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Abstract: An electrical network, like any nonlinear system, can have a different steady state response for specific 
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to modify the global capacitance of the electrical network which will ensure that the system lies in a domain where the 
response converges to a unique value. This domain has been determined according to the criterion of stability of Borne 
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easy-computable alternative to the complex continuation method. 
[Mohamed Zarouan. Ferroresonance Suppression by Reinforcing the Capacitance of a Transmission Line. Life 
Sci J 2017;14(8):73-80]. ISSN: 1097-8135 (Print) / ISSN: 2372-613X (Online). http://www.lifesciencesite.com. 11. 
doi:10.7537/marslsj140817.11. 
 
Keywords: Electrical power network, configuration at risk, coupled phases, continuation method, uniqueness of the 
response, arrow matrix  
 
1. Introduction 

The electrical power networks, often exhibit 
several steady states, due to the non linearity of their 
components, which has lead to many works in the 
literature [1,2,3,4,5,6,7] devoted to the prediction and 
compensation of the faulty operations. Hence, 
sufficient conditions of the uniqueness of the response 
of such systems should be determined.  

The funtionning anomaly [8,9,10] of 
aforementioned system types, and a method which 
estimates the stability zone of the corresponding 
deviation system, allowing to derive a condition of 
uniqueness of its response, were studied previously on 
by Laurent, Maizieres, Borne, Gentina, Benrejeb, 
Zarouan etc [11,12,13,14,15,16].  

In this paper, the consequences of the onset of a 
three-phase to earth fault in an electric power network 
and the possibility to draw a potentially defective 
configuration are investigated.  

The multiplicity of solutions in a three-phase 
power network, with a potentially defective 
configuration occurring after the onset of the fault 
between two phases, is studied in the first part of this 
paper, using the continuation method applied to the 
fixed point, based on the Poincaré’s map. A domain 
characterized by the uniqueness of the system’s 
response, related to the absence of operating default, is 
estimated in the second part, using the stability 
criterion of Borne and Gentina [14] applied to the 
deviation system, which characterizes the difference 
between two responses, related to two distinct initial 
conditions.  

 
2. The Studied System 

The studied system is a three-phase electric 

power network, corresponding to a set of three voltage 
transformers VT, which outgoing line comprises 
several branches, figure 1. 

 

 
Figure 1: Studied electrical power network. 

 
Because the secondary windings of the power 

transformer PT, figure 1, are star connected and their 
common neutral is earthed, the equivalent mono-phase 
model, figure 2, is sufficient to study and represent a 
symmetric three-phase network which its phases are 
uncoupled.  

 

 
Figure 2: Equivalent model of one phase of the 
studied electrical network. 
 

Each phase, figure 2, owns a sinusoidal voltage 
source with amplitude 𝐸 = 51𝑘𝑉 , an inductance 
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𝐿𝑎 = 1.446𝐻, and a resistance 𝑅𝑎 = 3.242Ω which 
account for the series of inductances and resistances 
located upstream. The model of the line of the studied 
electrical network merges the outgoing lines in a single 
cell [5] of phase to ground capacitance 𝐶 = 1𝑚𝐹, line 
inductance 𝐿𝐶 = 8.978𝑚𝐻 , line resistance 𝑅𝐶 =
0.818Ω, and phase to ground resistance 𝑅 = 100𝑀Ω 
which equivalent values are obtained by incorporating 
the all parameters of the line [16,17,18]. The primary 
winding of each VT is represented by a resistance 
𝑅𝑇 = 118.3Ω  put in series with a nonlinear 
inductance 𝐿𝑇(𝑖𝑇𝑖)  [19]. The nonlinear relation 
binding the current 𝑖𝑇𝑖  and the flux 𝜙𝑇𝑖  in the 
winding of the transformer of 𝑖𝑡ℎ phase is given by the 
polynomial function in the form (1).  

 

 𝑖𝑇𝑖 = ℎ�𝜙𝑇𝑖� = 𝑎𝜙𝑇𝑖 + 𝑏𝜙𝑇𝑖
9 , 𝑖 = 1,2,3  

𝑎 = 1.0024 10−12𝑈𝑆𝐼 𝑎𝑛𝑑 𝑏 = 1.0095 10−18𝑈𝑆𝐼 
(1) 

 
A specific study case of a defective electrical 

network is well-defined and study in this paper. The 
configuration studied is the fault happened between 
two phases through the fault conductance 𝐺0 [20]. The 
equivalent model, figure 3, of this configuration is 
described by the system of equations (2). 
 

𝑑𝑖𝑎𝑖
𝑑𝑡

= −𝑅𝑎+𝑅
𝐿𝑎

𝑖𝑎𝑖 + 𝑅
𝐿𝑎
𝑖𝑐𝑖 + 𝑅

𝐿𝑎
�𝑎𝜙𝑇𝑖 + 𝑏𝜙𝑇𝑖

9 ����������
𝑖𝑇𝑖

+ 1
𝐿𝑎
𝑒𝑖(𝑡)

𝑑𝑖𝑐𝑖
𝑑𝑡

= 𝑅
𝐿𝑐
𝑖𝑎𝑖 −

𝑅𝑐+𝑅
𝐿𝑐

𝑖𝑐𝑖 −
1
𝐿𝑐
𝑣𝑐𝑖 −

𝑅
𝐿𝑐
�𝑎𝜙𝑇𝑖 + 𝑏𝜙𝑇𝑖

9 �
𝑑𝜙𝑇𝑖
𝑑𝑡

= 𝑅𝑖𝑎𝑖 − 𝑅𝑖𝑐𝑖 − (𝑅 + 𝑅𝑇)�𝑎𝜙𝑇𝑖 + 𝑏𝜙𝑇𝑖
9 �

𝑑𝑣𝑐𝑖
𝑑𝑡

= 1
𝐶
𝑖𝑐𝑖 − (2𝑖 − 3) 𝐺0

𝐶
(𝑣𝑐1 − 𝑣𝑐2)

𝑒𝑖(𝑡) = 𝐸 sin (𝜔𝑡 − (𝑖 − 1) 2𝜋
3

),  𝑖 = 1,2

 

(2) 
 
 

3. Fixed Point Diagram 
3.1. Coupled Phases Definition 
The connection between the two phases through 

the conductance 𝐺0  is called linear coupling. The 
interaction between the two phases depends on the 
value of 𝐺0. If 𝐺0 = 0 Ω−1 then the two phases are 
completely coupled and if 𝐺0 = ∞ Ω−1 then the two 
phases are completely uncoupled and there is no 
interaction between them [22,23].  

3.2. Symmetry of System - Symmetry of Solution 
One of the intrinsic properties of a coupled 

dynamic system lies in the symmetry which plays a 
great role in the study of the coupled oscillators. A 
system in the form (3) is known as symmetric, under 
the symmetry operation (𝑃𝑖 ,𝜃𝑖), if it is equivalent to 
the system (4). 

 

 �̇� = 𝑓(𝑥, 𝑡), 𝑥 ∈ ℝ8 (3) 
 

 𝑃𝑖�̇� = 𝑓(𝑃𝑖𝑥,𝜃𝑖(𝑡)), 𝑥 ∈ ℝ8 (4) 
 

𝑃𝑖  is defined by a 𝑛 × 𝑛 transformation matrix, 
applied to the state variables vector and 𝜃𝑖(𝑡) by an 
transformation of the time variable 𝑡.  

Only one operation of symmetry, with share 
identity 𝐼8 , could be found in the system (7). The 
operations of symmetry obtained could be written in 
the form (5) and can thus be gathered as a set 𝐺 (6).  

 

 
𝑔𝑖 :ℝ8 × ℝ → ℝ8 × ℝ

  (𝑥, 𝑡) ↦ (𝑃𝑖𝑥,𝜃𝑖(𝑡))
  𝑖 = 1 … 𝑘

 (5) 

 

 𝐺 = {(𝑃𝑖 ,𝜃𝑖), 𝑖 = 1. . . 𝑘, 𝑘 ∈ ℝ / 𝑔𝑖 ,�
� is  a  symetrie  operation  of  (3)}  (6) 

   

 𝐼8.𝜋: (𝑃,𝜃(𝑡)) = ��
−1 0

⋱
0 −1

� ,𝜔𝑡 − 𝜋� (7) 

 

 𝐺 = {𝐼8, 𝐼8.𝜋} (8) 
 

 
 

 
Figure 3: Equivalent model of the new configuration of the studied electrical network. 
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Since the product of any two of these elements 
lies in 𝐺, 𝐺 is closed under the product operation. The 
symmetric group 𝐺 of is called the Klein 2-group. The 
periodic solution 𝑥  is known as completely 
symmetrical if it is equal to its symmetric element �̄� 
obtained under any symmetry operation (𝑃𝑖 ,𝜃𝑖), such 
as �̄� = 𝑃𝑖(𝑥(𝜃𝑖(𝑡))) . If the periodic solution is 
invariant only under the change of sign then, as in this 
studied case, the solution is known as symmetrical by 
inversion. If the periodic solution is invariant only 
under the identity operation, then the solution is known 
as asymmetrical [22].  

3.3. Combinatorial Resonances 
If each studied phase, separately, exibits a 

resonant solution, figure 2, then the overall circuit 
described in figure 3 is likely to be resonant [23].  

The 𝑖𝑡ℎ  phase can exhibit the nonlinear 
resonance with three periodic solutions: non-resonant 
𝑆𝑖1, resonant 𝑆𝑖2, and unstable 𝑈𝑖 , 𝑖 = 1,2, figure 4. 
So, in the two coupled phases, it should exhibit 9 = 3 x 
3 combinatorial solutions on weak coupling condition, 
Table 1. By varying the coupling intensity, the 
combinatorial resonance exhibits very rich pattern 
formation behavior, and complicated bifurcations 
appear, figure 5. 

 
 
 

Table 1: Patterns of combinatorial resonances in 
coupled phases of the studied electrical power 
network. 

 
 
 

 
(a) 

 
(b) 

 

Figure 4: Fixed points diagrams: the first phase (a) is 
uncoupled with the second phase (b). 

 
 
 

 
Figure 5: Fixed points diagram of the two coupled 
phases (𝑮𝟎 = 𝟐.𝟓 𝒎𝛀−𝟏).  
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The diagonal of Table 1 showing the nine 
possible solutions of the global circuit includes three 
completely symmetrical solutions. The remainder of 
the elements of the table represents the symmetrical 
solutions, only obtained by inversion, which shows 
that all the possible solutions occurring in the studied 
system are completely symmetrical. Indeed, the global 
circuit can show, at most, six solutions.  

3.4. Results 
The model of the studied power network is 

described in a generic way, by using the notations of 
equation (9).  

 
 

 

𝑑𝑥
𝑑𝑡

= 𝑓(𝑡, 𝑥, 𝜆)  𝑡 ∈ ℝ, 𝑥 ∈ ℝ8 𝑒𝑡 𝜆 ∈ ℝ

𝑥(𝑡) = 𝜑(𝑡, 𝑥0, 𝜆)
𝑥 = [𝑖𝑎1 , 𝑖𝑐1 , 𝑣𝑐1 , 𝑖𝑎2 , 𝑖𝑐2 , 𝑣𝑐2 ,𝜙𝑇1 ,𝜙𝑇2]𝑇 
𝜆 = 𝐶, 𝑥(0) = 𝜑(0, 𝑥0, 𝜆) = 𝑥0

  

(9) 
 
 
The qualitative study of the behavior of a phase, 

operating independently of the others, has been tackled 
using the continuation method applied to the fixed 
point based on the Poincaré’s map. Because working 
out the continuation method needs at least one 
parameter to be changed, the capacitance 𝐶 of a phase 
of the line was chosen to be varied. The two curves in 
figure 4 prove that the two phases, studied separately, 
have the same behavior because they have the same 
number of fold points and the same solution types 
when the capacitance ranges from 14 𝜇𝐹 and 19 𝜇𝐹. 
The coupling parameter which is the fault conductance 
between these two phases 𝐺0 = 2.5 𝑚Ω−1 , yields a 
dynamic behavior, plotted in figure 5, which is a 
blending, with small distortions, of those in figure 4. 
Figure 5 represents thus a merging of the two fixed 
points diagrams which allows to obtain, within a 
restricted domain, the highest number possible of 
solutions when the capacitance ranges from 13.6 𝜇𝐹 
and 15 𝜇𝐹 . The maximum number of solutions can 
decrease to only three solutions if the fault 
conductance is monitored to 10 𝑚Ω−1  or to 
0.5 𝑚Ω−1, figure 6. 

 

 
Figure 6: Fixed points diagrams of the two coupled 
phases circuit (a) 𝐺0 = 10 𝑚Ω−1  (b) 𝐺0 =
0.5 𝑚Ω−1. 
 
 
4. Application of the Criterion of Borne and 
Gentina for the Search for a Condition of the 
Uniqueness of the Response 

By using the notations of paragraph (3.4), the 
equations governing the evolution of the network can 
be reformulated in the state space by (10). The 
deviation system, which represents the difference 
between two responses 𝑥(1)  and 𝑥(2)  of the studied 
system subjected to the same inputs but different initial 
conditions, is described by (11).  

11.5 12 12.5 13 13.5 14 14.5 15
 -5

 -4

 -3

 -2

 -1

0

1

2

3

4
x 10 4

C (∝F)

V C
1
(V

)

Stable fixed pointsab   n
Unstable fixed points   - - - s   p       

14 14.5 15 15.5 16 16.5 17 17.5 18

 -5

 -4

 -3

 -2

 -1

0

x 10 4

Stable fixed points x  
Unstable fixed points  - - - -  t      

C (∝F)

V C
1

(V
)

C(µF) 

C(µF) 

http://www.lifesciencesite.com/�


 Life Science Journal 2017;14(8)       http://www.lifesciencesite.com 
 

77 

 

 �̇� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

𝑅𝑎 + 𝑅
𝐿𝑎

𝑅
𝐿𝑎

0 0 0 0
𝑅
𝐿𝑎

(ℎ1/𝜙𝑇1) 0

𝑅
𝐿𝑐

−
𝑅𝑐 + 𝑅
𝐿𝑐

−
1
𝐿𝑐

0 0 0 −
𝑅
𝐿𝑐

(ℎ1/𝜙𝑇1) 0

0
1
𝐶 −

𝐺0
𝐶 0 0

𝐺0
𝐶 0 0

0 0 0 −
𝑅𝑎 + 𝑅
𝐿𝑎

𝑅
𝐿𝑎

0 0
𝑅
𝐿𝑎

(ℎ2/𝜙𝑇2)

0 0 0
𝑅
𝐿𝑐

−
𝑅𝑐 + 𝑅
𝐿𝑐

−
1
𝐿𝑐

0 −
𝑅
𝐿𝑐

(ℎ2/𝜙𝑇2)

0 0
𝐺0
𝐶 0

1
𝐶 −

𝐺0
𝐶 0 0

𝑅 −𝑅 0 0 0 0 −(𝑅 + 𝑅𝑇) (ℎ1/𝜙𝑇1) 0
0 0 0 𝑅 −𝑅 0 0 −(𝑅 + 𝑅𝑇) (ℎ2/𝜙𝑇2)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑥 +

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐿𝑎

0

0 0
0 0

0
1
𝐿𝑎

0 0
0 0
0 0
0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝑒1
𝑒2�  

(10) 
 
 
 

 �̇� = 𝑀𝑦 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

𝑅𝑎 + 𝑅
𝐿𝑎

𝑅
𝐿𝑎

0 0 0 0
𝑅
𝐿𝑎
ℎ1∗ 0

𝑅
𝐿𝑐

−
𝑅𝑐 + 𝑅
𝐿𝑐

−
1
𝐿𝑐

0 0 0 −
𝑅
𝐿𝑐
ℎ1∗ 0

0
1
𝐶

−
𝐺0
𝐶

0 0
𝐺0
𝐶

0 0

0 0 0 −
𝑅𝑎 + 𝑅
𝐿𝑎

𝑅
𝐿𝑎

0 0
𝑅
𝐿𝑎
ℎ2∗

0 0 0
𝑅
𝐿𝑐

−
𝑅𝑐 + 𝑅
𝐿𝑐

−
1
𝐿𝑐

0 −
𝑅
𝐿𝑐
ℎ2∗

0 0
𝐺0
𝐶

0
1
𝐶

−
𝐺0
𝐶

0 0

𝑅 −𝑅 0 0 0 0 −(𝑅 + 𝑅𝑇)ℎ1∗ 0
0 0 0 𝑅 −𝑅 0 0 −(𝑅 + 𝑅𝑇)ℎ2∗⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑦 (11) 

 
with  

𝑦 = 𝑥(1) − 𝑥(2)

ℎ𝑖∗ =
ℎ(𝜙𝑇𝑖

(1)) − ℎ(𝜙𝑇𝑖
(2))

𝜙𝑇𝑖
(1) − 𝜙𝑇𝑖

(2) , 𝑖 = 1,2
 

 
The diagonalization by the eigenvector matrix 

𝑃𝐴, of the matrix A6x6, upper-left part of the matrix M, 
gives us 𝐷𝐴 (12).  

 𝐷𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜆1

(𝐶,𝐺0)
𝜆2(𝐶,𝐺0) 0

𝜆3(𝐶,𝐺0)
𝜆4(𝐶,𝐺0)

0 𝜆5(𝐶,𝐺0)
𝜆6(𝐶,𝐺0)⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (12) 

 
with 𝐷𝐴 = 𝑃𝐴−1𝐴𝑃𝐴.  
The evolutions of the real parts of the eigenvalues of 𝐴 versus to 𝐶 and 𝐺0 were represented graphically in 

figure 7.  
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Figure 7: Evaluation of real parts of eigenvalues of A versus 𝑪 and 𝑮𝟎. 

 
The reformulation of the matrix 𝑀 in the arrow 

form (13) can be obtained from the following transition 
matrix 𝑃𝐹 ,  

𝑃𝐹 =

⎣
⎢
⎢
⎢
⎡ 0 0

𝑃𝐴 ⋮ ⋮
0 0

0 ⋯ 0 1 0
0 ⋯ 0 0 1⎦

⎥
⎥
⎥
⎤

 

 
with 𝐹 = 𝑃𝐹−1𝑀𝑃𝐹  
yields  
 

 𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜆1 𝐹1,7(. ) 𝐹1,8(. )

⋱ ⋮ ⋮
𝜆6

𝐹7,1 ⋯ 𝐹7,7(. ) 𝐹7,8(. )
𝐹8,1 ⋯ 𝐹8,7(. ) 𝐹8,8(. )⎦

⎥
⎥
⎥
⎥
⎤

 (13) 

 
The deviation system, put under this form, 

becomes �̇� = 𝐹𝑧 . A proof of the asymptotic 
convergence to zero of the solutions of the system (13) 
is sufficient to ensure the uniqueness of the response of 
the network corresponding to the system (11), and thus 
to provide with a sufficient condition for the system to 
operate in a non-defective configuration. This 
condition can be obtained using the criterion of 
stability of Borne and Gentina [14]. The determination 
of a comparison system (14) applied to the matrix 𝐹 
(13), based on the hermitian max which is a vector 
norm, having rank 7, allows to derive a representation 

in the thin arrow form of the matrix, where all 
non-constant elements are separated and gathered in 
only one column. The application of this stability 
criterion to the matrix 𝐹� given in (14) can lead to a 
condition of the uniqueness of the response of the 
initial system.  

 

 

𝐹� =

⎣
⎢
⎢
⎢
⎡ℜ(𝜆1) 𝐹�1,7(. )

⋱ ⋮
ℜ(𝜆6) 𝐹�6,7(. )

𝐹�7,1 ⋯ 𝐹�7,6 𝐹�7,7(. )⎦
⎥
⎥
⎥
⎤

𝐹�7,𝑖 = max ( �𝐹7,𝑖�, �𝐹8,𝑖�)
𝐹�𝑖,7(. ) = �𝐹𝑖,7(. )� + �𝐹𝑖,8(. )�, 𝑖 = 1 … 6 

𝐹�7,7(. ) = max �
ℜ�𝐹7,7(. )� + �𝐹7,8(. )�

ℜ(𝐹8,8(. )) + �𝐹8,7(. )�
�

 
.

(14) 
 

 
 

Indeed, if the last minor of the matrix 𝐹� related 
to the expressions (15) and the chart in figure 8 is 
negative, then the deviation system (11) is stable and 
the initial system (10) has the property of uniqueness. 

 

 𝜉7(𝐶,𝐺0) = ��

ℜ(𝜆1) 0 0 𝐹�1,7(. )
0 ⋱ 0 ⋮
0 0 ℜ(𝜆6) 𝐹�6,7(. )
𝐹�7,1 ⋯ 𝐹�7,6 𝐹�7,7(. )

�� < 0 (15) 
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Figure 8: Behavior of the last principal minor of 𝑭� 
versus 𝑪 and 𝑮𝟎. 

 
 
The functions ℎ1∗ and ℎ2∗  are always positive and 

depend respectively only on 𝜙𝑇1 and 𝜙𝑇2. The value 
of the minor 𝜉7(𝐶,𝐺0) is negative only if the capacity 
is higher than 19.5 𝑚𝐹 . The application of the 
criterion thus makes it possible to show the uniqueness 
of the response of the studied power network when the 
capacitance lies in the zone: 𝐶 > 19.5 𝑚𝐹.  

A rather similar result, in the same way, has been 
obtained in [24], when the same method was applied 
for each separate phase, i.e when the conductance 𝐺0 
was very small.  

 
 

5. Conclusion 
A practical method, which avoids the multiplicity 

of responses occurring in an electric power network, is 
proposed in this paper. The designed compensation 
method consists of inserting a battery of capacitors 
between the phase and the ground making it possible to 
increase the overall capacitance of the circuit to a value 
for which the response converged towards a unique 
value. Borne and Gentina stability criterion, applied to 
deviation system, described by an arrow form 
characteristic matrix, makes possible to determine a 
domain of uniqueness of the response, depending on 
the value of the capacitance 𝐶. The efficiency of the 
proposed method is better than the classical 
continuation one.  
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