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Abstract: Microcystins (MCs) are the most common cyanobacteria toxins and endocrine disruptors that can cause 
hormonal disorders and affect the normal reproduction of humans, fish and mammals. In this review, we 
summarized the possible toxicity mechanisms of MCs in reproductive system. MCs could inhibit activity of protein 

phosphatase 2A（PP2A） and induce a great quantity of reactive oxygen species (ROS), which cause reproductive 
toxicity via apoptosis, autophagy, cytoskeletal destruction, reproductive tumors and endocrine disrupting. At the 
same time, we proposed that the mechanisms of absorption, transport pathways, distribution and toxic effects of 
MCs in the gonad need to be studied in detail. 
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Introduction 

With the increase of environmental pollution, the 
relationship between decline of human fertility and 
environmental exposure has attracted worldwide 
attention. Microcystins (MCs) are the most common 
cyanobacteria toxins and are endocrine disruptors that 
can cause hormonal disorders in humans and affect 
the normal reproduction of humans, fish and 
mammals. The toxic effects and the molecular 
mechanisms of MCs on reproductive system are a hot 
topic in environmental toxicology. 

MCs, produced by cyanobacteria in eutrophic 
water, are a class of cyclic heptapeptide intracellular 
toxins, with more than 100 different congeners [1,2]. 
Microcystin-LR (MC-LR) is one kind of analogue of 
MCs [3]. Existing treatment methods of drinking water 
can’t effectively remove MCs [4,5]. MCs are widely 
presented in freshwater. Humans and animals can 
contact to MCs in a variety of ways. MCs can pass 
through the digestive tract (diet, drinking water), 
respiratory tract (MCs with water vapor in the air), the 
skin (exposure to the skin of the air, bath skin contact) 
and other ways into the human and animal body. 
People and animals are difficult to avoid the harm 
caused by MCs [6,7]. To reduce risks caused by MCs, 
the World Health Organization (WHO) has set a 
provisional guideline of 1μg/L MCs in water destined 
as human drinking water standard. 

MCs can accumulate in muscle, liver, gonads, 
brain and other tissues [8-10]. Recent studies have found 
that plants and groundwater also can accumulate MCs 
by irrigating water contaminated by microcystins, 
which threaten human health [11,12]. Zhao et al. found 
that the content of MCs in serum of Taihu fishermen 

in China was 0.10 to 0.64 μg/L [13]. MCs are a kind of 
recognized liver toxin. Liver can accumulate a large 
number of MCs. It is the first target organ of MCs [14]. 
MCs can instantaneously inhibit the activity of protein 

phosphatase 2A （PP2A）and protein phosphatase 1 
(PPl), causing protein hyperphosphorylation, 
hematopoietic breakdown of cells, cell rupture and 
even liver hemorrhage [15]. MCs can cause ROS level 
and malondialdehyde (MDA) in hepatocytes increase 
and affect the activity of glutathione peroxidase, 
which leads to the apoptosis of hepatocytes [16]. MCs 
can accumulate in gonad of animals and be transferred 
from the mother to the offspring, so gonads are 
considered the second target organ [6,9,10]. Vivo 
experiments demonstrated MCs can cause substantial 
damage to reproductive system. MCs caused germ cell 
apoptosis [17]. MCs also cause destruction of germline 
cytoskeleton by inhibiting the activity of PP2A and 
PP1 and promoting the production of ROS, which in 
turn causes gonadal tissue destruction [18]. 

Our team has been working on the studies about 
reproductive toxicity of MCs and the possible 
molecular mechanism. Therefore, the aim of this 
review was to provide the most current information 
covering the research of other scholars and our 
previous studies to better understand the reproductive 
toxicity mechanism induced by MCs. 

 
1. Biological effects 

After male Sprague Dawley (SD) rats were 
administered an intraperitoneal injection with 0, 50 
μg/kg body weight (1/3 lethal dose 50, LD50) and 100 
μg/kg body weight (2/3 LD50) of MC-LR for one 



 Life Science Journal 2017;14(7)       http://www.lifesciencesite.com 

 

27 

week， the relative weight of the testis and the 
diameter of the seminiferous tubules were 
significantly reduced at 100μg/kg MC-LR exposure 
group. HE staining showed that seminiferous tubules 
were blocked; spermatogenic cells were sparse, 
disorder and dissolved. TUNEL staining showed that 
apoptotic cells were increased [19]. Wu et al. also 
found that after female mice were orally given 0, 1, 10 
and 40 μg/L MC-LR for 3 months or 6 months, the 
gonad somatic index (GSI) dropped significantly 
when the dose of MC-LR was given 40 μg/L. In 6-
month exposure group, follicular atresia and 
concentration of MC-LR showed a dose-response 
relationship. The loss of primitive, primary, secondary 
follicle increased significantly at dose of 40 μg/L. And 
serum progesterone increased significantly in high-
dose group, while estradiol significantly reduced [20]. 
Male zebrafish were exposed with 0, 0.3, 3 and 30 
μg/L MC-LR for 90 days, the length and weight of 
zebrafish decreased significantly compared with the 
control group and showed a dose-response 
relationship. In exposure groups, histological 
observation revealed that the cell density was reduced, 
the seminiferous tubules were disordered and their 
epithelial cells were dissolved, resulting in a widening 
of the gap between cells and cells [21]. Chen et al. put 
forward that male Wistar rats were intraperitoneally 
injected with 1 and 10 μg/kg body weight of MC-LR 
daily for 50 days. Dose of 10μg/kg MC-LR induced 
cytoplasmic contraction, mitochondrial swelling and 
cytoskeleton destruction. And ultrastructural 
observation showed testicular index decreased 
significantly [22]. 

In vitro experiments, Zhou et al. found that the 
cell viability of SD rat spermatogonia was 
significantly decreased after exposure to MC-LR. 
FDA and PI staining showed that the ratio of 
apoptotic cells of spermatogonia was significantly 
increased, ROS production increased and antioxidant 
capacity decreased with the increase of exposure 
concentration [23]. Our previous studies also found that 
the activity of sertoli cells significantly decreased and 
the morphology of the nucleolus changed when sertoli 
cells were cultured with MC-LR for 24 h [24]. The 
level of ROS and the apoptosis rate of Chinese 
hamster ovary (CHO) cells was significantly increased 
when CHO cells were exposed to MC-LR [25]. 

In conclusion, MCs can induce apoptosis of 
germ cells, induce morphological changes of gonad 
tissues, destroy cytoskeleton and produce ROS. 
Undoubtedly, there are some differences in toxic 
effects of different variants of MCs on reproductive 
system due to different cells and test animals used in 
studies, which need further study. 

 

2. The mechanisms of apoptosis induced by MCs in 
germ cells 

MCs can induce apoptosis of germ cells and 
cause some other biological effects. MCs should have 
enough doses to enter the reproductive system through 
the blood system to exert its reproductive toxicity. 
However, the higher molecular weight of MCs 
determines that it cannot enter cells through passive 
transport and must be transported by means of active 
transport [1]. Organic anion transporting polypeptide 
(OATP) is an important trans-membrane transporter 
that can participate in a variety of toxin transport [26]. 
Zhou et al. found that the expression of Oatp3a1 in 
MC-LR exposed group was significantly increased 
compared with the control group in primary cultured 
spermatogonia of male SD rat [23]. Faltermann et al. 
also found that the expression of Oatp1d1 was 
significantly increased in CHO cells exposed to MC-
LR [27]. Different concentrations of MC-LR led to 
different damage to zebrafish embryo. MC-LR with 
concentration less than 0.04 mmol/L was mainly 
adsorbed on outer membrane of embryo when the 
MC-LR. While concentration was more than 0.50 
mmol/L, MC-LR can directly enter the cytoplasm, 
causing thinning and rupture of the membrane [28]. 
Above evidences show that MCs can enter the 
reproductive system with the help of OATP. 

Substantial studies have shown that MCs can 
combine with protein phosphatase in liver cells, 
inhibit the activity of protein phosphatase and cause 
protein hyperphosphorylation [15,29]. In reproductive 
system, Liang et al. observed the binding of MC-LR 
to PP2A by western blot (WB) and 
immunofluorescence staining when human amniotic 
epithelial cells exposed to MC-LR. At low 
concentration, the activity of PP2A increased and the 
activity of PP2A was inhibited at high concentration. 
The acetylation level of tubulin also changes with 
PP2A activity [30]. PP2A could regulate the 
phosphorylation and de-phosphorylation in cells to 
achieve dynamic balance and maintain the normal 
growth and reproduction of cells, which play an 
important role in the process of cell signal 
transduction [31,32]. Therefore, MCs could break 
dynamic balance of phosphorylation and de-
phosphorylation in cells to play its reproductive 
toxicity by inhibiting the activity of PP2A. MC-LR 
can cause phosphorylation of some proteins in the 
mitogen activated protein kinases (MAPK) signaling 
pathway by altering the activity of PP2A. And thus 
cause liver cells, kidney cells and other cytoskeleton 
destruction and apoptosis [33]. In reproductive system, 
Wang et al. found that the P53 and Bcl-2 families 
have a significantly higher phosphorylation level [34]. 
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2.1 MCs induce apoptosis in germ cell via 
mitochondrial pathways 

MCs could cause a significant increase in ROS 
and MDA, mitochondrial swelling, mitochondrial 
membrane damage and cytochrome c (Cyt-c) release 
in testes of frogs. And the protein expression levels of 
Caspase-3 and Caspase-9 were significantly increased 
[35]. Our previous study found that MC-LR can induce 
sertoli cell apoptosis and intracellular ROS 
significantly increased, mitochondrial membrane 
potential significantly decreased. Cyt-c, activated 
Caspase-9 and activated Caspase-3 was significantly 
increased with the increase of exposure concentration. 
The apoptosis rate decreased after adding N-acetyl-L-
cysteine (NAC) [36]. The content of MDA in zebrafish 
ovary exposed to MC-LR was significantly increased, 
suggesting that the level of reactive oxygen species 
was significantly increased. And MCs activated the 
antioxidant system, the antioxidant enzyme (catalase 
(CAT), superoxide dismutase (SOD), glutathion 
peroxidase (GPx) ) activity and transcription level 
were significantly increased. While the level of 
glutathione significantly decreased, suggesting that 
GPx via glutathione to play a role in detoxification [37]. 
Li et al. found that MC-LR could induce the protein 
expression of P53 and Bax and decrease the 
expression of Bcl-2 protein [38]. When Bcl-2 
expression reduced, the mitochondrial PT pore will 
open, which lead to the decrease of mitochondrial 
membrane potential and the release of Cyt-c [39]. 

Cyt-c released into cytoplasm will bind to 
apoptosis associated factor -1 (Apaf-1) to form a 
multimeric body [40]. And it is able to promote the 
combination of Caspase-9 with the multimeric body to 
form apoptotic bodies. Cyt-c is an important carrier 
for the transmission of electrons in respiratory chain. 
Cyt-c level decrease in mitochondria when cyt-c is 
released from the mitochondria into the cytoplasm. 
And it will lead to the escape of electrons in 
respiratory chain, resulting in a large number of ROS 
production [41]. ROS can cause lipid peroxidation, 
destroy the mitochondrial membrane and thus form a 
vicious cycle. 
2.2 MCs induces apoptosis in germ cells via death 
receptor pathway 

MCs could increase the expression levels of 
Caspase-3 and Caspase-8 in sertoli cell [34]. Caspase-8 
is a significant protein backward position in death 
receptor pathway. MCs also could induce the 
expression of Fas and Fas ligand (FasL) and the 
expression of Apaf-1, Fas-associated death domain-
containing protein (FADD), Bid. Casepase-3, -8 
proteins was also significantly increased [42]. 

Therefore, MCs could increase the expression of 
Fas and FasL and then induced Caspase-8 self-
cleavage by FADD precursor. Cleaved Caspase-8 

directly activates the downstream effector Caspase-3, 
-9, which causes germ cell apoptosis in turn. 
Moreover, the cleaved Caspase-8 can cleave Bid in 
Bcl-2 family. And then cause Bid to transfer to the 
mitochondrial membrane, which leads to a decrease in 
mitochondrial membrane permeability and release of 
cyt-c, leading to germ cells apoptosis via the 
mitochondrial pathway [43]. 
2.3 MCs induces apoptosis in germ cells via 
endoplasmic reticulum pathway 

MC-LR could induce expression of C/EBP-
homologous protein (CHOP) and Caspase-12 and 
induce liver injury through the endoplasmic reticulum 
pathway [44]. In current study, MC-LR could induce 
reproductive toxicity of zebrafish larvae through 
endoplasmic reticulum stress. In experimental group, 
the expressions of gene related to endoplasmic 
reticulum stress were significantly increased in 
mRNA level, such as eif2s-1, atf4b1, atf6, mapk8 and 
chop. Expression of Caspase8 and Caspase3 was 
significantly increased not only in mRNA level and 
but also in protein level. Acridine orange (AO) 
staining showed that the proportion of apoptotic cells 
was significantly lower than control group after the 
addition of endoplasmic reticulum stress inhibitor 
TUDCA [45]. Our preliminary study also showed that 
the expression of glucose-regulatedprotein78 (GRP78), 

activating transcription factor 6 (ATF-6）, PKR-like 

ER kinase (PERK） , Inositol-requiring enzyme l 
(IRE1), CHOP was significantly higher in CHO cells 
exposed to MC-LR compared than that in control 
group. And fluorescence intensity of intracellular Ca2+ 

increased gradually with the concentration of 
exposure [25]. The results suggest MCs could induce 
ERs and further cause apoptosis in germ cells via 
activating GRP78, ATF-6, IRE1 and PERK. 
2.4 The role of P53 and MAPK in regulating 
apoptosis 

P53 is an important factor in regulation of 
apoptosis and plays an vital role in process of 
apoptosis. Studies have showed that p53 target genes 
such as Fax, Apaf-1 and Bcl-2 families also play an 
important role in the process of apoptosis [46]. In 
reproductive system, the phosphorylation levels of 
P53 and Bcl-2 families significantly increased after 
exposed to MC-LR [34]. Meng et al. found that the 
phosphorylation levels of spermatogonia in mouse 
testes significantly increased after exposed with MC-
LR. In these study, miR-541 transcription levels 
increased and p15 transcription levels decreased, 
suggested that increased miR-541 led to reduced 
expression of p15 and then led to activation of p53 to 
induce apoptosis [47]. MCs could increase 
phosphorylation of P53 and Bcl-2 and increased levels 
of protein expression in Caspase-3 and Caspase-8[34,38]. 
Germ cell apoptotic rate of P53 related gene knockout 
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caenorhabditis elegances significantly decreased 
compared with the MC-LR group [40]. Xiong et al. 
found expression levels of Fas and FasL protein were 
significantly increased [42], while Fas was one of the 
many pro-apoptotic proteins encoded by p53. These 
studies suggest that p53 plays an important role in 
MCs-induced germ cell apoptosis. It is likely that 
MCs inhibit PP2A activity to induce the 
phosphorylation of p53 and then induce apoptosis by 
means of mitochondria and death receptor pathways 
through regulating the Bcl-2 family. 

Mitogen activated protein kinase (MAPK) plays 
an important role in process of intracellular signal 
transduction and regulates various physiological 
processes of cells by phosphorylated transcription 
factors, cytoskeletal proteins and enzymes. Apoptosis 
is induced mainly through the JUN amino-terminal 

kinase (JNK)/stress-activated protein kinases（SAPK）
subfamily and the p38MAPK in MAPK signal 
pathway [48,49]. The germ cells apoptotic rate of 
MAPK related gene knockout caenorhabditis 
elegances was significantly decreased compared with 
the MC-LR groups [40]. Liu et al. also found that the 
phosphorylation level of JNK and P38MAPK was 
increased by inhibiting the activity of PP2A in the 
liver of MC-LR-exposed mice [29]. In reproductive 
system, MC-LR can activate MAPK, which in turn 
activates Bax/Bcl-2 and Caspase-dependent apoptosis 
pathways to cause reproductive toxicity of zebrafish 
[44]. Chen et al. found MC-LR induced expression of 
miR-758 and miR-98-5p decrease in MC-LR-exposed 
male SD rats and in vitro cultured sertoli cell, which 
increased expression of p38MARK protein 
phosphorylation. And phosphorylated p38MAPK 
could induce the phosphorylation of ATF-2 protein 
and then activate tumor necrosis factor-α (TNF-α) and 
tumor necrosis factor receptor 1 (TNFR1) to induce 
sertoli cell apoptosis through death receptor pathway 

[50]. 
 

3. MCs induce destruction of the cytoskeleton 
Cytoskeleton plays an major role in maintaining 

cell shape and maintaining cell motility and mainly 
consists of microfilaments, microtubules and 
intermediate fibers [51]. Mariann et al. found that actin 
and tubulin were reduced or disappeared in MC-LR-
exposed CHO-K1 cells, leading to changes in 
microfilaments and microtubules [52]. The 
microfilament and microtubule structures were 
destroyed after exposure to MC-LR in embryos of 
New Zealand white rabbits cultured in vitro [53]. MCs 
also induced significant changes in cytoskeletal 
related genes in testis of male Wistar rats. And the 
transcriptional levels of beta-actin and beta-tubulin 
were significantly lower in the exposed group [22]. 
Therefore, MC-LR can cause the destruction of 

cytoskeleton. When cytoskeleton destroyed, it will 
further contribute to cell apoptosis due to cytoskeleton 
plays a vital role in maintaining normal cell 
morphology. 

 
4. MCs promote the occurrence of reproductive 
tumors 

A large number of previous studies suggested 
that MC-LR induced phosphorylation of MAPK and 
protein kinase B (Akt) signaling by inhibiting the 
activity of PP2A. Phosphorylated p38MAPK and JNK 
could enhance the expression of c-myc and activate c-
Jun and c-fos. Phosphorylated Akt could further 
activate S6K1 and cause cell proliferation, thereby 
promoting tumor induced [29, 54,55]. In reproductive 
system, the expression of c-myc, c-jun and c-fos were 
significantly increased in mRNA levels in whitefish 
ovarian and BALB/c mice testes after exposed to MC-
LR [34,56]. Chen et al. also found that expression of c-
jun and c-fos in both mRNA and protein levels were 
significantly increased. And phosphorylation levels of 
p38MAPK were significantly higher in MC-LR 
exposed groups [50]. This suggests that MCs could 
induce p38MAPK phosphorylation by inhibiting the 
activity of PP2A, which in turn activates c-jun and c-
fos to induce reproductive tumors. It is well known 
that the reproductive system is extremely important 
for breeding offspring and the toxic effect of toxicant 
on sperm or egg gene of the offspring is irreversible. 
MC-LR increased the number of apoptotic DNA 
fragments in both testis and cultured sertoli cell of SD 
rats [17]. MC-LR also induced mitochondrial DNA 
damage to testis of Wistar rats [22]. Lankoff et al. 
found MC-LR played its reproductive toxicity by 
interfering with nucleotide excision repair [57]. 
Therefore, MCs phosphorylate p38MAPK via inhibit 
the activity of PP2A, further induced c-myc, c-fos, c-
jun activation to promote tumorigenesis. MCs not 
only cause DNA damage but also interfere nucleotide 
excision repair to play toxicity on the genes. 

 
5. MCs cause endocrine disrupting and have 
estrogenic potential 

MC-LR interfered with the endocrine function of 
female zebrafish and the development of eggs. The 
concentrations of estradiol (E2) and vitellogenin 
(VTG) were significantly increased compared with the 
control group in the 10ug/L exposure group. The 
concentrations of E2, VTG and testosterone were 
significantly decreased when exposed to a 
concentration of 50μg/L. And the mRNA expression 
level of related to hypothalamus-pituitary-gonadal 
axis (HPG) gene significantly changed, it 
corresponded not only to changes in hormone levels, 
but also to a dose-response relationship [58]. MC-LR 
significantly reduced the ratio of T/E2 in male 
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zebrafish testis and thus destructive steroid hormone 
balance. And the mRNA expression level of HPG-
related genes was significantly changed to promote 
the transformation of T to E2 in circulating blood [21]. 
Li et al. found that MC-LR decreased serum 
testosterone levels, follicle stimulating hormone (FSH) 
and luteinizing hormone (LH) in SD male rats [17]. 
Hou et al. found that the testosterone concentration in 
ovary was decreased in female zebrafish exposed to 
MC-LR. However, the transcriptional level of FSH 
and LH in pituitary gland and estrogen receptor (ERα), 
FSH receptor (FSHR) and LH receptor (LHR) was 
significantly increased. It may be a positive feedback 
of the HPG axis due to the low exposure 
concentration [59]. Ding et al. also found that MC-LR 
transported to neurons secreted gonadotropin 
releasing hormone (GnRH) via Oatp1a5 and further 
interfered with male endocrine secretion due to 
testosterone production must depend on GnRH [60]. 
Therefore, MCs can interfere with the expression of 
HPG axis genes, not only directly damage the gonadal 
hormone synthesis of hormones, but also through the 
hypothalamus and pituitary indirect effects of 
endocrine function. The expression of vitellogenin 
(vtg) both in female zebrafish and immature zebrafish 
was significantly higher in exposure groups [21,61]. The 
activation of the luciferase gene in the receptor–
reporter gene assay using transgenic human cells line 
MELN indicates clearly that MC-LR at low 
concentrations present estrogenic potential likely by 
indirect interaction with estrogen receptors [62], 
suggesting that MCs may have estrogenic potential. 

 
6. The mechanisms of autophagy induced by MCs 
in germ cells 

Chen et al. found that the expression of LC3 was 
significantly increased in MC-LR-exposed SD rat 
sertoli cells. The levels of cyt-c, Bcl-2 and Caspase-3 
were also decreased compared with the single MC-LR 
exposure group after treated with autophagy inhibitor 
3-methyladenine (3-MA). This suggested that MC-LR 
had toxic effects on Sertoli cells by inducing 
autophagy and apoptosis [63]. Our recent studies also 
found that the number of autophagosome increased 
gradually with the increase of exposure concentration 
in CHO cells exposed MC-LR. The expression of 
autophagy marker proteins Beclin1 and LC3II was 
elevated. The apoptosis rate and autophagy level were 
significantly lower than single MC-LR exposure 
group when added endoplasmic reticulum stress 
inhibitor. However, the apoptosis rate increased 
compared with the exposure alone group when mixed 
in autophagic inhibitors [25]. These results suggested 
that ERs and autophagy are involved in the MC-LR-
induced apoptosis of CHO cells. Targeting ERs and 
autophagy could be a promising therapeutic strategy 

for protecting against MC-LR toxicity. However, 
autophagy and apoptosis may be interacted with each 
other under endoplasmic reticulum stress [64,65], which 
has not been reported in the field of MCs research and 
needs further study. 

 
7. MCs induce cell cycle arrest and inflammation 

Chen et al. found that MC-LR inhibits TIFA 
expression and blocks the sertoli cells cycle through 
p53 pathway [50]. Our study also found that the cell 
cycle was blocked in G2/M phase in MCs-exposed 
CHO cells. MC-LR can also induce the inflammatory 
response of sertoli cells by stimulating the expression 
of TNF-α. Another study found that MC-LR can 
inhibit the development of prostate progeny in the 
offspring of mice by inducing inflammation [66]. These 
showed that MCs can induce reproductive toxicity 
through not only the apoptosis, autophagy, 
endoplasmic reticulum stress and cytoskeleton 
destruction but also other pathways, which also 
requires further in-depth study. 

 
Summary 

In this review, we summarized the possible 
mechanisms of MCs toxicity on reproductive system. 
First of all, MCs can enter the reproductive system 
with the help of OATP and accumulate in the gonad. 
Secondly, MCs can inhibit the activity of PP2A to 
causes hyperphosphorylation of key control proteins 
that regulate apoptosis, cytoskeleton organization and 
ERs. Meanwhile, a great quantity of ROS generated in 
gonad. But it is not clear that how can large amounts 
of ROS are produced, which needs to be addressed by 
further studies. Thirdly, MCs induce germ cell 
apoptosis via mitochondrial pathways, death receptor 
pathway and endoplasmic reticulum pathway. 
Moreover, p53 and MAPK play an important role in 
MCs-induced germ cell apoptosis. The fourth, MCs 
induce cytoskeleton destruction, reproductive tumors, 
cell cycle arrest and inflammation in reproductive 
system due to PP2A inhibition and ROS generation. 
The last but not least, MCs induce autophagy via ER 
pathway. And autophagy and apoptosis may be 
interacted with each other under endoplasmic 
reticulum stress, which has not been reported in the 
field of MCs research and needs further study. 

In summary, studies have shown that MCs 
induce reproductive toxicity. But there are still many 
gaps or problems that need to be solved: (1) The role 
of ROS as a mechanism of reproductive toxicity 
induced by MCs. (2) The molecular mechanisms 
participating in autophagy and apoptosis by ER 
pathway in MCs induced-reproductive toxicity. (3) 
More studies on toxicity induced by MCs in female 
reproductive system should be conducted in further. (4) 
Whether the decline in human fertility in recent 
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decades is associated with MCs pollution? This 
requires crowd cohort data to study. (5) More 
effective detection methods and removal methods of 
MCs are limited. (6) The toxicity mechanism of MCs 
on reproductive system should be explored in further. 
The combined effects of different MCs variant or 
MCs with other pollutants in water also should be 
explored. 
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