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Abstract: This paper presents an application of how to design and validate a real time neuro fuzzy controller of 
complex a nonlinear dynamic system using the Matlab-Simulink Real-Time Workshop environment. Once the 
controller is obtained and validated by simulation, it’s implemented to control the pendulum-cart system. Design of 
a neuro fuzzy controller is considered in this work because of its insensitivity to disturbances and uncertainties of 
model parameters. The design and optimization process of neuro fuzzy controller are based on an extended learning 
technique derived from adaptive neuro fuzzy inference system (ANFIS). The design and implementation of this 
pendulum-cart control system has been realized under MATLAB/SIMULINK environment. The experimental 
results demonstrate the efficiency of this design procedure and the ensured stability of the system.  
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I. Introduction: 

Fuzzy controllers have been widely used in 
many control systems applications. Besides being 
convenient for qualitative system modeling, they are 
very simple conceptually [1]. They consist of an 
input stage, a processing stage, and an output stage. 
The input stage maps sensor or other inputs, such as 
switches, thumbwheels, and so on, to the appropriate 
membership functions. The processing stage invokes 
each appropriate rule and generates a result for each, 
then combines the results of the rules. Finally, the 
output stage converts the combined result back into a 
specific control output value. The most common 
shapes of membership functions are triangular, 
trapezoidal and bell curves. From three to seven 
curves are generally appropriate to cover the required 
range of an input value, or the "universe of discourse" 
in fuzzy jargon.  The shape is generally less 
important than the number of curves and their 
placement. 

 Design of a fuzzy controller requires more 
design decisions than usual, for example regarding 
rule base, inference engine, defuzzification, and data 
pre- and post processing [2]. This paper describes the 
design decisions related to closed-loop neuro fuzzy 
controller of the pendulum-cart system. The main 
problems in neuro fuzzy controller design are the 
inference of an initial rule base and in particular the 
optimization of an existing rule base.  
Many researchers addressed the design problem of 
neuro fuzzy controller. Nauck et al introduced the 
design of neuro fuzzy controller using 
backpropagation algorithm [11]. They also, presented 
their learning algorithm for neuro fuzzy environment 
NEFCON-I under matlab/simulink [22]. 

The pendulum-cart system is an interesting 
nonlinear dynamic model which has been extensively 
studied by control community. It represents many 
real world systems, such as crane at shipping port and 
space mission launchers. The selection of a control 
strategy for stabilization of such systems is a difficult 
design task. Optimality of the control strategy and its 
robustness are the main design criteria to be 
considered. However, due to the presence of 
disturbances and model parameter uncertainties, a 
robust behavior is more important than the optimal 
character of the control strategy. The efficiency of 
neuro fuzzy techniques to reduce disturbances makes 
it an excellent candidate to design a closed loop 
controller. With an efficient learning method, the 
parameters of the neuro fuzzy controller can be 
optimally designed. The design and validation of a 
neuro fuzzy controller should be assisted by a 
software environment that can provide the designer 
with functions of fuzzy logic systems and targeting a 
real time application. 

The Fuzzy Logic Toolbox of the MATLAB 
technical computing environment is an efficient tool 
for designing systems based on fuzzy logic. The 
toolbox provides many functions which allow control 
engineers to develop and analyze fuzzy inference 
systems, to develop adaptive   inference systems, and 
perform fuzzy clustering [3]. Its Graphical User 
Interfaces (GUIs) simplifies the steps of neuro fuzzy 
inference system design. Alternatively, Simulink 
provides fuzzy inference blocks in order to simulate 
the fuzzy systems within a comprehensive model of 
the entire dynamic system [7].  From Simulink, C 
code can be automatically generated for use in 
embedded applications that include neuro fuzzy logic 
[4].  
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This paper describes the design decisions 
related to closed-loop neuro fuzzy controller of the 
pendulum-cart model. We propose an efficient design 
and rule learning procedure of the neuro fuzzy 
controller.  We also present the experimental results 
on the design and implementation of real time neuro 
fuzzy control system under matlab/simulink 
computation environment. 

The paper is organized as follows. Sections I 
is this introduction. In Section II, we present an 
analysis of the control system development under 
Matlab/Simulink Environment. Section III describes 
the pendulum-cart set-up. Section IV presents the 
control algorithm, the rule base learning and its 
optimization. Section V evaluates the implementation 
and presents the experimental results of neuro fuzzy 
algorithm. Finally, our conclusions are drawn in 
Section VI. 
 
II. Control System Development under 
Matlab/Simulink Environment 

This work has been developed using the 
Mathworks tools.  These tools are in varying 
widespread use across a number of industries for 
control system development [3]. Fig. 1 shows how 
the various elements of the MATLAB environment 
can be linked together to provide an integrated set of 
tools for control system design and experimental 
validation [3]. The use of these standard software 
tools means that, during the controller design stage, 
the designer only needs to model the process using 
the graphics tools available in Simulink without 
being concerned with the mechanics of 
communication to and from the device under test.  

  
Fig. (1) Control System Development Flow 

Diagram. 

A brief description of these tools and their use in 
control system development is given in next 
paragraphs. 

Matlab acts as the application host 
environment in which the other mathworks products 
run. It provides a sophisticated set of tools for solving 
mathematical problems in addition there are 
specialized toolboxes, such as fuzzy logic toolbox 
which extend the Matlab functions in several 
different specific application areas.  

Simulink is a graphics based system for 
modeling process, which takes the form of blocks, is 
fed as input into another block. Blocks perform 
specialized operations on the data and may be 
standard blocks from the Simulink library or written 
by the user where no suitable library blocks exists [3, 
4]. Simulink model is passed to real Time Workshop.  

Real-Time Workshop -RTW generates 
optimized, portable, and customizable code from 
Simulink models. Real time workshop automatically 
builds a C++ source program from Simulink model.  

C++ Compiler compiles and links the code 
created by Real Time workshop to produce an 
executable program. The program interfaces to the 
outside environment via a "Target", in our case Real 
Time Windows Target.  

Real Time Windows Target communicates with 
the executable program acting as the control program, 
and interfaces with the hardware device through an 
I/O board. Real Time Windows Target controls the 
two-way data or signal flow to and from the model, 
and to and from the I/O Board. When the program is 
running, the user may change certain of the 
parameters in the Simulink model, which are then 
passed, via Real Time Workshop, to the executable 
program  
 
III-Pendulum-Cart Set-Up Description  

One of the simplest problems in robotics is that 
of controlling the position of a single link using a 
steering force applied at the end. Pole-balancing 
systems are impressive demonstration models of 
missile stabilization problems [3, 4, 5, 6, 7]. The 
crane used at shipping ports is an example of non-
linear electromechanical systems having a complex 
dynamic behavior and creating challenging control 
problems. Mathematically either is just a pendulum in 
a stable or unstable position. The pendulum-cart set-
up consists of a pole mounted on a cart in such a way 
that the pole can swing free only in vertical plane. 
The cart is derived by DC motor. To swing and to 
balance the pole the cart is pushed back and forth on 
a rail of limited length.  The vertical stationary 
positions of the pendulum (upright and down) are 
equilibrium positions when no force is being applied. 
In the upright position a small deviation from it 
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results in an unstable motion. Generally the 
pendulum control problem is to bring the pole to one 
of the equilibrium positions and preferably to do so 
as fast as possible, with few oscillations, and without 
letting the angle and velocity become too large. After 
the desired position is reached, we would like to keep 
the system in this state despite random perturbations. 
Manual control of the cart-pole system is possible 
only for simple tasks e.g. for moving the cart from 
one place on the rail to another. For more 
complicated tasks (such as stabilizing the pole in an 

upright position) a feedback control system must be 
implemented Fig. (2). The purpose of the inverted 
pendulum control algorithm is to apply a sequence of 
forces of constrained magnitude to the cart, such that 
the pole starts to swing with increasing amplitude 
without the cart overriding the ends of the rail. Firstly 
the pole is swung up to the vicinity of its upright 
position and then, once this has been accomplished, 
the controller maintains the pole vertically and at the 
same time brings cart back to the center of the rail.  

 

 
 Fig. (2) Pendulum Control System   

   Fig. (3) Activity zones of two control algorithms 
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The swinging control algorithm is a heuristic 
one, based on energy rules. The algorithm steers the 
pole up thus increasing its total energy [3, 4, 19]. 
There is a trade-off between two tasks: to swing the 
pendulum to the upright position and to center the 
cart on the rail. Due to the presence of disturbances 
and parameter uncertainties, a robust behavior is 
more important than the optimal character of the 
control strategy. The switching moments are 
calculated according to a simple rule. The 
characteristic feature of control is its “bang bang” 
character. Swinging up the pole may result in over-
reaching the upper unstable equilibrium point. To 
achieve a “soft” landing in the vicinity of the upright 
position (“stabilization zone” in Fig. (3), a routine 
called the “soft landing arbiter” checks whether the 
kinetic energy of the pole, minus the energy loss due 
to friction, is sufficient to raise the center of gravity 
of the pole to its upright position. If the condition is 
satisfied then the control is set to zero and the "bang-
bang" character of the control is finished. After the 
pole has entered the stabilization zone the system can 
be treated as linear and the control is switched to the 
stabilizing algorithm. Due to the limited length of the 
rail a routine called “length control” is introduced, to 
reinforce centering of the cart and prevent over-
running the edges of the rail. The rule is very simple. 
When the position given by the parameter "length" is 
reached, then the maximal force is applied to the cart 
steering it back away from this position.   
 
III.I System Model 

The state of the system is the vector x = [ x1, 
x2, x3, x4]

t, where x1 is the cart position (distance 
from the centre of the rail), x2 is the angle between 
the upward vertical and the ray pointing at the centre 
of mass, measured counter-clockwise from the cart ( 
x2 = 0 for the upright position of the pendulum), x3 is 
the cart velocity, and x4 is the pendulum angular 
velocity. The pendulum rotates in a vertical plane 
around an axis located on a cart [23]. The cart can 
move along a horizontal rail, lying in the plane of 
rotation. A control force u, parallel to the rail, is 
applied to the cart. The mass of the cart is denoted by 
mc and the mass of the pendulum, by mp. l is the 
distance from the axis of rotation to the centre of 
mass of the pendulum-cart system. J is the moment of 
inertia of the pendulum-cart system with respect to 
the centre of mass. Tc denotes the friction in the 
motion of the cart, and Dp is the moment of friction in 
the angular motion of the pendulum, proportional to 
the angular velocity: Dp = fp x4. The force of reaction 
of the rail V acts vertically on the cart. As the 
horizontal co-ordinate of the centre of mass is equal 
to x1 - lsin x2 and the vertical to l cos x2, the motion 
equations are as follows:  

(mc+mp)(x1-l sin x2)"=F-Tc,   (1) 
(mc+mp)(l cos x2)"=V-( mc+mp) g,   (2) 
Jx2"=(u-Tc) l cos x2 + VI sin x2 – Dp,  (3) 
 (.)" denotes the second derivative with respect to 
time t and (.)’ denotes the first derivative with respect 
to time t. The first two equations describe the 
translation of the centre of mass, while the third 
describes the rotation of the whole system around the 
centre of mass. After the elimination of V and simple 
calculations we obtain the state equations (for t >= 0) 
x'1=x3      (4) 
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The admissible controls are bounded such that 

Mtu )(  

The cart friction Tc in the model is a non-
linear function of the cart velocity x3. As an 
approximation one can assume Tc = fcx3. The rail has 
a finite length and hence the cart position x1 is 
bounded: The typical parameters of the cart-pole set-
up are given in Table 1. 
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The model of the pendulum-cart set-up is an 
example

I.II Real Time Computer Control  
f this work is 

the dire

 of a SIMO system: a single control input 
and multi outputs (states) and can be used to 
demonstrate the advantages of closed-loop control. 
 
II

One of the main objectives o
ct implementation of designed neruro fuzzy 

controller in a real time process. Computer control of 
a real time process is presented in this section. A 
block diagram of a computer-controlled process is 
given in Fig. 4  

 
Fig. (4) Computer controlled process 

he system contains six blocks: the process, 
sensors 

 
T

(S), D/A converter, control algorithm, and a 
clock. The software clock controls the operation of 
the converters and the control algorithm. The time 
between successive conversions of the signal to 
digital form is called the sampling period (T0). The 
clock supplies a pulse every T0 seconds, and the DI 
supplies a number to the computer every time an 
interrupt arrives. The control algorithm computes the 
value of the control variable and sends it as a number 
to the D/A converter. It is assumed that the D/A 
converter hold the signal constant over the sampling 
period; periodic sampling is normally used [3]. An 
application of the general digital control system 
schema for pendulum control is given in block 
diagram form in Fig. 5. Two process states are 
measured: the cart position x

1
 and the pendulum 

angle x
2
. Process states are measured as continuous 

signals and converted to digital by optical encoders 
(sensors S1 S2). The reference input (desired value of 
the cart position x

1
) can be generated in a digital form 

using a desired position generator. The software timer 
is used to supply interrupts for the system: The basic 
clock activates the periodic sampling of optical 
decoders outputs and synchronizes the computation 
of controller outputs (u) and periodic digital-to-
analog (D/A) conversion.   

 
Fig. (5) Digital Control of the Pendulum-Cart 
System (basic block diagram). 
 

The pendulum-cart system is controlled in real-
time. The term "real-time" is often used but seldom 
defined. One possible definition is [4]: "Real-time is 
the operating mode of a computer system in which 
the programs for the processing of data arriving from 
the outside are permanently ready, so that their 
results will be available within predetermined periods 
of time; the arrival times of the data can be randomly 
distributed or be already determined depending on 
the different applications." The real-time software for 
pendulum control is structured around particular 
internal signals (events) into a set of tasks. Each task 
implements the processing required by a 
corresponding event. A task scheduler recognizes the 
events and activates or suspends the tasks. In the 
simplest case, when all tasks require processing at the 
same frequency, a sequential organization of the tasks 
can be implemented [14]. The time frame of each 
task is fixed. It is assumed that the longest task job 
takes no longer than the period of time generated by 
the software timer.     
 
IV Control Algorithm  

The controller in this experimental setup is based 
on a neuro fuzzy algorithm. The inputs of the neuro 
fuzzy system are pendulum angle, cart position, and 
the outputs are cart velocity, pendulum velocity as 
shown in Fig. (6). Fig. (7) Shows the initial 
membership function for inputs.  
 
IV.I Rule base Learning 

The learning process of the ANFIS model can 
be divided into two main phases. The first phase is 
designed to learn an initial rule base, if no prior 
knowledge about the system is available. 
Furthermore it can be used to complete a manually 
defined rule base. The second phase optimizes the 
rules by shifting or modifying the fuzzy sets of the 
rules. Both phases use a fuzzy error, E, which 
describes the quality of the current system state, to 
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learn or to optimize the rule base. In this work, we 
used the ‘ANFIS Learning`-Algorithm [9, 10]. This 
algorithm starts with an empty rule base. An initial 
fuzzy partitioning of the input and output intervals 
must be given. The algorithm can be divided into two 
parts. During the first part, the rules' antecedents are 
determined by classifying the input values, i.e. 
finding that membership function for each variable 
that yields the highest membership value for the 
respective input value [13, 14]. Then the algorithm 
tries to ‘guesses the output value by deriving it from 
the current fuzzy error. During the second part, the 
rule base is optimized by changing the consequent to 
an adjacent membership function, if it is necessary 
[15, 16, 19]. Fig. (8) Shows the viewing rules 
between inputs-outputs. The relations among cart 
velocity, cart position, and pendulum angle are 
introduced as shown in Fig. (9).  
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IV.II Optimization of the Rule base 
(Implementation) 
The aim of the implementation under 

MATLAB/SIMULINK was to develop an interactive 
tool for the construction and optimization of a fuzzy 
controller. This frees the user of programming and 
supports him to concentrate on controller design. It is 
possible to include prior knowledge into the system, 
to stop and to resume the learning process at any 
time, and to modify the rule base and the 
optimization parameters interactively. To optimize 
the rule base we choose the optimization algorithm 
ANFIS [10, 11, 12].  

This algorithm is motivated by the back-
propagation algorithm for the multilayer preceptron 
[8]. It optimizes the rule base by back-propagation of 
error. A rule is ‘rewarded’ by shifting its consequent 
to a higher value and by widening the support of the 
antecedents, if it's current output has the same sign as 
the optimal output [20, 21]. Otherwise, the rule is 

‘punished’ by shifting its consequent to a lower value 
and by reducing the support of the antecedents. The 
inferred rule base of the system under study has 27 
rules. 

 
Fig. (6) Relation between Inputs-Outputs 

  

  
Fig. (7) Initial membership function for inputs  

  
The reduced rule base is presented below.  
1- IF (PendAngle is N) and (CartPostion is N) then 
(CartVelocity is N)(PendVelocity is N)(F is N)  
2- IF (PendAngle is P) and (CartPostion is P) then 
(CartVelocity is p)(PendVelocity is p)(F is p)  
3- IF (PendAngle is Ze) and (CartPostion is Ze) then 
(CartVelocity is Ze)(PendVelocity is Ze)(F is Ze) 

  
Fig.(8) Visualization of rules between inputs-outputs  
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Fig. (9) The relations among cart velocity, cart 

position, and pendulum angle  
 
V. Experimental Results  

To test our approach we conducted 
experiments on a cart-pendulum hardware interfaced 
with a neuro fuzzy controller implemented in 
Matlab/Simulink environment as previously indicated 

in fig. (5). In these experiments, the cart is driven by 
DC motor. To swing and to balance the pole the cart 
is pushed back and forth on a rail of limited length. 
The neuro fuzzy system is used to stabilize the 
pendulum. Fig. (10) shows the structure of neuro 
fuzzy system used in the implementation. The result 
for this simulation of ANFIS controller system with 
real time inverted pendulum system is shown in 
following figures.  Fig. (11) Represents the change of 
cart position with time, in another meaning this figure 
shows the inverse relationship between the force and 
stability" The higher the force the lower the stability". 
Fig. (12) Shows the change of pendulum angle with 
time, in another meaning this figure shows the direct 
relationship between the force and the angle of 
pendulum" The higher the force the higher the angle". 
The change of cart velocity and pendulum velocity 
with time is shown in Fig. (13) And Fig (14) 
respectively. Due to the high force generated from the 
initial movement it takes few seconds to reach the 
stability level. 

 
Cart position
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Angular Velocity

u=OutPut Control

Measure System States
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Fig.(10) The Structure of Neuro Fuzzy Simulink System used in the implementation 

 

 
Fig. (11) The change of cart position  with time. 

 

 
Fig. (12) The change of pendulum angle with time. 
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Fig. (13) The change of cart velocity with time 

 
Fig. (14) The change of pendulum velocity with 

time 
 

 
Fig. (15) The output of DTAC and inputs to process 

with time  

 
Fig. (17) The relationship between cart position and 

pendulum velocity   
 

 
Fig. (16) The relationship between cart position 

and cart velocity   

 
Fig. (18) The Relationship between pendulum 

angle and pendulum velocity  
 

 
Then after few seconds the stability tends to 

be lost, at this moment we should give another force 
in order to keep the stability of pendulum at the 
required level. Fig. (15) displays the digital output 
from the computer which was converted by the 
digital signal to analog converter (DTAC) using data 
acquisition card and sending this signal as inputs to 
the process with time. Fig. (16) to Fig (18) show the 
relationship among inputs and outputs.  We notice 
from these figures that the high velocity generated 
from force lead to high change in the pendulum angle 
and this change tend to be less when the velocity is 
reduced which is a positive relationship between the 
velocity and the pendulum angle, and force. 
 
VI-Conclusions: 

In this paper we presented the design and 
optimization process of neuro fuzzy controller 
supported by learning techniques derived from neural 
networks (ANFIS). The generation of rule base has 
been done from input output data. The 
implementation of this controller has been realized 

under the MATLAB/SIMULINK. This 
implementation supports the development of real 
time process in an easy way.  One of the important 
conclusions in this model is that the stability of the 
pendulum is negatively related with the force, 
velocity, and angle. The design and implementation 
of this pendulum-cart control system has been done 
under MATLAB/SIMULINK environment. The 
experimental results demonstrated the efficiency of 
this design procedure and the ensured stability of the 
system.  
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