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Abstract
Support vector machine (SVM) is one of the most powerful supervised learning algorithms in gene expression 

analysis. The samples intermixed in another class or in the overlapped boundary region may cause the decision 
boundary too complex and may be harmful to improve the precise of SVM. In the present paper, hybridized k-nearest 
neighbor (KNN) classifiers and SVM (HKNNSVM) is proposed to deal with the problem of samples in the overlapped 
boundary region and to improve the performance of SVM. The first KNN is used to prune training samples and the 
second KNN is combined with SVM to classify the cancer samples. The proposed algorithm was used in binary and 
multiclass classification of gene expression data. The results were compared to those obtained by single SVM and 
KNN. It has been demonstrated that the proposed method is a useful tool for classification and the misclassification rate 
for the prediction set is reduced with samples pruning used. Compared with SVM and KNN, the misclassification rates 
of HKNNSVM for the datasets containing mislabeled samples were notably lower than that by SVM and KNN, which 
indicated that the classification performance of HKNNSVM was stable. [Life Science Journal. 2009; 6(1): 61 – 66] 
(ISSN: 1097 – 8135).
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1  Introduction

Nowadays, people can obtain the expression datasets 
of thousands of genes simultaneously using microarray 
technology. One of the important fields in using these 
gene expression datasets is to classify and predict the 
diagnostic category of a sample[1,2]. Actually, precise 
diagnosis and classification is crucial for successful 
treatment of illness.

  For classifying microarray data, one can use the 
classical liner discriminant analysis, artificial neural 
networks, KNN, as well as some more sophisticated 
machine learning methodologies including bagging, 
boosting and kernel methods. Among them, SVM is one 
of the most powerful supervised learning algorithms 
in gene expression analysis. SVM has been found 
generalization ability and useful in handling classification 
tasks in case of the high dimensionality and sparsity of 

data points. 
SVM constructs an optimal hyperplane from a small 

set of samples near the boundary and is sensitive to these 
boundary samples. The samples intermixed in another 
class or in the overlapped boundary region may cause 
the decision boundary too complex and may be harmful 
to improve the precise of classifier. The existence of 
samples in the overlapped region may also increase the 
computation burden and decline the generalization ability 
of classifier. In addition, labeling a sample in some 
cases can be subjective and a few mislabeled samples 
could deeply degrade the performance of the classifier[3]. 
Mislabeled and troublesome learning samples may be 
often near the boundary and lead to a result with high 
error rate. Many researches[4,5] have been focused on 
identifying and pruning the questionable redundancy 
samples to improve the performance of classification.

There is increasing evidence that the ensemble 
classifier performs better than the individual. The 
combined classifiers increase not only the accuracy of the 
classification, but also lead to greater confidence in the 
result[6]. Though SVM has been found useful in handling 
classification tasks, it has been recognized that results of 
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SVM analysis can be improved when combining with 
other classifiers.

In the present paper, hybridized KNN and SVM 
(HKNNSVM) is proposed to deal with the problem 
of samples in the overlapped boundary region and to 
improve the performance of SVM. KNN[7] is a very 
efficient pattern recognition method and can be easily 
carried out. In a statistical opinion, the error rate of a 
KNN classifier tends to the Bayes optimal when k and 
the size of sample set tend to infinity[8]. Base on these 
advantages, KNN is introduced into SVM to classify 
three gene expression datasets. We firstly used the 
KNN to prune training samples and then combine KNN 
with SVM to improve the classification. The proposed 
hybridized algorithm was used in binary and multiclass 
classification of gene expression data. The results 
were compared to those obtained by single SVM and 
KNN. In this study, linear kernel function is included 
in the SVM and HKNNSVM procedure, so the SVM, 
KNN and HKNNSVM are linear process. It has been 
demonstrated that the proposed method is a useful tool 
for classification and the classification performance is 
stable. It has indicated that the proposed classifier is 
superior to some other classifier.

The remainder of this paper is organized as follows: 
In Section 2, we provide the detail of our proposed 
procedure. Section 3 introduces three public datasets 
to evaluate the performance of our proposed method. 
The experimental resulted from our proposed method is 
presented, and compared with KNN and SVM method 
on the public datasets in section 4. Finally conclusions 
are drawn in section 5.

2  HKNNSVM

SVM is sensitive to these samples intermixed in 
another class or these boundary samples. The existence 
of samples in the overlapped region may be harmful 
to the performance of SVM. The hybridized classifier 
can improve the precise of classification, so hybridized 
of KNN classifiers and SVM is proposed to improve 
the performance of classification. The first KNN is 
used to prune training samples and the second KNN is 
combined with SVM to classify the cancer samples. We 
first yield the distances matrix which is a symmetrical 
matrix containing the Euclidean distance between each 
pair of samples. Then the K nearest neighbors for each 
sample are sought. In the first KNN, if the class label of 
training sample is same as the label of the majority of 
its K nearest neighbors, the training sample is reserved, 

whereas others are pruned. For the pruned samples set, 
the second KNN and SVM are applied to classify. If k 
nearest neighbors have all the same labels, the sample 
is labeled. Otherwise SVM will be applied to classify 
the rest sample. The hybridized KNN and SVM are 
described as follows.

Step1. Select relevant genes using t-test. The gene 
selection is an important aspect for class identification 
and t-test is one of the most popular gene ranking 
methods.

Step 2. Prune training samples by the first KNN.
Step 3. Use the second KNN to classify the remaining 

samples which are not pruned away from the training 
set. The sample is classified into the same class that its K 
neighbors are all in the same class, otherwise, go to the 
next step.

Step 4. Apply SVM to classify the rest unidentified 
samples. The HKNNSVM scheme is presented in Figure 
1.

For test sample, the k nearest objects to it in training 
dataset are selected firstly, if all the k nearest objects 
belong to category L, then classify the test sample in L. 
otherwise, apply the SVM to label it.  

In this study, linear kernel function is included in the 
SVM procedure. 

3  Datasets    

Three public datasets were used to test our method in 
this paper.

3.1  Colon data  
This dataset[1] is often used for testing all kinds of 

classification method. It consists of 62 samples (40 tumor 
and 22 normal colon tissues). Gene expressions for 
2000 human genes are measured using the Affymetrix 
technology. These data are publicly available at http://
microarray.princeton.edu/oncology/affydata/index.html. 
For colon dataset, we constructed 50 randomly selected 
samples (18 normal and 32 cancer tissues) as training set 
and the remaining 12 samples as the prediction set. 

3.2  Estrogen data  
 These datasets were obtained by applying the 

Affymetrix gene chip technology and first presented in 
papers by West and Spang[14,15]. The common expression 
matrix monitors 7129 genes in 49 breast tumor samples. 
In this dataset, 25 samples are labeled ER+, the rest 24 
samples are labeled ER–. These data are retrieved from 
http://mgm.duke.edu/genome/dna micro/work/. Among 
49 estrogen samples, 40 randomly selected samples (20 
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are ER+ and 20 are ER–) were used as training set and the 
remaining 9 samples as the prediction set.

3.3  Acute lymphoblastic leukemia (ALL) data   
 ALL dataset (16) is publicly available at http://www.

stjuderesearch.org/data/ALL1/all_datafiles.html. The 
dataset consists of expression profiles of 12625 human 
genes from 248 patients, there are 6 subsets: 15 BCR-
ABL samples, 27 E2A-PBX1 samples, 64 Hyperdiploid 
> 50 chromosomes samples, 20 MLL samples, 43 T-All 
samples, 79 TEL-AML1 samples. For ALL dataset, we 
constructed 208 randomly selected samples (five-sixths 
for each subset) as training set and the remaining 40 
samples as the prediction set.

The HKNNSVM algorithm was programmed in 
Matlab 6.0 and run on a personal computer (Intel 

Pentium processor 733MHZ 256 MB RAM). 

4  Results and Discussion  

4.1  The performance of classifiers for three gene 
expression datasets

In the present study, three publicly available datasets 
are used to test the performance of our method for 
tumor classification. The performance of classifier is 
measured according to an averaged classification error 
rates over 5-fold cross-validation. Briefly, the samples 
are randomly split into five data sets of approximately 
equal size respectively. The training data set, which is 
four parts of the subsets, is used to derive a classification 
model that is then applied to predict the remaining 
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subsets. The procedure should be repeated five times 
and the classifier is evaluated by the averaged error 
value over the five subsets. Because of the arbitrariness 
of partition of dataset, the predicted error rate of a 
model at each iteration is not necessarily the same. To 
evaluate accurately the relevance of genes subset, such 
5-fold cross-validation was repeated 300 times and then 
averaged the error rate. 

As a comparison, support vector machine and 
K-nearest neighbors classification methods were first 
utilized for these gene expression datasets. The t-test was 
first used on the training data to select the optimal genes. 
For each dataset, we select 30, 50, 100, 200 and 500 top-
ranked genes using t-test statistic respectively to test 
the classification and then selected the best subset that 
obtained the lowest error. Errors for several fixed feature 
size for each classifier are showed in Figures 2, 3 and 4.

The misclassification rates of training and test set for 
each dataset by SVM and KNN were presented in Table 1. 

Figure 2. Error rate for colon dataset.

Figure 3. Error rate for Estrogen dataset.

Figure 4. Error rate for ALL dataset.

For colon dataset,  the optimal subset for SVM 
classification contains 500 genes and the misclassification 
rate for training set and test set were 19.20% and 12.39% 
respectively. Using KNN the optimal subset contains 
50 genes and the misclassification rate for training set 
and test set were 16.40% and 12.22% respectively. For 
estrogen and ALL dataset, a comparison with KNN 
classifier shows that better results were obtained from 
SVM algorithm. For estrogen dataset, the optimal subset 
for SVM contains 100 genes. Using all 100 genes, the 
misclassification rate by SVM for training and prediction 
sets are 10.13% and 7.94% respectively. Using the 
optimal 500 genes, the misclassification rate for training 
and test sets by SVM for ALL dataset were 1.56% and 
1.74% respectively. 

To compare with HKNNSVM, the KNN combined 
with SVM classifier (KNNSVM) was also performed in 
which training samples was not pruned. In KNNSVM, 
KNN is used only for classification and not to prune 
training samples. The classification results of KNNSVM 
were also presented in Table 1. The misclassification 
rates for the three datasets were 11.97%, 7.85% and 
1.75% respectively. A comparison of KNNSVM, 
SVM and KNN shows that KNN is inadequate for 
classification of estrogen and ALL data and better results 
were obtained from KNNSVM and SVM.

To further improve the classification accuracy of the 
prediction models, the HKNNSVM algorithm was used 
to evaluate the misclassification rates of the three gene 
expression datasets. In HKNNSVM, the first KNN is 
used to prune training samples and the hybridized of 
the second KNN and SVM is applied to classify the 
cancer samples. The best classification performances 
of the KNN are achieved when k takes values from 3 
to 5. In the present work, K is selected as 5 in the first 
and second KNN by experience. The misclassification 
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rates for each dataset by HKNNSVM were also 
showed in Table 1. From Table 1, one can see that the 
misclassification rate for colon dataset was 9.75% using 
200 genes. For estrogen dataset the misclassification 
rate was 6.33% using 50 genes. Comparing with SVM, 
KNN and KNNSVM, the misclassification rates by 
HKNNSVM are lower than that by SVM, KNN and 
KNNSVM, and moreover, the number of genes used 
by HKNNSVM was less. For ALL dataset, using the 
optimal 200 genes, the misclassification rate for training 
and test sets by HKNNSVM were 0.23% and 2.20% 
respectively. The misclassification rate of test set for 
ALL dataset by HKNNSVM is higher than that by SVM 
and KNNSVM. The reason for this is probably that there 
are only 15 samples in one of the subset of ALL dataset 
(BCR-ABL) and pruned training set may be too few to 
build classification model.

Table 1. Results of misclassification rates for three datasets

Datasets
Method

HKNNSVM SVM KNN NN-SVM
Colon Number of 

genes 200 500 50 500

Training set 0.28% 19.20% 16.40% 17.50%
Test set 9.75% 12.39% 12.22% 11.97%

Estrogen Number of 
genes 50 100 50 100

Training set 1.26% 10.13% 15.38% 9.25%
Test set 6.33% 7.94% 12.19% 7.85%

ALL Number of 
genes 200 500 100 500

Training set 0.23% 1.56% 3.46% 1.61%
Test set 2.20% 1.74% 3.69% 1.75%

4.2  The effectiveness of pruning samples 
To check the effectiveness of pruning samples, ten 

percent of the training sample were selected randomly 
and mislabeled. We investigate if those mislabeled 
samples can be eliminated effectively by the first 
KNN that is used to prune training samples and the 
performance of classifiers affected by those mislabeled 
samples. 

We selected and mislabeled five and four samples 
randomly for colon and estrogen dataset respectively. 
For ALL dataset, not each subset has an overlapped 
region with others and more than 95% overlapped 
region arose between BCR-ABL and Hyperdiploid > 50 
samples. That is to say, the superposition of BCR-ABL 
and Hyperdiploid > 50 samples is the most serious one 

and the key to improve the performance of classifier is 
to classify samples of the two subsets successfully. So 
in this study, 6 samples of BCR-ABL and Hyperdiploid 
> 50 in training set were mislabeled. The percentage 
of pruned mislabeled samples is computed to evaluate 
the effective of pruning mislabeled samples. For colon 
dataset, 86.20% mislabeled samples were pruned. The 
percentage of pruned mislabeled samples are 88.25% 
and 97.56% for estrogen and ALL datasets respectively, 
indicating KNN is effective for pruning mislabeled 
samples. 

Table 2 summarizes the classification results of 
datasets contained mislabeled samples. Comparing with 
the results of Table 1, the misclassification rates for 
the three datasets contained mislabeled samples were 
increased largely using SVM, KNN and KNNSVM 
classifier and a very small number of mislabeled samples 
could deeply degrade the performance of the classifier.  
Using HKNNSVM classifier, the misclassification 
rates are 10.78%, 9.74% and 2.03% for colon, estrogen 
and ALL dataset respectively. Comparing with SVM, 
KNN and KNNSVM, the misclassification rates by 
HKNNSVM were notably lower than that by SVM, KNN 
and KNNSVM. The introduction of pruning training 
samples into the hybridized of KNN and SVM improved 
the characteristic performance of the classifier, as the 
misclassification rate for the prediction set is stable and 
reduced with samples pruning used. 

Table 2. Results of misclassification rates for dataset
contained mislabeled samples

Datasets
Method

HKNNSVM SVM KNN NN-SVM
Colon Number of 

genes 200 500 50 500

Training set 3.74% 28.7% 19.40% 26.7%
Test set 10.78% 20.61% 12.86% 18.92%

Estrogen Number of 
genes 50 100 50 100

Training set 5.42% 23.62% 18.50% 17.13%
Test set 9.74% 19.0% 15.41% 18.26%

ALL Number of 
genes 200 500 100 500

Training set 0.56% 2.48% 4.45% 4.16%
Test set 2.03% 3.07% 3.53% 4.08%

5  Conclusion

In this paper, we applied the hybridized of KNN and 
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SVM for gene expression data classification. Our method 
test three public datasets and have good performance. 
The proposed method was used to prune the mislabeled 
training samples and can eliminate those samples 
effectively. Meanwhile the misclassification rates of our 
propose method not increase sharply.
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