,5,) -We should find the value of

from equations (31) and (32) ,so:
(53)

Orpyand 6,5,

é =0.0235 and ¢ = 0.01244
LB1 LB?2

By using equation (35) we can find the value of

R (6 6  )=0.65 (54)

L LBl LB2
Using equation (40) to find failure rate for mean
square error loss function case and LINEX loss

function case:

£ = LSO; —1.4555

(55)
RE is greater than one which indicates that the

proposed estimators g (4 .4 y are preferable
L LBl 2

to g (9" ,0 ) -
L MSB1 MSB 2

4. Conclusion

In this paper, the Bayes estimation of stress-
strength parameter for two Weibull distributions
under type-lI censoring has been considered. The
LINEX loss function and square error loss function
have been proposed. Extensive simulations are
performed to check the performance of the two
estimators, and it’s observed that the LINEX loss
function is preferable to the square errors loss
function. Also, for the illustrative example which
demonstrated agreed with the paper results.
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