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Abstract: In this paper, frequency contents of capnogram signals are investigated. Capnogram is the graphical 
output of capnograph and it is able to show different changes in expiratory. Capnography is the monitoring of the 
CO2 level during respiration. This method is not only non-invasive, easy to do, and relatively inexpensive, but also 
in recent years medical societies, representing anaesthesiology, cardiology, critical care, paediatrics, respiratory 
care, and emergency medicine, have mandated or recommended it. Hence, processing this signal will help 
understanding the nature of capnogram to use for diagnosis variety of respiratory disorders. In this study, fast 
Fourier transform (FFT), and autoregressive (AR) modelling-Burg Method have been used to calculate power 
spectral density (PSD) in normal capnogram and asthmatic ones to compare the results possibility of using this 
analysis for diagnosis and prognosis purpose. The preliminary results show that, frequency properties of capnogram 
signal significantly can be used to distinguished asthmatic and non-asthmatic patients. In conclusion, these results 
reveal the potential of using these characteristic of capnogram signal to differentiate a variety of breathing 
difficulties that will help medical practitioners involved in respiratory care.  
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1. Introduction 

The history of capnograph and capnogram goes 
back to time physiologists recognized early on that 
continuous analysis of CO2 is important to the 
measurement and understanding of intrapulmonary 
gas mixing and ventilation/perfusion relationships. 
The importance of continuous analysis of CO2 has 
been further enhanced by simultaneous analysis of gas 
volumes [1].  

Capnography is based on the fact that CO2 
molecules absorb infrared radiation (IR) at a specific 
wavelength and the amount of light absorbed is 
directly proportional to the concentration of the CO2 
molecules [2]. This amount of light absorbed by CO2, 
which is then calculated and displayed as a numerical 
value or a waveform on the capnograph as a function 
of either time or expired volume that this waveform is 
known as capnogram. In other words, capnogram is 
the graphical display of instantaneous CO2 
concentration (mmHg) versus time (second) and is 
able to show the different respiratory situation of 
patients. 

One of the Capnography benefits in field care is 
confirmation of bronchospasm (or obstruction in the 
breathing circuit). Other use of capnography is to 
monitor patient ventilation, and provides an early 
warning system of impending respiratory crisis that 
can be divided in two categories: hyperventilation and 
hypoventilation [3]. Figure 1 (a) shows a normal 
capnogram in comparison with an asthmatic 

capnogram in figure 2 (b). It should be considered that 
the ascending limb of the capnogram is prolonged and 
is not flat, as it should be normally. 
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Figure 1: (a) A normal capnogram in comparison with 
an asthmatic one 

 
These variations in capnogram of different 

diseases cause the researchers carry out analysis of 
this signal to differentiate between a range of illnesses 
that may affect this signal [4]-[8]. However, all these 
previous studies are conducted through time domain 
techniques and based on assumption that capnogram 
is a stationary signal. But, according to the new 



 Life Science Journal 2017;14(10)       http://www.lifesciencesite.com 

 

72 

findings, capnogram is a wide-sense nonstationary 
signal that means time-varying information is useful 
[9]. 

Accordingly, in this study, frequency properties 
of capnogram signal are investigated and compared in 
two different states; non-asthmatic and asthmatic 
patients. For this mean, fast Fourier transform (FFT), 
and autoregressive modeling (AR) are used to apply 
on capnogram signals, and their results are compared. 
Therefore, in this paper, section 2 discusses the 
methods that consist of data acquisition, 
preprocessing, FFT analysis, AR modeling of 
capnogram signals, and performance measure. It is 
continued with results and discussion at section 3. 
Lastly, the conclusion is presented in section 4. 

 

 
 

Figure 2: The overall algorithm of used method 
 
2. Methods  

Figure 2 shows overall algorithm of this section. 
As shown in this figure, in this section, 5 sub-steps are 
presented. The first step is data collection, followed 
by the preprocessing of capnogram signals. Then, the 

frequency contents of capnogram for both normal and 
asthmatic ones are investigated using FFT and AR 
modeling in subsections 2.3 and 2.4. Lastly, in 
subsection 2.5, the effectiveness of the capnogram 
frequency property is validated by using receiver 
operating characteristic (ROC) curve analysis. This is 
to evaluate the potential of these properties to 
differentiate asthmatic and non-asthmatic patients 
(and probably other respiratory difficulties) in future.  
2.1. Data Acquisition 

The capnogram data were collected from patients 
with complaints of asthma and breathing difficulties at 
the Emergency Department of Hospital Pulau Pinang. 
Informed written consent was obtained from the 
patients under permission of National Medical 
Research Section of Ministry of Health Malaysia 
(MOH) that was approved by the ethics committee of 
Hospital Pulau Pinang. It should be noted that ethics 
committee of Hospital Pulau Pinang has approved this 
study.  

 

 
Figure 3: The block diagram for data collection 
 
As the first step to collect data, the capnography 

sensor was attached on the mouth or nose of the 
patients. Mainstream capnography method was used 
in the process of data collection because this method 
has higher accuracy [10]. After attaching the sensor 
on the patient’s nose or mouth, the continuous 
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capnogram was recorded using the capnography 
patient monitor, CapnostreamTM20 Model CS08798. 
Then, the capnogram data was transferred to a 
personal computer for analysis. Throughout the study, 
a total of 23 non-asthmatic capnogram, and 73 
asthmatic capnogram were successfully collected. The 
capnogram for each patient was recorded around five 
minutes at a sampling frequency of 200Hz. Then, a 
continuous and complete part of recorded data with 
the length of five breathing cycles and without any 
artefact (approximately 20 seconds; according to the 
patient’s respiratory rate) was extracted for further 
analysis. Figure 3 shows the block diagram of data 
collection in brief. 

In our database, each sample has an ID which is 
used in this paper. This ID consists of 3 alphabet 
letters and a number. The alphabet letter is either CAP 
(Capnogram of Asthmatic Patient) or CNP 
(Capnogram of Non-asthmatic Patient) and a number 
right after the letters which indicates the sample 
number, e.g. CAP2 means the second asthmatic 
sample and CNP6 means the sixth non-asthmatic 
sample. 
2.2. Preprocessing 

Data preprocessing was carried out to eliminate 
unnecessary noise in the recorded capnogram signals. 
In this paper, the moving average filtering method 
was used to smooth the curve due to its simplicity and 
efficiency, especially for eliminating the high 
frequency noises within the signals [11]. This method 
smoothes data by replacing each data point with the 
average of neighboring data points defined within a 
specific span. This process is equivalent to lowpass 
filtering with the response of the smoothing given by 
the difference equation as follow: 

  )12/()(...)1()()(  MMnyMnyMnyny  (1) 
where y (n) is the smoothed value for the nth data 

point, M is the number of neighboring data points on 
either side of y (n), and 2M+1 is the span. Indeed, the 
span defines a window that moves across the data set 
as the smoothed response value is calculated for each 
predictor value. A large span increases the smoothness 
but decreases the resolution of the smoothed data set, 
while a small span decreases the smoothness but 
increases the resolution of the smoothed data set [12]. 
The optimal span value depends on the data set and 
usually requires some trial and error to determine 
[13]. In this study, we used the span as 13, because it 
produced the best results for both smoothness and 
resolution. Furthermore, the correlation coefficients 
calculated for each signal after filtering justified this 
span width. 
2.3. FFT Analysis (Non-Parametric Spectrum 
Estimation) 

The discrete Fourier transform (DFT) of an N-
point sequence x (n) is defined as: 

 
Because x (n) may be either real or complex, 

evaluating X (k) requires on the order of N complex 
multiplications and N complex additions for each 
value of k. Therefore, because there are N values of X 
(k), computing an N-point DFT requires N2 complex 
multiplications and additions. The fast Fourier 
transform (FFT) is a fast algorithm to compute the 
DFT which involves decomposing an N-point DFT 
into successively smaller DFTs [14]. 

One of the major applications of the FFT is in 
analyzing the frequency content of continuous- time 
signals. In many cases of practical interest, these 
waveforms are neither periodic nor aperiodic, but a 
segment of a much longer, and possibly infinite, time 
series, e.g. EEG, and ECG. Obviously, only a portion 
of such waveforms can be represented in the finite 
memory of the computer, and some attention must be 
paid to how the waveform is truncated, i.e. the need 
for multiplication of discrete-time signal (x (n)) by a 
window (w (n)), as a consequence of the finite-length 
requirement of the FFT. 
2.3.1. Window Selection  

Some commonly used windows are Rectangular, 
Bartlett (triangular), Hanning, Hamming, and 
Blackman, and all of them have the property that 

(3) 
i.e., they are symmetric about the point M/2, and 

as a result their Fourier transforms are of the form 

(4) 
The bottom line is that, when a data set is 

windowed, the frequency characteristics of the 
window become part of the spectral results. In this 
regard, all windows produce some artefacts that could 
be obtained by taking the Fourier transform of the 
window itself. In general, all windows produce two 
types of artefacts. It means that, the actual spectrum is 
widened by an artefact termed the main-lobe, and 
additional peaks are generated termed side-lobes. 
Moreover, reduced resolution, and leakage are two 
primary effects on the spectrum as a result of applying 
window to the signal, that the resolution is influenced 

primarily by the width of the main-lobe of , 
while the degree of leakage depends on the relative 
amplitude of the main-lobe and the side-lobes of 

 [15]. Table 1 is a comparison of commonly 
used windows [16]. 

The fourth column of Table 1 shows the peak 
approximation error in decibels (dB) for the windows. 
Clearly, the windows with the smaller side-lobes yield 
better approximations of the ideal response at a 
discontinuity. Also, the third column, which shows the 
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width of the main-lobe, suggests that narrower 
transition regions can be achieved by increasing M. 
But the bottom line about window length is that, a 
wide window gives better frequency resolution but 

poor time resolution and a narrower window gives 
good time resolution but poor frequency resolution 
[16].  

 
Table 1: Comparison of commonly used windows (M is window length) 

Type of 
Window 

Peak Side-Lobe Amplitude 
(Relative) 

Approximate Width of 
Main-Lobe 

Peak Approximation Error, 20 
log10δ (dB) 

Rectangular -13 4π/(M+1) -21 
Bartlett -25 8π/M -25 
Hanning -31 8π/M -44 
Hamming -41 8π/M -53 
Blackman -57 12π/M -74 

 
In our process, Blackman window with M=256 

is selected since the capnogram is biomedical signal 
related to the respiratory system. So, they are in the 
category of low frequency signals [17], and selecting 
this number as length of window does not affect the 
time-resolution.  

A Blackman window is in the form of:  

 
One of the advantages of the Blackman window 

according to Table 1 is that it greatly reduced the side-
lobes besides a high side-lobe roll-off rate, although 
the main-lobe’s bandwidth has increased, however the 
extra width is usually worth the trade-off [16].  

It should be considered that to avoid confusing 
side-lobe peaks with main-lobe ones, the definition of 
ΩM =2π/M (M is window length) is used. In principle, 
each side-lobe has width ΩM, as measured between 
zero crossings, and the main-lobe, on the other hand, 
must be at least 2ΩM wide too be considered real [18].  
2.4. AR Modeling (Parametric Spectrum 
Estimation) 

A variety of AR models are currently used to 
estimate the power spectral density (PSD) of 
biomedical signals. The Burg method was selected 
because, as shown in Eq. 8 and 9, it estimates the 
reflection coefficients, but other methods such as 
autocorrelation approach, use prediction coefficients 
for the AR process. So, in comparison with other 
approaches such as autocorrelation, covariance, 
modified covariance, and recursive least squares 
(RLS), this method does not require run-off of the 
data sequence by zero padding and has minimal phase 
characteristic with high accuracy, and stability [19]. 

Autoregressive (AR) models are widely used for 
power spectral density (PSD) estimation [20]. The AR 
model of a time series is represented in the following 
form: 

(6) 

where X (n) is the time series, a (m) are AR 
parameters, p is the model order, and e (n) is the 
prediction error. The minimization criteria of the Burg 
method are obtained by minimizing the sum-squared 
of the forward and backward prediction errors as 
follows: 

(7) 

where  is the forward prediction error at 

the pth stage,  is the backward prediction error 
at the pth stage, N is the total number of data points, 
and P represents the model order. Burg minimized the 
performance index with respect to the reflection 
coefficients as follows: 

(8) 

where  are the reflection coefficients. Then, 
the forward and backward prediction errors can be 
calculated by using lattice filters and as a result, the 

reflection coefficients  can be obtained as follows: 

(9) 
Consequently, the power spectrum can be 

estimated as: 

(10) 

where  is the constant noise power,  is the 

frequency, and  represents the sampling interval, 
and P is model order.  

One of the crucial parts for the Burg algorithm 
analysis is the selection appropriate value for the 
model order P. In spectral estimation, the accuracy of 
the estimated spectrum is critically dependent on the 
model order that is chosen. It means that a too low 
model order can generate an over smoothed spectrum, 
whereas too high a value of order may introduce 
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spurious details such as false peaks into spectrum 
[21].  

The model order can be estimated using the 
Akaike information criterion (AIC) which is one of 
the most popular approaches to determine an optimum 
model order and minimize the information entropy of 
the signal identified as follows [21]: 

(11) 
where EP, P, and N individually represent the 

estimation of mean-squared error, the order of the 
filter, and the number of input signal samples. 

In this study, the AIC for different model orders 
were calculated. As shown by the results in figure 4, 
at P=10 the AIC value was smallest compared to the 
other number of P. So, the model order 10 was 
selected since the minimum of error variance was 
observed at this value of P. 
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Figure 4: AIC values for different model orders 

 
2.5. Performance Measure 

The effectiveness of extracted features is 
assessed by Receiver Operating Characteristic (ROC) 
curve analysis and two indices included sensitivity 
and specificity that are often employed in medical 
applications [22]. The results of a particular test are 
considered in two categories; in our case, asthmatic 
and non-asthmatic patients. There will be some cases 
with the disease correctly classified as positive (TP = 
True Positive fraction), and some cases with the 
disease will be classified negative (FN = False 
Negative fraction). On the other hand, some cases 
without the disease will be correctly classified as 
negative (TN = True Negative fraction), but some 
cases without the disease will be classified as positive 
(FP = False Positive fraction). According to this 
classification, sensitivity and specificity that estimate 
the classifier’s performance in different classes [23], 
define as follow: 

)/( FNTPTPySensitivit 

)/( FPTNTNySpecificit   
So, Sensitivity is probability that the capnogram 

test result will be positive when the disease is present, 
and Specificity is probability that the capnogram test 
result will be negative when the disease is not present. 

Furthermore, with ROC curves, when the 
variable under study cannot distinguish between the 
two groups, the area under the ROC curve (AUC) will 
be same to 0.5, whereas when there is a perfect 
separation of the values of the two groups, the AUC 
becomes 1. Also the P-value is the probability that the 
sample AUC is found when the true category area 
under the ROC curve is 0.5 (null hypothesis: Area = 
0.5). If P is low (P<0.05) then it can be concluded that 
the area under the ROC curve is significantly different 
from 0.5 and that therefore there is evidence that the 
capnogram test does have an ability to distinguish 
between the two groups [24]. 

 
3. Results and Discussion  

In this section, the results of FFT analysis, and 
the estimated PSD using AR modeling-Burg method 
are thoroughly presented and discussed. 
3.1. FFT Analysis Results 

After selecting the appropriate window, the FFT 
analysis was applied on the capnograms of asthmatic 
and non-asthmatic patients. Figure 5 and figure 6 
show the FFT of the capnogram of a non-asthmatic 
patient (CNP2) and the capnogram of an asthmatic 
patient (CAP9), respectively. It should be noted that to 
estimate spectrum of capnogram signals, DC value 
has been removed, so the first peak is not happen at 
zero frequency. 
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Figure 5: The FFT of a non-asthmatic capnogram 
(CNP2) 
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Figure 6: The FFT of an asthmatic capnogram (CAP9) 

 
Based on figure 5 and figure 6 and the results for 

all data, there was a significant difference between the 
number of component and their magnitudes in the 
spectrum of CAPs and CNPs. With reference to the 
definition of ΩM in method, section 2.3.1, the number 
of main-lobe in the asthmatic capnogram was equal to 
2 in contrast to non-asthmatic capnogram, which had 
only 1 main-lobe. Also, the frequency of these 
components and their related bandwidth were also 
different in both asthmatic and non-asthmatic 
samples. For asthmatic patient, the normalized 
frequency and bandwidth of the first component were 
around 0.078 and 0.23, respectively, whereas for non-

asthmatic patients these values for only component 
were around 0.04 and 0.08, respectively. 

Moreover, the normalized magnitude of the first 
component in both asthmatic and non-asthmatic 
capnogram had significant difference, i.e. the average 
of normalized magnitude of the first component in 
non-asthmatic capnogram was around 0.85, in 
comparison with the average of normalized magnitude 
of the first component in asthmatic capnogram that 
was around 0.43. 

Table 2 shows the performance indices of the 
magnitude, frequency, and bandwidth of the dominant 
peak in the spectrum of CNPs, and CAPs. For this 
mean, power spectrum of all CNPs and CAPs have 
been estimated using spectrum, and then performance 
indices have been extracted for the magnitude, 
frequency, and bandwidth of the main-lobe in 
spectrum of all capnogram signals. 

Based on the Table 2, all features have AUC > 
0.8 and p-value < 0.0001. This shows that all features 
of the dominant peak in the spectrum of CAPs and 
CNPs are possible to be applied in the differentiation 
of the asthmatic conditions. However, compared to all 
the features, it can be seen that the bandwidth of the 
main-lobe and its magnitude have noticeable AUC 
(with p-value < 0.0001), sensitivity (96.77 and 97.54, 
respectively) and specificity (94.74 and 94.63, 
respectively) which is considerably more efficient to 
classify the capnogram data, and to differentiate the 
asthmatic conditions. 

 
Table 2: Performance indices of the magnitude, frequency, and bandwidth of the main-lobe in the FFT of CNPs, and 
CAPs 

Performance index 
Magnitude of the main-lobe 
(Normalized) 

Frequency of the main-
lobe (Hz) 

Bandwidth of the main-
lobe (Hz) 

Sensitivity 97.54 80.65 96.77 
Specificity 94.63 82.11 94.74 
AUC 0.937 0.847 0.975 
P-Value <0.0001 <0.0001 <0.0001 

 
3.2 Burg Algorithm Analysis Results 

Figure 7 and figure 8 show the PSD estimation 
of a non-asthmatic capnogram (CNP2) and an 
asthmatic capnogram (CAP9) by using Burg method 
of AR modelling approach. It should be noted that to 
estimate spectrum of capnogram signals, DC value 
has been removed, so the first peak is not happen at 
zero frequency.  

As figure 7 and figure 8 shown, and according to 
the results for all collected data, the PSD estimation of 
the non-asthmatic capnogram signals (CNPs) consists 
of one component, while for asthmatic capnogram 
signals (CAPs), this estimation produced two 
components. Hence by using the second component in 
PSD estimation using Burg method, asthmatic and 
non-asthmatic conditions can be differentiated 

completely. In addition, the frequency of the first 
component, and the total power of the PSD estimation 
for asthmatic capnogram were around 0.02 Hz and 
0.195, respectively, whereas, these values for non-
asthmatic capnogram were around 0.011 Hz and 
0.354, respectively. Also, the normalized magnitude 
of the first component in both asthmatic and non-
asthmatic capnogram had significant difference, i.e. 
the average of this value in non-asthmatic capnogram 
was around 0.83, in comparison with the average of 
normalized magnitude of the first component in 
asthmatic capnogram that was around 0.37. 

Table 3 shows performance indices for the 
frequency of the first component, its magnitude, and 
the total power in the PSD estimation of the CAPs and 
CNPs via Burg method. For this mean, power 
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spectrum of all CNPs and CAPs have been estimated 
using Burg algorithm, and then performance indices 
have been extracted for the frequency of the first 
component, its magnitude, and the total power in the 
PSD estimation of all CNPs, and CAPs. 
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Figure 7: Power spectral density of a non-asthmatic 
capnogram (CNP2) 
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Figure 8: Power spectral density of an asthmatic 
capnogram (CAP9) 

 
Table 3: Performance indices of the frequency of the first component, its magnitude, and the total power in the PSD 
estimation of CNPs, and CAPs 

Performance index 
Frequency of the First 
Component (Hz) 

Magnitude of the First 
Component (Normalized) 

Total Power 

Sensitivity 98.23 98.3 83.87 
Specificity 95.08 93.8 84.21 
AUC 0.996 0.97 0.722 
P-Value <0.0001 <0.0001 0.0023 

 
According to the Table 3, all the features in the 

PSD estimation have AUC > 0.7 and p-value < 0.003. 
This indicated that all features in the PSD distribution 
of CAPs and CNPs were functional in differentiating 
the asthmatic and non-asthmatic conditions. However, 
it is obvious that the first component frequency and its 
magnitude have noticeable AUC and p-value < 
0.0001, accompanied by high sensitivity and 
specificity, which is efficient to classify the 
capnogram signals in two groups. As a result, these 
parameters and the frequency of the second 
component (that only exist in PSD of asthmatic 
patients) can significantly differentiate the asthmatic 
conditions. 

The fact is that, the frequency of the second 
component of the asthmatic capnograms PSD 
estimation varied in patients with different levels of 
asthmatic severity. It means that, the average of this 
value for the very low, low, mild, and serious 
asthmatic capnograms was around 0.18 (Hz), 
0.25(Hz), 0.43(Hz), and 0.6(Hz), respectively. 
Therefore, this component not only can be used to 

differentiate the asthmatic and non-asthmatic 
conditions, but also can be used as a crucial feature to 
classify the asthmatic capnogram signals with 
different levels of severity. 

 
4. Conclusion  

Capnogram is a vital representation of the 
respiratory system. Therefore, the analysis of this 
physiological signal could lead to the development of 
computerized methods to differentiate airway 
disorders, which could benefit both the healthcare 
professional involved in respiratory care and the 
patients. Previous studies conducted for capnogram 
signal analysis used only conventional time domain 
methods. In this paper, for the first time, frequency 
contents of capnogram signals of asthmatic and non-
asthmatic patients have been investigated. The results 
showed that by using these properties, asthmatic and 
non-asthmatic conditions can be perfectly 
differentiated. Also, by the incorporation of a GRBF 
neural network in near future, the severity of asthma 
in the patients could be automatically assessed as a 
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new index in capnographs. This method is an 
innovative idea that could further assists the medical 
practitioners as it would be possible to monitor 
severity of asthma and other respiratory disorders 
automatically and instantaneously with minimum 
human errors.  
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