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Abstract

Employing Monte Carlo simulation method, we have studied randomness-induced evolution of the first-order to the
second-order phase transition in two-dimensional six-state Potts model system. Biological applications of the Potts
model are developed very much recently. We change the transition from first-order to second-order through tuning the
bonds strength or the concentration of void bonds. The evolution of phase transition in two-dimensional six-state Potts

system is examined with energy histogram and the Binder cumulant analysis. [Life Science Journal. 2009; 6(2): 29 —
32] (ISSN: 1097 — 8135).
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1 Introduction nematic phase transition of nCB liquid crystals in

aerogel shows that the transition temperature is lowered

It has attracted much interest that randomness compared with the pure situation” .

influences cellular phase transition behavior both in It is well known that the Potts model possesses
theoretical and experimental studies. The disorder fruitfully critical behavior. The g-state Potts model on
produced by porous media reveals experimental evidence two-dimensional cellular lattices exhibits temperature-
of randomness affecting phase transition of a system. For driven phase transition both in first-order and second-
a system exhibiting continuous phase transition in pure order'"". The phase transition is first-order for ¢ > 4 and is
case, the quenched bond randomness or field randomness continuous for ¢ < 4. So it could be a good candidate for
can change the value of critical exponent and may even testing the emergence of randomness-induced evolution
eliminate the phase transition' . The phenomenological of the first-order to second-order phase transition. Chen
renormalization-group arguments'*> suggest that S et al®" and Janke W' have performed Monte Carlo
addition of bond randomness can smoothen the first order simulation study for the random bond Potts model in
phase transition and induce a continuous phase transition. two-dimensional system with strong first-order region (¢
This conjecture arises recent research interest to explore = 8). Yet some debated contradiction appears between
randomness effect upon the nature of phase transition the works of Chen S ef a/ and Janke W demonstrates that
with second-order system, which originally carried on quenched random-bond induces the second-order phase
the first-order phase transition in the pure case' . As for transition in two-dimensional eight-state Potts model.
experimental work, extensive studies of the isotropic to On the contrary, Janke W et al ascertain that the phase

transition remains the first-order on random lattices in
the same model. Paredesv R et al''” study the five-state-
*Supported by the National Science Council of China, Taiwan (Grant No. Potts model with weak first-order region’ and Yang CS et

NSC95-2112-M-272-002-MY2). (8] : :
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on triangular lattice. Both models appear variation of the
nature in phase transition induced by randomness.

In order to illustrate the randomness-induced change of
the nature in phase transition, we investigate the six-state
Potts model with various random by means of Monte
Carlo simulation. Because the system has first-order
phase transition in pure case, we may alter the nature
of phase transition to the second-order through diluting
the system, randomly introducing certain concentration
of blank bonds or weakening strength of partial bonds.
Applying field on the system, random effect also induce
the change of nature in phase transition. We examine the
evolution of phase transition in two-dimensional six-
state Potts system with energy histogram and the Binder
cumulant analysis in this study.

2 Model

The Hamiltonian of a six-state Potts model with
quenched random interaction can be written as follows:

H = YK;6cic;

Where & is a Kronecker delta function; the spin i can
take on the values 1, 2, 3 ... 6; <1, j > indicates summa-
tion over all nearest-neighbor pairs of sites. The coef-
ficient Kj; is the nearest-neighbor (< i, j >) random bond
coupling constant, which can be randomly selected ac-
cording to the following distribution.

P(Ky) = fo(Ky — Ka) + (1 = )o(Kyy — Kp)

Where fis a positive real number smaller than or equal
to 1. Two differently prescribed random cases are stud-
ied. (1) The self-dual system (SD system): we randomly
assign half of the total bonds to be the coupling K;, and
the rest bonds are the coupling K>. The strength ratio is
r = Ku/K». (2) The random dilution system (RD system):
partial bonds is void, i.e. » — 0. In order to investigate
the evolution of phase transition, we tune the strength
and the concentration of blank bonds systematically. In
SD system we set the normal bond coupling (K») to be
one, and then decrease the strength ratio to make the pure
system uneven. In RD system we gradually increase the
concentration of blank bonds from zero.

3 Simulation and Analysis

Consider a two-dimensional square lattice with frac-
tion f as quenched bonds and fraction (1 — f) as normal
bonds. We perform extensive simulation on 90 X 90 lat-
tices with periodic boundary conditions. The Monte Car-
lo steps are up to 10° typically. The first 20% of the steps
are discarded, and we accumulate the remaining data at
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equilibrium states in our simulation. The temperature of
the heat capacity peak corresponds to the transition tem-
perature. We explore transition properties by analyzing
energy histogram near the transition temperature. Usually
the energy distribution displays a Gaussian type around
some central energy due to fluctuation at thermal equi-
librium states in a finite size system. As the first-order
phase transition occurs, there may co-exist two states at
the transition temperature. The energy histogram would
display two distinct humps. By analyzing the histogram,
one may be able to identify the presence of the first-order
phase transition'* "7,

We study the phase transition of pure system first.
The behavior of specific heat indicates that the transition
temperature is 7 = 0.808. Thus, we explore the energy
distribution around this temperature extensively. Figure
1 shows the energy histograms of pure case. The diagram
displaying energy histogram near the transition tempera-
ture is sensitively dependent on temperature. At 7= 0.807,
the system start to melt, and the energy histogram dis-
plays a double-hump structure — a large right hump and
a small left one. Then at 7= 0.808, the energy histogram
demonstrates a distinct double-hump structure, which has
two humps of almost equal size. Just beyond the transi-
tion temperature, at 7 = 0.809, the energy histogram
shows an inverse double-hump structure comparing to 7
= 0.807, with large left hump and a small right one. At a
slight temperature difference away from the transition, 7
= 0.812, the energy histogram falls back Gaussian struc-
ture. Our simulation result reveals that the six-state pure
Potts model proceeds a first-order phase transition at 7' =
0.808.

Figure 1. The energy histograms of pure case.

We then conduct the systematic study for the effect of
randomness. The RD system is studied with randomly
putting blank bonds. Figure 2 displays energy histograms
of various blank bond fraction /= 0.1, 0.15, and 0.2,
respectively. The transition temperature decreases with
increasing the blank bond concentration, 7 = 0.715,
0.664, and 0.614, respectively. They display different



Shih, et al, Randomness-induced evolution of the first-order to the second-order phase transition in two-dimensional six-state potts model

types of state distribution at transition temperature. The
distribution of /= 0.1 still demonstrates a distinct two-
hump structure. The histogram of = 0.15 smears out to
be a broad single hump. Yet, it is hard to find distinct dip.
The distribution of f'= 0.2 changes into nearly Gaussian
type. In this case, the nature of phase transition may
evolve into second-order behavior.
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Figure 2. The energy histograms of various empty bond fraction
f=0.1, 0.15, and 0.2 in RD system, at transition temperature, 7' =
0.715, 0.664, and 0.614, respectively.

In the SD system with randomly selected half of the
total bonds quenched, we vary the coupling strength
ratio. Figure 3 displays energy histogram of various
strength ration » = 0.5, 0.4, and 0.3. The phase transition
temperature decreases with decreasing strength ratio, T
= 0.588, 0.540 and 0.484, respectively. The evolution
of the diagram is similar to that in Figure 2. The energy
histogram of » = 0.5 and 0.4 displays an unsymmetrical
broad hump. The distribution of » = 0.3 changes into
nearly Gaussian type, which shows second-order phase
transition behavior due to larger bond strength variation.

As for applying field on the system, we see systematic
variation of the energy histogram with increasing the
randomness. Simulation reveals that the nature of first-
order phase transition will change into the second-order
induced by randomness.

Furthermore we inspect the quantity of the Binder’s
fourth cumulant of energy defined as V2 = 1 — (EY)./3(E*Y’,
which is used to distinguish numerically between first-
order and continuous transitions. The concept is as the
following: The energy distribution P(E) for lattice L x
L is described by a single Gaussian. It will reduce to
d-function singularity in thermally dynamical limit, while
the system is away from the transition. The fourth-order
being reduced cumulant of energy yields the value of
Ve =2/3, while L — oo, at T # T.. And the quantity holds
at T. for second-order transition due to Gaussian energy
distribution. On the other hand, the energy distribution
P.(E) in finite lattice is considered to be a double Gauss-
ian over a small range around 7:. The corresponding or-
der and disorder states will yield a nontrivial value of V.
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There will be a minimum value of V7, at T..

008
0025 |
om |

Zoms |
a4ar

LECTEINS

Figure 3. The energy histograms of various strength ratio » = 0.5,
0.4, and 0.3 in SD system, at transition temperature, 7' = 0.588,
0.540 and 0.484, respectively.

Figure 4 displays the Binder’s cumulant V7 near the
transition temperature in RD system. We can find the
minimum dip of V. at T in the pure system and in the
case of empty bond fraction f= 0.15. Comparatively for
the case of empty bond fraction /= 0.2, we find the V7 is
very close to 2/3.
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Figure 4. The Binder’s cumulant V. near the transition temperature
in RD system.

Figure 5 displays the Binder’s cumulant V; near the
transition temperature in SD system. We can also find
that in the case of strength ratio » = 0.3, V7 is very close
to 2/3. Therefore, we can ascertain the phase transition is
changed by randomness from first-order to second-order.
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Figure 5. The Binder’s cumulant V. near the transition temperature
in SD system.

4 Conclusion

We have conducted Monte Carlo simulation of two-di-
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mensional six-state Potts model with constant couplings
and random couplings. With thorough analysis, we have
found that strength ratio » = 0.3 in SD system and blank
bond ratio /= 0.2 in RD system will induce the variation
of phase transition from the first-order to the second-
order.
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