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Abstract: This paper studies a supply chain design problem with an unreliable supplier and random demand. Due to 
imperfect performance of the supplier, the quantity of the product received from the supplier may be less than the 
quantity ordered by distribution centers (DCs). In this system, customers have random demands and the supply 
chain is flexible in determining which customers to serve. The problem is formulated as a nonlinear integer 
programming model that simultaneously determines which customers are served, where DCs are located and how 
DCs are assigned to the customers. The objective of the model is to minimize the total costs including location costs, 
nonlinear inventory costs, transportation costs, and lost sales costs. In order to solve the model, an effective solution 
method based on genetic algorithm is developed. Finally, computational results for several instances of the problem 
are presented to demonstrate the effectiveness of the proposed solution approach. 
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1. Introduction 

In today's increasingly competitive 
environment, the efficient design of supply chain 
plays a decisive role in successful performance of 
companies. Supply chain design models typically 
treat strategic decisions and tactical decisions 
separately. Since ignoring the interaction between 
long term and short term decisions can lead to sub-
optimality (Shen and Qi, 2007; Shu et al., 2005; 
Ozsen, 2004), recently integrated supply chain design 
models have been developed. These models 
incorporate the strategic decisions of facility location 
and tactical decisions of inventory and transportation 
management. Most of the integrated models in the 
literature implicitly assume that supplier always 
performs perfectly. However, in practice a supplier is 
not always reliable and what is received from the 
supplier is not equal to what was ordered. In fact, 
there exist various factors such as random 
breakdown, raw material shortage, quality rejection, 
workforce slow down, maintenance duration, 
transportation damage, and natural disaster leading to 
unwanted partial yield (Erdem and Ozekici, 2002). 
Consequently, in many real cases, the amount of 
yield is random. This highlights the need for supply 
chain design models that account for uncertain yield. 

Also, the majority of the integrated supply 
chain design models in the literature are based on the 
assumption that every customer's demands must be 
fulfilled. In real life world, tough, it may be more 
beneficial for the company to lose some potential 
customers, as the cost of maintaining these customers 
can be inevitably high. In other words, demand 
choice flexibility can result in cost saving that is 

significantly important especially for a profit-
maximizing business (Shen, 2006). It implies that 
supply chain design models with demand choice 
flexibility deserve further attention. 

With this background, the present paper 
discusses supply chain design problem, where yields 
and demands are uncertain and there is demand 
choice flexibility. Specifically, a three echelon supply 
chain comprised of single unreliable supplier, 
distribution centers (DCs) and customers, is 
considered. Following the common assumption in the 
literature, customers are assumed to have 
independent probabilistic demands with Poisson 
distribution such that the variance of demand is equal 
to the mean (Daskin et al., 2002; Shen et al., 2003; 
Ozsen et al., 2008). The supplier ships one type of 
product to customers in order to satisfy their 
demands. It should be noted that there is no 
requirement for serving all the costumers and the 
company is flexible in choosing which customers to 
serve. DCs function as the direct intermediary 
between the supplier and customers for shipment of 
the product. That is, DCs combine the orders from 
different customers and then order to the supplier. A 
key problem is that the supplier is not always reliable 
and the quantity of yield received by each DC may be 
less than what was ordered. In other words, the 
amount of yield at each DC is not deterministic. 

In order to formulate the problem, an 
integrated supply chain design model is presented. 
The proposed model simultaneously determines: 1) 
where DCs are located; 2) which customers are 
served; 3) which DCs are assigned to which 
customers; 4) how much and how often to order at 
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each DC. The objective is to minimize total costs 
including costs of location, inventory (consisting of 
working and safety inventory at DCs), shipment, and 
lost sales. In order to solve the model, a solution 
approach based on genetic algorithm is developed.   

The remainder of the paper is organized as 
follows. Section 2 discusses some relevant models in 
the literature. In section 3 the integrated supply chain 
design model for the problem is proposed. Section 4 
develops a solution approach to solve the model. In 
section 5 the related computational results for testing 
the effectiveness of the developed solution approach 
are provided. Finally, section 6 concludes the paper 
along with directions for future research.  
 
2. Literature review 

As this paper investigates the design of a 
supply chain with random yield, first the literature on 
integrated supply chain design is reviewed briefly. 
The reader is referred to Shen (2006) for a thorough 
review of the integrated supply chain design models. 
The research by Baumol and Wolfe (1985) is among 
the earliest works that incorporate inventory costs 
into location models. They discuss that inventory 
costs should be considered in the location model with 
a square root term. After Baumol and Wolfe's work, a 
number of joint location-inventory models have 
appeared in the literature. However, in most of these 
models nonlinear inventory costs either are 
overlooked, or approximated with linear functions 
(Ozsen et al., 2008). 

In the recent years researchers have focused 
on the integrated models in which location and 
nonlinear inventory costs are included in the same 
model (Shen and Qi, 2007). For instance, Erlebacher 
and Meller (2000) provide a joint location inventory 
model with complicated nonlinear objective function. 
They applied a continuous approximation along with 
some heuristics techniques to solve the model. 
Daskin et al. (2002), Shen et al. (2003) and Shen 
(2000) introduce a location model with risk pooling 
(LMRP) that incorporates inventory decisions into 
the location model. LMRP minimizes the sum of 
fixed facility location costs, linear shipment costs and 
nonlinear inventory costs. Shen et al. (2003) and 
Shen (2000) use column generation, while Daskin et 
al. (2002) present Lagrangian relaxation to solve the 
LMRP. Another efficient approach to solve the 
LMRP is presented by Shu et al. (2005). 

Shen and Daskin (2005) extend the LMRP 
to include a customer service element and propose 
useful techniques for evaluation of cost/service trade-
offs. Ozsen (2008) develops LMRP in the condition 
that each DC has limited capacity. Her capacitated 
model is noticeably harder to solve than LMRP. Shen 
and Qi (2007) study an integrated supply chain 

design model that contains location, inventory, and 
routing decisions; in fact, they add routing decisions 
to the LMRP framework. Snyder et al. (2007) 
propose stochastic version of LMRP (called SLMRP) 
that handles uncertainty by describing discrete 
scenarios. The goal of SLMRP is to minimize the 
expected system cost across all scenarios. The 
authors argue how to use SLMRP to solve multi-
commodity and multi-period problems. 

Similar integrated supply chain design 
models are developed by Shen (2006), Sourirajan et 
al. (2007; 2008). Sourirajan et al. (2007) study the 
two-stage supply chain with a production facility 
where the replenishment lead time at the DCs 
depends on the volume of flow through the DC. They 
formulate the relationship between the flows in the 
network, lead times, and safety stock levels and 
develop a Lagrangian heuristic to obtain near-optimal 
solutions for the proposed model. Sourirajan et al. 
(2008) extend the problem to incorporate arbitrary 
demand variance at the retailers. They suggest 
genetic algorithm to solve the model and imply that 
the genetic algorithm outperforms the Lagrangian 
heuristic developed in the earlier work in some 
respects. None of these integrated supply chain 
design models consider random yield at DCs. 

Another issue considered in this paper is 
random yield which has been discussed several times 
in the literature (Noori and Keller, 1986; Ehrhardt 
and Taube, 1987; Gerchak et al., 1988; Erdem and 
Ozekici, 2002; Qi and Shen, 2007; He and Zhang, 
2008; Maddah et al., 2009). Most of these paper use 
newsboy problem to formulate the inventory problem 
(Noori and Keller, 1986; Ehrhardt and Taube, 1987; 
Gerchak et al., 1988; Qi and Shen, 2007). For 
instance, using newsboy problem, Qi and Shen 
(2007) provide a profit-maximizing model when the 
price of the product at each retailer is given and the 
yield is not deterministic. Parlar and Berkin (1991) 
and Gurler and Parlar (1997) study the problem 
where supply is presented only during an interval of 
random length. Henig and Gerchak (1996), also, 
examine the inventory policies when the amount of 
yield is stochastic. Yano and Lee (1995) and Tang 
(2006) survey the inventory models with random 
yield and provide general reviews. 

The present paper differs from the earlier 
works in some main directions. First, unlike the most 
of supply chain design models in the literature, the 
proposed model of this study takes account of 
random yields at DCs. Moreover, the presented 
model dismisses the common restrictive assumption 
in the literature that demands of all customers must 
be satisfied necessarily. In fact, the model provides a 
simple but effective technique for determining the 
profitable customers. Finally, unlike the most of 
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supply chain design models in the literature, the 
presented model consider limited capacities at DCs. 

 
3. Model formulation 

This section formulates a model for the 
problem explained in section 1. The objective of the 
model is to minimize the expected total cost 
including: 1) the fixed cost to locate DCs, 2) the 
working inventory cost at the located DCs 
(containing order costs, shipment costs from supplier 
to DCs, and holding costs), 3) safety stock cost at the 
located DCs, 4) shipment cost from located DCs to 
customers, and 5) the lost sales cost of not serving 
some customers. To develop the proposed model, 
following notations are used throughout the paper. 
Additional notations will be given out when required. 
 
I : set of customers indexed by i; 
J : set of candidate DC locations indexed by j; 

iD : mean of demand at customer i, for each iI;  

jf : fixed cost of locating a DC at j, for each jJ;  

jF : fixed cost of placing an order at j, for each jJ; 

jg : fixed cost per shipment from the supplier to DC 

at j, for each jJ;  

jA : per-unit shipment cost from the supplier to DC 

at j, for each jJ; 
h : inventory holding cost per unit of product; 

ijd : per-unit cost to ship from distribution center j to 

customer i, for each i  I and for each jJ; 

jC : capacity of DC at j, for each jJ;  

 : desired percentage of customers orders satisfied; 
β: weight factor associated with the shipment cost; 

 : weight factor associated with the inventory cost; 

z : standard normal deviate such 

that ( )  P z z ; 

L: lead time from supplier to DCs, in days;  
P: number of DCs which should be located; 

iu : penalty cost of not serving customer i, per unit of 

demand (it can be interpreted as lost sales cost, or the 
cost of serving customer i by purchasing product 
from a competitor). 
 
3.1. Working inventory cost 

This subsection details the inventory policy 
the DCs follow and calculates the resulting expected 
working inventory cost. As stated in section 1, due to 
unreliable performance of the supplier, the quantity 
of yield received by each DC may be different from 
what was ordered. Specifically, it is assumed that the 
supplier has two modes for each DC, and each mode 

is associated with a constant partial yield. In other 
words, at each mode the supplier can provide only a 
fraction of the order placed by each DC. For 
convenience, assume that the supplier can 

provide %ja of the order placed by distribution 

center j at the first mode, whereas it can 

satisfy %jb of the order placed by distribution center 

j at the second mode. It should be noted 

that ja and jb are known given parameters. Also, 

durations of the first and second modes of the 
supplier for distribution center j follow exponential 

distribution with parameters 1 j and 2 j , 

respectively. Let jQ denotes the reorder quantity of 

distribution center j,
 [ ]a j

Q indicates integer value 

of %j jQ a , [ ]b j
Q represents integer value 

of %j jQ b  and j indicates the demand arrival 

rate to distribution center j in Poisson process. Then, 
regarding the memoryless property of the exponential 
distribution, the inventory transition related to 
distribution center j can be modeled as a birth-death 
process as Figure 1. In Figure 1, inventory quantities 
are considered as states of the birth-death process 
(Ross, 2007). By equating the rate at which the 
process leaves a state with the rate at which it enters 
that state, following equations are gained (Wu, 2008): 
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Figure 1. Inventory transition diagram related to distribution center j 
 
 

where jN denotes the number of orders and 

is equal to 
1 2
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The first term of equation (3) is the annual 
fixed cost of placing orders. The second term 
indicates the annual cost of shipping orders, 
assuming the shipment cost from the supplier to 

distribution center j has a fixed cost jg and volume 

dependent cost jA . The last term represents the cost 

of holding average of
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inventory. 
Substituting limiting probabilities in (1) and 

(2) into (3), the annual working inventory cost at 
distribution center j will be: 

 

1 2

1 2

1 2

2

1 2

100( ) ( )

( 100)

200( )

( 100)( )

200( )

 









  




j j j j j

j j

j j j j j j

j j j

j j j j

j j j j j j j

j j j j

F g
A

a Q b Q

ha a Q

a p b p

hp b Q a Q b a

a p b p

   
 

 


 

 
 
 
 
 
 
 

(4) 

 
To determine the optimal reorder quantity, 

we take derivative of (4) respect to jQ and set the 

derivative to zero. By this way, the optimal value will 
be: 
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Plugging (5) into (4), an annual working 

inventory cost at distribution center j can be 
calculated as following: 
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(6) 

3.2. Shipment cost 
Transporting the product from each 

distribution center j to each customer i has linear 

shipment cost. Let jS be the set of customers 

assigned to the distribution center j. Then, the total 

demand assigned to distribution center j is i
i S j

D

 , 

and the shipment cost from distribution center j to the 
costumers will be: 

 

ij i
i S j

d D

  

(7) 

 
3.3. Lost sales cost 

As stated in section 1, in case that the cost of 
serving a customer is not profitable, the demand of 
the customer is not provided and the system incurs 
lost sales cost. This happens when the cost of 
assigning the customer to any of the DCs is more 

than iu . To model the lost sales cost, it is expedient 

to define a dummy DC with index u. Assigning the 
customer i to this dummy DC represents not serving 
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the customer i (Snyder and Daskin, 2005). Regarding 
distribution center u, we assume that it has the 

shipment cost iij ud  to customer iI and there is 

no other cost. Accordingly, when customer iI is 
assigned to distribution center u it means that 

customer i is not served and the cost iu is incurred.  

 
3.4. Safety stock cost 

Each DC retains a certain amount of safety 
stocks to deal with possible stockouts during 
replenishment lead time. Montgomery et al. (1998) 
show that a Poisson process with sufficiently large 
demand values can be approximated by Normal 
distribution appropriately. Thus, it is assumed that the 
demands at the customers are normally distributed 
when calculating the safety stock requirement. Since 
the customers’ demands are assumed to be 
uncorrelated and normally distributed, the lead time 
demand variance at distribution center j can be 

gained by 2
i

i S j

LV

 , where 2

iV denotes the 

variance of demand at customer i. Therefore, the 
needed safety stock to guarantee that the stockouts 
occur with a probability of or less is

 2
i

i S j

z LV

 . Given the assumption that the 

variance and mean are equal, the corresponding 
holding cost for the safety stock at distribution center 
j is: 

 

i
i S j

hz LD

  

(8) 

 
3.5. Integrated Model 

In order to determine the locations of the 
DCs and assignments of the customers to DCs, two 
sets of decision variables are defined: 
 

 1jX  , if  j is selected as a DC location, 

and 0, otherwise, for each j J ; 

  1ijY  , if customer i is assigned to a DC 

based at j, and 0 otherwise, for each 
i I and j J . 

 
Now the model can be formulated as 

follows: 
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{0,1}jX                   j J 

 

(14) 

{0,1}ijY                    
,  i I j J   

 

(15) 

 
The objective function (9) is composed of 

four components. The first component represents the 
fixed cost of locating DCs. Considering equation (7), 
the second part indicates the expected shipment cost 
from the DCs to customers. Note that we added 
dummy distribution center u to the set J to take lost 
sales cost into account in the model. Also, 

i ij
i I

D Y

 indicates the total annual demand assigned 

to the distribution center j. With regards to equation 
(6), it is easy to find that the third component 
represents the working inventory cost 

where j i ij
i I

D Y


 . Finally, the fourth part 

indicates the safety stock cost and can be obtained by 
considering equation (8). 

Constraints (10) stipulate that each customer 
is assigned to a DC. Recall that assigning a customer 
to dummy distribution center u is equivalent to not 
serving the customer. Constraints (11) state that the 
mean demand flow through a DC should be less than 
the capacity of that DC. Constraint (12) requires the 
dummy distribution center u to be located. Constraint 
(13) assures that the number of located DCs is 
exactly P + 1 (this means that P distribution centers 
must be located in addition to dummy distribution 
center u). Constraints (14) and (15) are binary 
constraints. 

Objective function (9) can easily be 
reorganized as follows: 
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4. Solution approach 

Meta-heuristic algorithms have been very 
successful in solving complex mathematical models 
(Khalilzadeh et al., 2011). In order to solve the model 
formulated in section 3, a solution approach based on 
genetic algorithm (GA) is developed. GA is a 
stochastic search and heuristic optimization technique 
based on the mechanism of natural genetics which 
has been successfully applied to various complex 
problems. It starts with an initial set of random 
solution called population. Each solution in the 
population is called chromosome and each 
component of chromosome is designated by gene. 
The chromosomes evolve through successive 
iterations, called generations. During each 
generation, the chromosomes are evaluated, using 
some measures of fitness. To create next generation, 
new chromosomes (called offspring) are formed by 
crossover or mutation operators. Crossover operator 
combines two chromosomes from current generation, 
while mutation operator modifies a chromosome to 
form offspring. A new generation is created by (a) 
selecting some of current chromosomes (called 
parents) and offspring based on the fitness values, (b) 
rejecting others so as to keep the population size 
constant. Fitter chromosomes have higher 
probabilities of being selected. After several 
generations, the algorithms converge to the best 
chromosome, which may represent the optimum or 
suboptimal solution to the problem (Gen and Cheng, 
1996). For more details of GA and its application in 
location problems refer to Sourirajan et al. [(2008), 
Goldberg (1989) and Jaramillo et al. (2002). In the 
following subsections, the developed GA for the 
problem is outlined. 

 
4. 1. Chromosome representation  

In this GA-based approach, each 
chromosome is indicated as a single dimensional 
array. If m is the number of candidate DCs, each 
chromosome C can be demonstrated by: 

1 2 1 1 2( , ) ( , ... , , , ... ). j i m m mC X Y X X X X Y Y Y

Where jX correspond to the location genes and 

iY correspond to the assignment genes. These genes 

determine where the DCs are located and how the 
customers are assigned to the located DCs, 

respectively. More precisely, if 1jX  , it means that 

candidate site j is selected as a DC location, while 

if 0jX  , candidate location j is not chosen as a DC 

site. The gene 1mX  corresponds to dummy 

distribution center u; thus, it always takes the value 1. 

Also, iY j represents that customer i is assigned 

to distribution center j. If customer i is assigned to a 
dummy distribution center u, the corresponding 
assignment gene takes the value of m+1; in other 

words, 1iY m  . 

 
4.2. Generating the first population 

Half the chromosomes of the first population 
are generated from the feasible region randomly. The 
next half chromosomes are set identical to the 
obtained lower bound solution. Note that some 
customers may be allocated to more than one DC in 
the lower bound solution. In this case, the 
chromosome is modified to a feasible one, by 
assigning such customers to the nearest located DCs.  
 
4.3. Chromosomes fitness 

The rank-based evaluation function is 
defined as the objective function (16) for the 
chromosomes. In fact, we calculate the objective 
function (16) for each of the chromosomes. 
Obviously, the chromosome which results in less 
value of objective function (16) has the better rank.  
 
4.4. Crossover operator 

Crossover operator generates offspring by 
merging parent chromosomes. In order to determine 

which of chromosomes kC , k=1, 2 … pop-size are 

selected as parents for crossover operation, the 
following procedure is repeated from k=1 to pop-size: 
generating a random number r from the interval [0, 

1], the chromosome kC  will be selected as a parent 

provided that Cr P , where the parameter CP  is the 

probability of crossover. Then randomly we group 
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the selected parents 1C  , 2C  , 3C  , … to the pairs 

( 1C  , 2C  ), ( 3C  , 4C  ),…. Without loss of generality 

let us explain the crossover operator on each pair by 

( 1C  , 2C  ).  

Crossover operator assigns each customer i 
in offspring chromosome either to the DC which is 

allocated to customer i in parent chromosome 1C  , or 

to the DC which is assigned to customer i in parent 

chromosome 2C  . This occurs randomly and with 

probability of 0.5. The resulted offspring may be 
infeasible. If a customer is allocated to an unselected 
candidate DC site, this infeasibility is removed by 
locating DC in that candidate location. If the number 
of located DCs exceeds 1P  , the number of selected 
DCs is reduced to 1P   by closing some DCs 
randomly. The customers which are allocated to these 
closed DCs are allocated randomly to the opened 
DCs. By this way, the offspring is modified to a 
feasible chromosome.  

 
4.5. Mutation operator 

Mutation operator may modify 

chromosomes kC , k = 1, 2 … Pop-size to form 

offspring chromosomes. In order to determine which 

of chromosomes kC undergo mutation, the following 

practice is repeated from k = 1 to Pop-size: 
generating a random number r from the interval [0, 

1], the chromosome kC will be selected as a parent 

provided that Mr P , where the parameter MP is the 

probability of mutation. Each selected chromosome is 
modified by one of the two following types of 
mutation several times (each type of mutation is 
occurred with probability 0.5). The first type of 
mutation generates offspring by modifying the 
assignment genes of parent chromosome. Namely, in 
the first type of mutation two located DCs are 
selected randomly; let s and t denote them. Then, if 
any customer in parent chromosome is assigned to s, 
that customer will be assigned to t and if any 
customer is assigned to t, it will be allocated to s.  

The second type of mutation modifies 
location genes of parent chromosome to form 
offspring. Indeed, the second type of mutation 
randomly selects a location in which no DC is 
located; let t denotes it. Next, a DC is selected 
randomly from the located DCs and is named s. This 
type of mutation closes distribution center s and 
instead of it locates a DC at t. Then, all the customers 
assigned to distribution center s, are allocated to 
distribution center t. Similar to crossover process, if 
the resulted offspring does not belong to feasible 

region, it is repaired to become a feasible 
chromosome. 

 
5. Computational results 

This section summarizes the computational 
experience with the solution approach outlined in the 
previous section. Also, the performance of the 
proposed GA is compared with simulated annealing 
(SA) algorithm developed by Azad and Davoudpour 
(2010). The solution methods were tested on the 49-
node, 88-node, and 150-node data sets described in 
Daskin (1995). The 49-node data set indicates the 
capitals of the lower 48 United States plus 
Washington, DC; the 88-node data set represents the 
50 largest cities in the 1990 U.S. census along with 
the 49-node data set, minus duplicates; and the 150-
node data set includes the 150 largest cities in the 
1990 U.S. census. 

For all three data sets, the mean of demand 
was obtained by dividing the population data given in 
Daskin (1995) by 1000. Fixed costs of locating DCs 

( jf ) were gained by dividing the fixed cost in 

Daskin (1995) by 10 for the 49-node problem and by 
100 for 88-node problem. For the 150-node problem, 
fixed locating costs were set to 10000 for all the 
candidate DC locations. We set the per-unit cost to 

ship from distribution center j to customer i, ijd , to 

the great-circle distance between these locations. The 

fixed ordering jF and shipping costs jg were set to 

10 and the variable shipping cost jA was set to 5 for 

all DCs. The parameters jb and 
z  were set to 100 

and 1.96 (corresponding to 97.5% service level), 
respectively. We set the holding cost h and the lead 
time L to 1. For all three data sets, the values 

of ja , 1 j and 2 j were set randomly. The other 

parameters used for the solution method are given in 
Table 1. 

 
Table 1. Parameters for solution approach 

Parameter Value 
Population size of GA 100 
Probability of crossover in GA 0.9 
Probability of mutation in GA 0.01 
The number of generations in GA 500 

 
The developed Solution approach was coded 

in Visual Basic.Net and executed on Pentium 5 
computer with 1.00 GB RAM and 2.00 GHz CPU. 
Tables 2-4 summarize the results for our 
computational study on 49-node, 88-node, and 150-
node problems with different values for the 

parameters P , iu ,  and β, respectively.  
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Table 2. Computational results for 49-node 

 P u Ө β GA SA 
Percent of 

Improved Cost 

1 5 10 0.01 0.0005 299636 309734 3.37 

2 5 10 0.005 0.0001 299525 307133 2.54 

3 5 100 0.01 0.0005 299654 308673 3.01 

4 5 100 0.005 0.0001 299528 306776 2.42 

5 10 10 0.01 0.0005 668011 700543 4.87 

6 10 10 0.005 0.0001 667799 695512 4.15 

7 10 100 0.01 0.0005 668028 698958 4.63 

8 10 100 0.005 0.0001 667801 695315 4.12 

9 15 10 0.01 0.0005 1055635 1107889 4.95 

10 15 10 0.005 0.0001 1055321 1103760 4.59 

11 15 100 0.01 0.0005 1055652 1105373 4.71 

12 15 100 0.005 0.0001 667801 696250 4.26 

13 20 10 0.01 0.0005 1468258 1545047 5.23 

14 20 10 0.005 0.0001 1467843 1541969 5.05 

15 20 100 0.01 0.0005 1468275 1544332 5.18 

16 20 100 0.005 0.0001 1467846 1539771 4.9 

 
 

Table 3. Computational results for 88-node 

 P u Ө β GA SA 
Percent of 

Improved Cost 

1 5 10 0.01 0.0005 241015 252632 4.82 

2 5 10 0.005 0.0001 240996 250756 4.05 

3 5 100 0.01 0.0005 241025 252859 4.91 

4 5 100 0.005 0.0001 241000 251267 4.26 

5 10 10 0.01 0.0005 547266 581689 6.29 

6 10 10 0.005 0.0001 547242 577613 5.55 

7 10 100 0.01 0.0005 547276 585749 7.03 

8 10 100 0.005 0.0001 547245 572965 4.7 

9 15 10 0.01 0.0005 876143 939576 7.24 

10 15 10 0.005 0.0001 876113 937528 7.01 

11 15 100 0.01 0.0005 876153 932139 6.39 

12 15 100 0.005 0.0001 876116 929121 6.05 

13 20 10 0.01 0.0005 1223769 1313961 7.37 

14 20 10 0.005 0.0001 1223733 1303153 6.49 

15 20 100 0.01 0.0005 1223780 1303448 6.51 

16 20 100 0.005 0.0001 1223737 1296916 5.98 
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Table 4. Computational results for 150-node 

 P u Ө β GA SA 
Percent of 

Improved Cost 

1 5 10 0.01 0.0005 625030 661969 5.91 

2 5 10 0.005 0.0001 624790 661590 5.89 

3 5 100 0.01 0.0005 625065 664632 6.33 

4 5 100 0.005 0.0001 624796 663533 6.2 

5 10 10 0.01 0.0005 1250039 1346042 7.68 

6 10 10 0.005 0.0001 1249579 1344422 7.59 

7 10 100 0.01 0.0005 1250074 1351580 8.12 

8 10 100 0.005 0.0001 1249584 1349176 7.97 

9 20 10 0.01 0.0005 2500055 2768311 10.73 

10 20 10 0.005 0.0001 2499159 2760321 10.45 

11 20 100 0.01 0.0005 2500084 2772843 10.91 

12 20 100 0.005 0.0001 2499164 2762576 10.54 

13 30 10 0.01 0.0005 3750068 4241701 13.11 

14 30 10 0.005 0.0001 3748739 4235325 12.98 

15 30 100 0.01 0.0005 3750099 4269112 13.84 

16 30 100 0.005 0.0001 3748744 4238330 13.06 

 

In these tables, the columns marked P , u,   

and β give the parameters P , iu ,   and β , 

respectively. The columns labeled GA represent the 
objective values obtained by GA, whereas the 
columns marked SA indicate the objective values 
obtained by SA. The last column in each table 
indicates the percentage difference between the 
objective values obtained by GA and SA. In other 
words, the last column represents the amount of 
improvement in the objective value when the 
proposed GA is applied instead of SA, and is 

obtained by
 SA-GA

100
GA

 . 

It follows from Tables 2-4 that the presented 
solution method based on GA outperforms SA in all 
the cases. This suggests that the proposed solution 
approach is effective to solve the model and we can 
trust it in practice 
 
6. Conclusion 

This paper has addressed a stochastic supply 
chain design problem where a supplier is unreliable. 
Due to unreliability of the supplier, the yields at DCs 
are not deterministic. The problem does not assume 
that all the customers' demands must be satisfied. A 
nonlinear integer programming model has been 
presented that minimizes the expected total costs 
including costs of location, inventory, transportation, 
and lost sales. The presented model simultaneously 
determines which customers are served, where DCs 

are located and how DCs are assigned to the 
customers. In order to solve the model, a heuristic 
approach based on genetic algorithm has been 
proposed. Computational results for different data 
sets have revealed that the proposed solution 
approach is quiet effective. In future, it would be 
interesting to formulate the problem when DCs are 
unreliable. Furthermore, the model can be extended 
to consider constraints on the maximum demand that 
can be provided by a supplier. Finally, incorporating 
routing decisions in the model makes it more helpful.  
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