Analysis of Blood Pressure Pattern for Early Prophylactic Diagnosis of Cardiac Disorder

¹Teng, Junyan, ²Fengming Su, ³Zhiping Guo, ⁴Yanping Wei, ⁵Jing Wang, ⁶Shen Cherng

 ¹ Orthopedic Hospital of Henan Provincial, Zhengzhou City, Henan, China
 ² Emergency Medical Rescue center of Zhengzhou City, Zhengzhou City, Henan, China
 ^{3*} Orthopedic Institute of Henan Provincial, Zhengzhou City, Henan, China
 ⁴ Henan Province People's Hospital, Zhengzhou City, Henan, China
 ⁵ Jinling Hospital, Nanjing University School of Medicine Nanjing, Jiangsu, China
 ⁶ESTI Healthcare Research Institute, New York, USA Email: guozhiping74@hotmail.com

Abstract: The blood pressure of brachial artery on left arm of the patient can be referred to the diagnosis of disorder of cardiac function. An assessment model correlates variance rate of cardiac cycle to the cardiac disorder is proposed. The regression analysis reveals the accuracy of the analysis of blood pressure pattern for early prophylactic diagnosis of cardiac disorder.

[Teng, Junyan, Fengming Su, Zhiping Guo, Yanping Wei, Jing Wang, Shen Cherng. Analysis of Blood Pressure Pattern for Early Prophylactic Diagnosis of Cardiac Disorder. *Life Sci J* 2016;13(12):112-114]. ISSN: 1097-8135 (Print) / ISSN: 2372-613X (Online). <u>http://www.lifesciencesite.com</u>. 16. doi:10.7537/marslsj131216.16.

Keywords: assessment model, causal analysis, cardiac disorder

Introduction

Due to ventricular diastolic dysfunction, atrial enlargement and left ventricular hypertrophy, most cardiac disorder may cause the symptom manifested by arrhythmia **[1]**. Several noninvasive methods were developed to get the early prophylactic diagnosis of cardiac disorder **[2]**. The aim of this study is to provide an assessment of the early prophylactic diagnosis of cardiac disorder through relationship analysis between blood pressure patterns (BPP) and ECG.

The analysis of BPP is based upon the blood supply in a cardiac cycle. Due to the abnormal blood supply, no pain and no specific sign of arrhythmia for attention, life threatening complications such as cardiac infraction, shock, and sudden death just kill people in a minute. Under normal circumstances, the left ventricle of the heart can be instantaneous relaxed after each contraction so that the blood from the pulmonary vein can quickly fill into the ventricle, that is, the relaxation and filling of the diastolic heart. Meanwhile, rapid intense contraction may promote a large number of bloods into the aorta to transport to the arteries of the body, which is the systolic contraction and efflux of the heart [3]. Generally, detection of can be revealed cardiac disorder by ECG. echocardiography Cardiac ultrasound and catheterization exams etc. [4]. Instruments for the detection are not only expensive but also complicated to use for the staff. In order to address these deficiencies, we have developed a simple analytic method of BPP for early prophylactic diagnosis of cardiac disorder to reduce the mortality [5]. In this study, the primary object is to provide a method for

BPP analysis by measuring a time series signal of blood pressures that reflects the functions of cardiac valves correlated with the blood flow in heart. The measured blood pressures variations can correspond to the presence of abnormal blood flow and cardiovascular disease [6].

Figure 1 Definition of BPP parameters (Permission of reprint from ecardiac by ESTI HR Institute)

From Table 2, regression equation is presented as $RR_V = 0.018*(0.074RR-49)$. We can easily check the RR_V to realize how risk the patient is in the early state of sinus rhythm with ST-T wave being abnormal assessed from ECG spectrum [7]. When the cardiac disorder contains any factor that affects the disease state of sinus rhythm with ST (ECG variable) interval abnormality, the RR can be reveal in an early time if the BPP analysis is available. Meanwhile, we found the assessment is close to 80 percent (0.796) accurate in clinical experiments.

id	RR	RR_V(%) AS	ST	SR		Disease state
185	733	2	122	264	29	1	Sinus rhythm with QRS low voltage
187	511	3	85	167	37	0	Normal
189	772	7	129	267	42	2	Sinus rhythm with T abnormal
190	683	3	114	244	29	2	Sinus rhythm with ST-T anomaly
197	872	2	145	319	30	2	Sinus rhythm with ST-T anomaly
199	706	3	118	248	34	2	Sinus rhythm with ST-T anomaly
202	706	4	118	252	30	1	Sinus rhythm with right axis deviation of QRS
206	850	3	142	307	33	3	Sinus rhythm; V1, V2 lead R/S
217	856	2	143	314	29	2	Sinus rhythm with ST-T anomaly
220	1061	33	177	381	43	2	Sinus rhythm with ST-T anomaly
489	722	4	120	268	21	0	Normal
490	717	3	119	279	7	2	Sinus rhythm with ST-T anomaly
491	817	16	136	279	48	1	Sinus rhythm
492	661	3	110	232	32	0	Normal
493	950	35	158	365	15	2	Sinus rhythm with ST-T anomaly
494	844	2	141	282	56	0	Normal
495	956	21	159	350	32	3	Sinus rhythm with q wave
496	817	3	136	308	19	3	Sinus rhythm with atrial premature beats
497	600	3	100	214	26	1	Sinus rhythm with left axis deviation of QRS
499	689	2	115	260	15	2	Sinus rhythm with ST-T anomaly
500	539	47	90	174	42	3	Sinus rhythm with q wave
501	622	18	104	234	15	1	Sinus rhythm with ST-T anomaly
502	611	3	102	217	28	3	Sinus rhythm with ST-T anomaly
503	994	10	166	376	22	3	Sinus rhythm with atrial premature beats
504	606	9	101	208	34	0	Normal
505	856	8	143	325	18	0	Normal
506	872	4	145	313	36	0	Normal

Table 1: BPP Data sheet and disease state of ECG interpretation for the subjects

Table 2: Correlation matrix for the disease state of sinus rhythm with ST (ECG) abnormality

parameters	RR	RR_V (%)	AS	ST	SR
RR	1.000	.796	1.000	.978	.294
RR_V (%)	.796	1.000	.796	.803	.120
AS	1.000	.796	1.000	.978	.294
ST	.978	.803	.978	1.000	.089
SR	.294	.120	.294	.089	1.000

Table 3: The Assessment Model D2 correlates the	e predictor RR with dependent variable RR_V
---	---

Model		R	R square	Adjust R Square	Std. Error	Sig.
D2	Dependent RR_V%	0.796	0.633	0.588	8.416	0.006

Model		Unstandardized coefficients		Standardized coefficients	t	aia
		В	Std. Error	Beta	ι	sig
D2	Constant	-49.473	16.078	0 706	-3.077	0.015
	Predictor: RR	0.074	0.020	0.790	3.718	0.006

Methods

In May of 2016, 27 subjects participated into the program being approved by the local Institution Review Board (IRB) in Henan Provincial People's Hospital (in China, Henan Province). Spectrum of the time series signal of the BPP was obtained through the measurement of the pressures of brachial artery on left arm of the subject. Calculating the time intervals between two peaks of the consecutive signals in BPP to obtain the variance of the signal for each cardiovascular blood supply pulse cycle is performed. From Figure 1, BPP parameters are defined as that S located two thirds of RQ, A located at the highest point for curve AQ where Q and T are terminal points. Taking the variance of pulse peak, we can find the time intervals for each signal embedded in each of the cardiac cycle. Under the time variability of each cardiac cycle, compared to ECG, we can determine the early prophylactic cardiac disorder.

Results

The parameters of the BPP and ECG are listed in Table 1. The subject was judged in a disease state via ECG interpretation. In Table 2, it shows the correlations of the parameters in disease state of the sinus rhythm with ST (ECG) wave abnormality. The regression analysis was conducted. The results are shown in Table 3.

Discussion

The assessment capability of BPP variable, R-R variability is very sensitive to the states of cardiac disorders. The strength of RR_V (predictor) to predict RR is 80% in assurance with the significance level of P = 0.006. Statistically, through causality structure of the variables of ECG and BPP [8], we can assess the states of cardiac disorder for the subjects through the RR_V variable.

Conclusion

This study reveals the correlation between brachial artery blood pressure variability and the state of cardiac disorder. We found that R-R variation rate is very susceptible to the cardiac disorder. In BPP analysis, RR_V variability rate is a significant disease parameter. By using of the model that we proposed this model to identify cardiac disorder that can quickly be applied to the general health examination.

Although using of brachial artery BPP as indicators for the assessment of heart is easy and simple, the early heart and vascular disease related to the relevant parameters of BPP at large-scale population and clinic research has been valued.

12/25/2016

Acknowledgement

Her (Dr. Junyan Teng) study was sponsored by the Special subject of Chinese medicine research of Henan Province of China (2015ZY02009), the Scientific Development Plan of Henan Province of China (152102310142) , the Philosophy and social science project of Henan Province of China (2015CSH022, 2015CSH023) and the Scientific Development Plan of health commission of Henan Province of China (201403171).

*Corresponding author:

Zhiping Guo

Email: guozhiping74@hotmail.com

No. 100, Yongping Road, Zhengdong New District, Zhengzhou City, Henan Province, China

References

- 1. John J. Seger. Syncope Evaluation and Management. Tex Heart Inst J. 2005; 32(2): 204–206.
- 2. Lyudmila P. Sycheva. Diagnostics, correction and prophylaxis of prepathological states using the non-invasive cell technology is one of the ways of longevity. Front Genet. 2015; 6: 184.
- 3. Anindita Das, David Durrant, Fadi N Salloum, Lei Xi, and Rakesh C Kukreja. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther. 2015 Mar; 147: 12–21.
- Laura A. Mageea, Anouk Pels, Michael Helewa, Evelyne Rey, Peter von Dadelszen. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health. Volume 4, Issue 2, April 2014, Pages 105–145.
- 5. Itsik Ben-Dor, Alexander Battler. Treatment of stable angina. Heart V.93(7); 2007 July.
- 6. Scott Reule, and Paul E. Drawz. Heart Rate and Blood Pressure: Any Possible Implications for Management of Hypertension? Curr Hypertens Rep. 2012 December; 14(6): 478–484.
- G. Coppola, P. Carita', E. Corrado, A. Borrelli, A. Rotolo a, M. Guglielmo, C. Nugara, L. Ajello, M. Santomauro, S. Novo. ST segment elevations: Always a marker of acute myocardial infarction? Indian heart journal 65 (2013) 412 e423.
- 8. Yvonne Yin Leng Lee1, Herbert F. Jelinek and Craig S. McLachlan Systolic blood pressure but not electrocardiogram QRS duration is associated with heart rate variability (HRV): a cross-sectional study in rural Australian non-diabetics. Clinical Hypertension (2017) 23:9.