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1. Introduction 

The mathematical idea of double sets 
was firstly introduced by Kere [9] and studied 
in many articles by A. Kandil and others “[1], 
[4], [6], [7], [8]”. They introduced and studied 
many topics in the double topology. The 
Paraproximity structure subject has been 
introduced by E. Hayashi in 1964 [3]. 
Recently, Kandil and others introduced the 
fuzzy Paraproximity structure [5]. 

In this paper we shall introduce the 
separation axiom DT5 (double completely 
normal) on double topological spaces and 
study some of its properties. Also, we shall 
introduce the notion of DP-proximity in the 
case of double topological space showing that 
every DP-Proximity on X generates a double 
completely normal (DT5) topology. 
 
2. Preliminaries 

Throughout this section we mention 
the concepts and notations which we shall use 
in this paper.  
 

2-1 Double set 
Definition 2.1.1. [8]  Let  X  be a non empty 
set.  
1. A double set A  is an ordered pair 

1 2( , ) ( ) ( )A A A P X P X= ∈ ×  such that 

1 2A A⊆ . 
2. 1 2 1 2( ) {( , ) ( ) ( ) : }D X A A P X P X A A= ∈ × ⊆

is the family of all double sets on X. 
3. Let x X∈ , then the double sets 

1
2

( ,{ })x x= φ  and  1 ({ },{ })x x x= are said 

to be double points of X. 

1( ) { : , { ,1}}2p tD X x x X t= ∈ =  is the 

set of all double points on X. 
4. Let 1 2, ( )P Xη η ⊆ . Then the double 

product of 1η  and 2η  is  denoted  by 

1 2η × η)  and is defined by: 

1 2 1 2 1 2 1 2{( , ) : }A A A Aη × η = ∈η × η ⊆) . 
5. The double set X = (X, X) is called the 

universal double set. 
6. The double set  ( , )φ = φ φ  is called the 

empty double set.  
Definition 2.1.2. [8] Let  1 2( , ),A A A= . 

1 2( , ) ( )B B B D X= ∈ . Then:  
i‐ , 1,2i iA B A B i= ⇔ = = .  

ii‐ , 1,2i iA B A B i⊆ ⇔ ⊆ = . 
iii- If  { : } ( ),sA s S D X∈ ⊆  then 

1 2( , )s s s
s S s S s S

A A A
∈ ∈ ∈

=U U U   and  

1 2( , )s s s
s S s S s S

A A A
∈ ∈ ∈

=I I I  

iv- The complement of a double set A is 
2 1( , )c c cA A A=  

v‐ cA B A B− = I .  

Proposition 2.1.3. [8] ( ( ), , , )cD X U I  is a 
Morgan Algebra. 
Definition 2.1.4. [8]  For any two double sets 
A and B, A is called quasi-coincident to B, 
denoted by A Q B, if 1 2A B ≠ φI  or 

2 1A B ≠ φI . 
A is not quasi – coincident to B, denoted by A 
Q  B, if  1 2A B = φI  and  2 1A B = φI . 
Theorem 2.1.5. [8]  Let , , ( )A B C D X∈  and 

( )t px D X∈ .  Then : 
1-  AQ B A B⇒ ≠ φI  
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2- tAQ B x A⇔ ∃ ∈ such that tx Q B 

3- A Q B ⇔  A ⊆  Bc,  and  xt Q A ⇔   
    xt ∈Ac. 
4- A Q  Ac. 
5- A ⊆  B ⇔  xt Q A ⇒  xt Q B. 

6- A Q  B, B ⊆  C ⇒  A Q  C. 

7- xt Q  (A U  B ) ⇔  xt Q  A and  xt Q  B. 

8- xt Q  (A I  B ) ⇔  xt Q  A or  xt Q  B. 
 
2.2 Double Topological Space 
Definition 2.2.1. [8] Let  X  be a non-empty 
set. Then:  
1‐  ( )D Xτ ⊆  is called a double toplogy on X 

if the following axioms are satisfied:  
DT1 ,  Xφ ∈τ .  
DT2 if ,A B ∈ τ , then  A B ∈ τI . 
DT3 if { : }sA s S∈ ⊆ τ , then s

s S
A

∈

∈τU . 

The pair ( , )X τ  is called a double topological 
space and member of    τ   are called open 
double set. 
2- F ∈D(X)  is called a closed double set, if 

cF ∈ τ , and the family of all closed double 
sets is denoted by  { : }cc F Fτ = ∈τ  . 
3- A double set 

txO  is called a double 

neighborhood of the double point xt 
if t txx O∈ ∈ τ . The family of all double 

neighborhoods of xt will be denoted by N(xt).  
4- If A ∈  D(X), Then:  
(i) The closure of A is denoted by A or cL(A) 
and is defined by { : }cA F A F= ⊆ ∈ τI . 

(ii) The interior of A is denoted by Ao or int(A) 
and { : , }oA V V V A= ∈ τ ⊆U .  
(iii) The derived double set of A is denoted by 
Ad and is given by:  
xt Q Ad ⇔  xt Q  (A – {xt}). 
 
Definition 2.2.2. [6] A double topological 
space ( , )X τ  is called : 

1- D – R0  iff  xt Q  ry implies ry Q tx .  

2- D – R1  iff  xt Q ry implies there exist O
tx ,  

O
ry such that O

tx Q  O
ry . 

3- D – R2 iff xt Q  F, Fc ∈ τ  implies that 

there exist O x t , O F  such that O
tx Q  OF . 

4- D – R3  iff F Q  G and F , G ∈ τ c  implies 

that there exist OF , O G such that  OF Q  OG.  

5- D-T0 iff tx Q  ry  implies yr Q  tx or 

 tx  Q  ry . 

6- D-T1 iff tx  Q ry  implies yr Q tx  and  
tx  Q  ry . 

7- D- T2  iff tx  Q  ry  implies that there exist 

O x t , O
ry such that O

tx Q  O
ry  

8- D –T3  iff it is D –R2 and D-T1. 
9- D-T4 iff it is D-R3  and D-T1 . 
 
Theorem2.2.3. [6] The interrelation between 
the pervious axioms given in the following 
diagram: 

 

     

 

 

2.3 Completely normal spaces and 
paraproximity spaces 
Definition2.3.1. [king] An ordinary toplogical 
space ( , )X τ  is called completely normal 
space iff for every pair of separated sets A, B 
⊂ X, there exist open sets U, V ⊂  X such that 
A ⊂  U, B ⊂  V and U I  V = φ  .  

Definition 2.3.2. [king] A mapping δ  : P(X) 
×  P (X) →  {0 , 1} is called a paraproximity on 
a set X if the following axioms are satisfied:  
1. δ  (A, φ ) = 1, ∀ A ⊆  X. 
2. δ  (A, B U  C) = δ  (A, B) . δ  (A, C),  ∀ A, 
B, C ⊆  X. 

4 3 2 1 0

3 2 1 0

                                     

                                                                          
                         any double topology

DT DT DT DT DT

DR DR DR DR

⇒ ⇒ ⇒ ⇒

⇓ ⇓ ⇓ ⇓ ⇓
⇒ ⇒ ⇒ ⇒
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3. For an arbitrary index set ∧ , δ  (
∧∈λ
U λA , 

B) = 0 ⇔  δ  (A µ  , B) = 0, for some µ ∈ ∧ .  

4. for any two points x, y of X, δ  (x, y) = 0 
⇔  x = y.  
5. δ  (A, B) = δ  (B, A) = 1 ⇒  ∃  U, V ⊆ X 
with U I  V = φ , satisfying   
δ (A, Uc) = δ  (B, Vc) = 1 and δ  (U, Uc) =  
δ  (V, Vc) =1. 
Theorem 2.3.3. [king] Let (X, δ ) be a 
paraproximity space. Then the collection  
τ δ ={V ⊆ X: δ  (V, Vc) = 1} is a completely 
normal topology on X. 
Theorem 2.3.4. [king] Let (X, τ ) be a 
completely normal ordinary topological space. 
Then the relation δ  given by: δ  (A, B) = 0 
⇔ A I B ≠  φ , is a paraproximity on X, for 
which δτ = τ   
3- Double complete normal spaces  
Definition 3.1. Let (X, τ ) be a double 
topological space, and let A, B ∈D(x). A and 
B are called double separated sets if A Q  B  

and B Q  A . 
Lemma 3.2. Let  (X, τ ) be a double 
topological space. Then:  
(i) A and B are double separated and  
A1 ⊆  A, B1 ⊆  B ⇒  A1, B1 are double 
separated. 
(ii) A, B ∈ τ c  and  A Q  B ⇒  A and B 
are double separated.  
(iii) A, B ∈ τ  and A Q  B ⇒  A and B are 
double separated. 
Proof: Clear.  
Definition 3.3. A double  topological  space 
(X, τ )  is called DR4-space if for every two 
double separated sets  A, B in X, ∃ OA, OB such 
that O A Q O B.  
Definition 3.4. A double space (X, τ ) is called 
double completely normal space (or DT5-
space) if it is DR4 and DT1. 
Proposition 3.5. (X, τ )∈  DT5  
⇒ (X, τ )∈  DT4. 
Proof:  The result following from Definition 
3.4 and Lemma 3.2.  
Theorem 3.6 . Every closed double subspace 
of a DT5-space is DT4 . 
Proof:  Let (X, τ ) ∈  DT5-space,Y be a 
double subspace of X, and A, B ∈  C

Yτ such 

that  A Q B . Then  A, B ∈ Cτ ∧   A Q B 
Lemma3.2.5

⇒ A, B are double separated in X 
TX 5D∈

⇒ ∃  O A, O B  such that O A Q  O B 

⇒ (YI  O A Q YI  O B )⇒ (Y , Yτ ) ∈  DR3  

∧  clearly (Y , Yτ ) ∈  DT1 ⇒  (Y , Yτ ) 
∈DT4 . 
4- Double Paraproximity Spaces 
Definitions 4.1 Let δ : D(X) ×  D(X) →  {0,1} 
be a relation on D(X) that satisfies the 
following axioms:  
DH1 δ  ( φ , X) = δ  (X, φ ) = 1. 

DH2  δ  (A, B U C)  = δ  (A, B). δ  (A, C), 
∀ A, B, C∈D(X). 
DH3 for an arbitrary index  set  ∧ ,  

 δ  (
∧∈λ
U A λ , B) = 0 ⇔  δ ( A µ , B) = 0 , for 

some µ  ∈ ∧ . 
This δ  is called a double H- proximity on X, 
and the pair (X, δ ) is called a doubleH- 
proximity space (or an DHP- space, for short). 
Definition 4.2. An DHP- space (X, δ ) is 
called separated if δ satisfies the following  
Axiom: DH4 δ (xt, yr) = 0 ⇔ xt Q yr, ∀ xt, 
yr∈D(X)p. 
If δ  is a separated  DH – proximity. Then  
(X, δ ) is called a separated DHP- space (or an 
SDHP-space, for short). 
Proposition 4.3. Let (X, δ ) be an SDHP-
space, then δ  (A, xt) = 0 ⇔  A Q xt. 

Proof:  δ  (A, xt) = δ  (

−
∈Ayr

U yr, xt) = 0
DH3

⇔  

 δ  (yr, xt) = 0, for some yr ∈A. 
DH4

⇔ yr Q xt , 
for some yr ∈A ⇔  A Q xt .  
Definition 4.4. An SDHP- space (X, δ ) is 
called a double paraproximity space (or a DPP- 
space, for short) if δ satisfies the following 
axiom.  
DH5 δ  (A, B) = δ  (B, A) = 1 ⇒  ∃  C, D 

∈D(X) Such that  C Q  D, and δ  (A, Cc) = 
δ  (C, Cc) = δ  (B, Dc) = δ  (D, Dc) = 1. 
Lemma 4.5. Let (X, δ ) be a DPP-space. 
Then: 
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i- If δ  (A, B) = 1 , then δ  (A, C) = 1 , 
for any C ⊆ B. 
ii- If δ  (A, B) = 1 , then δ  (C, B) = 1 , 
for any C ⊆ A. 
iii- If δ  (A, B) = 1 , then A Q  B. 
iv- δ  (xt 

c , xt ) = 1 , for any double point 
xt ∈D(X)P.  
Proof :   (i)  Since B = B U  C  (C ⊆ B), and  
δ  (A, B) = 1. δ  (A, B) = δ  (A, B U C) =  
δ  (A, B) . δ  (A, C) = 1 by DH2 .Then  
δ  (A, C) = 1. 
(ii)  Proof of (ii) is similar to proof of (i).  
(iii)  δ  (A, B) =1 ⇒  δ  (

ttX A∈
U xt , B)  =1 

DH3

⇒  δ  (xt , B)  =1, ∀ xt ∈A. 
5.4Lema

⇒  
 ∀ xt ∈A, δ  (xt , yr)  =1,  ∀ yr ∈B 
DH4

⇔   xt Q yr, ∀ xt ∈A, yr ∈B ⇔ A Q B.  

(iv)   Since xt
c Q  xt  ⇒  yr Q  xt ,  ∀ yr ∈  xt

c 

DH4

⇔ δ  (yr , xt)  =1, ∀ yr ∈  xt c 
DH3

⇔  
δ  (xt c , xt)  =1 (By proposition 4.3). 
Theorm 4.6.  Let (X, δ ) be a DPP – Space. 
Then δτ  = {V ∈D(X): δ  (V, Vc) = 1} 

is a double topology on X, induced by δ . 
Proof:  DT1 δ  (X, Xc) = δ  (X, φ ) =  

δ  ( φ , cφ ) = δ  ( ,Xφ ) =1 ⇒  X, φ ∈ δτ . 

DT2 U, V ∈ δτ ⇒  δ  (U, Uc) = 1 and  
δ  (V, Vc) = 1 and by  (ii)  in Lemma  (4, 5),  
δ  (U I V, Uc) = 1 and δ  (U I V, Vc) = 1, 
Hence (by DH2), δ  (U I V, UcU Vc) =  
δ  (U I V, (U I V)c) = 1. Consequently  
 U I V ∈ δτ . 
DT3 Let Vi , ∈ δτ  , ∀ i ∈ I, for some 

index set I.  Then δ  (Vi, Vi 
c)=1, ∀ i ∈I 

DH3

⇒  

δ  (
Ii∈
U Vi , Vi c)  =1, ∀ i∈ I 

(i) 4.5

⇒   

δ  (
Ii∈
U Vi , 

Ii∈
I  Vi c)  =1 

 ⇒   δ  (
Ii∈
U Vi ,(

Ii∈
U Vi)c)  =1 ⇒   

Ii∈
U Vi ∈ δτ . 

Therefore,
 δτ  is a double topology on X, 

generated by δ . 
Corollary 4.7.  V ∈ δτ ⇔  δ  (xt, V c) = 1 ,  
∀  xt ∈V.  
Theorem 4.8. Let (X, δ ) be a  DPP- space. 

Then δ  (A, B) = 0 ⇒  A Q B . 

Proof: Let δ  (A, B) =0 and suppose A Q B  

⇒  A ⊆ B
C

, if we choose all open double 
sets O�, which contain the closed double set 

B ,  then  
λ
I λO = B  ⇒  (A ⊆ B

C
) B

C
 = 

(
λ
I λO )c = 

λ
U

cO λ  Since λO  is open ∀ λ  , 

δ (
cO λ  , λO )=1,  ∀ λ .

DH3

⇒   

δ  (
λ
U

cO λ , λO )  =1 
(i) 4.5

⇒   

δ  (
λ
U

cO λ  , 
λ
I λO )  =1 

(ii) 4.5

⇒ δ  (A , B)  =1. 

This contradicts our assumption that  
δ  (A , B)  = 0.  
Corollary 4.9. Let (X, δ ) be a DPP-space and 
let xt ∈D(X)p, A ∈D(X), Then:  
(i) δ  (A , xt)  = 0 ⇔  xt ∈A. 

(ii)  δ  (xt,  A)  = 0 ⇒  xt ∈ A . 
Theorem 4.10:  Let (X, δ ) be  a DPP- space, 
Then: (X, δτ ) ∈DT5.  
Proof: first, we prove that δτ ∈DT1, forwhich 
we show that every double point of D(X)p is 
closed. Since δ  (xt c, xt) = 1, ∀  xt ∈  D(X)p 
4.6

⇒  xt c∈ ., δτ  ∀  xt ∈  D(X)p ⇒  xt ∈ c
δτ , ∀  

xt ∈  D(X)p ⇒  (X, δτ ) ∈DT1.  
Now we show that for every separated double 
sets  A, B  in  X, ∃  O A, O B  such that O A Q  

O B. Since δ  ( A
c
, A  ) = 1, and A, B are 

separated, then B ⊆ A
c
. Consequantly,  

δ  (B, A  ) = 1 and  δ  (B, A) = 1, (by Lemma 
4.5 (ii), (i) ). Similarly, we can show that  
δ (A, B ) = 1. Now δ  (A, B) = δ  (B, A ) = 1 
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DH5

⇒  ∃ C, D ∈  D(X) Such that  C Q  D and 
δ  (A, Cc) = δ  (C, Cc) = δ  (B, Dc) = 
δ  (D, Dc) =1 ⇒  C, D ∈ δτ  (by 4.6), and  

A ⊆ C, B ⊆ D (by 4.5  (iii)). Since  CQ D,  
then  (X, δτ ) ∈DT5.  
Theorem 4.11.  Let (X, τ ) be a double 
complete normal space. Then:  
δ : D(X) ×  D(X) ⎯→⎯  {0, 1}, given by  
δ  (A, B) =0 ⇔ A Q B , ∀  A, B ∈D(X), is a 
SDH-proximity on X. Moreover, if  δ  
satisfies DH5 , then

 δτ   = τ . 

Proof:  DH1 X Q  δ φ  ⇒  δ  (X, φ ) = 1, 

and φ  Q  X  ⇒  δ  ( φ , X) = 1. 

DH2 δ  (A, B U C) = 0 ⇒  A Q  (
−−
CBU ) 

⇔  A Q  ( B  U C )  
2.1.5
⇔  A Q B  or A Q C  

⇔ δ  (A, B) = 0 or δ  (A, C) = 0. 

DH3  δ  (
Ii∈
U Ai, B) = 0 ⇔ (

Ii∈
U Ai) Q B  

2.1.5
⇔  

∃  io∈ I Such that A
0i

 Q B  
2.1.5
⇔  

 δ  (A
0i

, B ) = 0 for some io ∈ I. 

DH4 δ  (xt, yr) = 0 ⇔ xt Q y r 
(X, ) 1DTτ ∈

⇔  
xt Q yr, ∀  xt, yr∈D(X)p. Thus δ  is SDH-
Proximity on X .Moreover, if δ  satisfies DH5 , 

then: δτ = {V ∈  D(X) : δ  (V, cV ) = 1}  

= {V ∈  D(X) : V Q  cV }. 

 = {V ∈  D(X) : V ⊆
c

cV  = Vo} 
 = {V ∈  D(X) : V ∈τ } = 

τ . 
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