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Abstract: Many approaches that integrate simulation models with stochastic multiple objective optimization 
techniques have been proposed, many of which use evolutionary algorithms. These approaches generate a finite set 
of Pareto optima, and this Pareto optimal set often contains a very large number of solutions, which could be 
overwhelming to the decision-maker. In this paper, an innovative approach that effectively reduces the number of 
the non-dominated Pareto solutions while considering the stochastic nature of the objective functions after the 
optimization process is proposed. A detailed description of the proposed a posteriori approach and a numerical 
example that demonstrates the performance are provided. 
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1. Introduction 

It is widely known that simulation is a powerful 
tool that enables decision-makers in business and 
industry to improve organizational performance. The 
ability to model a physical process on the computer, 
incorporating the uncertainties that are inherent in all 
real dynamic systems, provides an enormous 
advantage for analysis and decision-making. 

Decision-makers frequently use simulation 
within their organizations to evaluate and compare 
proposed, often complex and mathematically 
intractable, designs of their systems and processes 
with the goal of optimizing a particular performance 
objective. However, most real-world decisions 
involve the simultaneous, non-trivial optimization of 
multiple, and often conflicting, objectives. Due to the 
“satisficing” of the objectives within the context of 
the decision, often a large set of compromise, or 
trade-off, solutions that seek to balance the set of 
objectives are identified. After which, the best trade-
off solution is selected according to the decision-
maker or set of decision-makers’ preferences and 
existing and future physical, technological and 
financial constraints. 

Applications of the optimization of multiple 
objectives, in research and in practice, typically 
involve using metaheuristic search procedures in 
deterministic settings, with the procedures generating 
a large set of Pareto optima (i.e., non-dominated 
solutions) that characterize the efficient frontier in the 
objective space from which the decision-maker must 
select the most preferred solution. However, the 
success of these search procedures is not as 
consistent in noisy environments where the objective 
functions are stochastic such as when using 
simulation as the evaluator of the individual objective 
functions. Evolutionary algorithms (EAs) are popular 

and have become common approaches to solving 
multiobjective optimization and generating the set of 
Pareto optimal solutions, as they are generally 
believed to be able to handle fairly well with either 
deterministic or stochastic objective functions since 
promising areas of the search space are sampled 
several times. 

The multiobjective optimization problem 
involves two stages of algorithm decision-making: 
(1) the optimization stage and (2) the post-Pareto 
analysis stage (Aguirre & Taboada, 2011). The first 
stage focuses on obtaining a set of non-dominated 
solutions. An EA-based simulation optimization 
approach requires a large number of simulation 
evaluations due to the stochastic components not only 
of simulation model but also because of the 
stochastic features of EAs before a satisfactory 
solution can be found (Syberfeldt, Ng, John, & 
Moore, 2009). Since there is variation in the output 
from a simulation optimization approach, appropriate 
statistical techniques, such as point and confidence 
interval estimation, must be used to determine the 
precision of the key performance measures. In 
addition, the efficient frontier in the stochastic 
objective space that is characterized by the set of 
Pareto optimal solutions is not as clearly defined as 
that under deterministic objective functions. 

The second stage involves the reduction of the 
trade-off solutions in the set of Pareto optima. In 
order to be adequately representative of the 
possibilities and trade-offs, non-dominated solutions 
under stochastic objectives may be too large for 
decision-makers to practically consider. Therefore, 
some intelligent means of reducing and organizing 
the non-dominated set of solutions in the presence of 
stochastic objectives is required. 
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Most of the existing work focuses primarily on 
the first stage. Nevertheless, the second stage of 
decision-making is as important as finding the set of 
non-dominated solutions (Aguirre & Taboada, 2011). 
Reducing the number of solutions to select from is 
not a simple task and can be overwhelming when 
presented with an extraordinarily large set of 
potential compromise, or trade-off, solutions. In this 
paper, an innovative a posteriori approach that 
effectively deals with noise in objectives and aims to 
reduce the number of the non-dominated Pareto 
solutions effectively is presented. The proposed 
approach uses statistical analysis on the Pareto 
optimal solutions in order to reduce the number of 
solutions to a set of representative solutions with 
priority that is presented to the decision-maker for 
final selection. 

The remainder of this paper is organized as 
follows. The next section presents a brief overview of 
decision-making in the presence of multiple 
objectives. In Section 3, previous related work is 
discussed. The proposed approach is described in 
Section 4. Explanation of the a posteriori approach 
and a numerical example are presented in Section 5. 
Application of the simulation optimization to the case 
study is given in Section 6. This paper is concluded 
and suggestions for future work are presented in 
Section 7. 
 
2. Decision-Making Considering Multiple 
Objectives 

Many real-world problem decision-making 
situations seek trade-off, or compromise, solutions 
rather than to seeking a single global optimal 
solution, as these critical decisions often involve 
multiple, often conflicting, objectives that must be 
addressed simultaneously. Decision-makers 
frequently use simulation within their organizations 
to model, evaluate and compare proposed, often 
complex and mathematically intractable, designs of 
their systems and processes with the goal of 
optimizing a particular performance objective, or set 
of performance objectives. 

Multiple objective decision problems, unlike 
single objective decision problems, address a number 
of objective functions to be minimized or maximized. 
There are many mathematical programming 
techniques for multiobjective optimization. Most of 
the recent work focuses on the approximation of the 
Pareto optimal solution set (Abraham, Jain, & 
Goldberg, 2005). In other words, instead of 
identifying a single global solution, multiobjective 
optimization results in a number of trade-off (or, 
compromise) solutions among the set of objectives. 
This set of solutions is considered the set of Pareto 
efficient solutions (Coello Coello, 2006), as shown in 

Figure 1. A Pareto optimal solution is called non-
dominated if none of the objective functions can be 
improved without degrading one or more of the other 
objective values (Winston, 2003). 

 

 
Figure 1. Two-objective space assuming the two 
objectives are to be minimized. The red points 
represent the Pareto frontier 
 
3. Previous Related Work 

Multiobjective optimization solution approaches 
can be broadly categorized as non-Pareto-based 
techniques and Pareto-based techniques. There are 
several multiobjective optimization approaches that 
are Pareto-based with the intention to generate the 
Pareto frontier. However, it is until within the last 
two decades that researchers and practitioners have 
realized of the potential of using evolutionary 
algorithms in this area as this family of stochastic 
optimization metaheuristic search methods can 
effectively generate a set of Pareto optima (Coello, 
2001). These algorithms have proven themselves as 
general, robust and powerful search mechanisms. 
Particularly, they possess several characteristics that 
are desirable for real-world problems involving 
multiple conflicting objectives, and intractably large 
and highly complex search spaces (Wang, Zhang, 
Gao, & Li, 2008). Evolutionary algorithms deal 
simultaneously with a set of possible solutions 
allowing the identification of several members of the 
Pareto optimal set in a single run of the algorithm. 
Furthermore, Evolutionary algorithms are less 
susceptible to the shape or continuity of the Pareto 
front. For instance, they can easily deal with 
discontinuous or concave Pareto fronts. 

However, evaluating and prioritizing large sets 
of candidate solutions is a particularly difficult task 
for decision-makers who utilize the sophisticated 
Pareto-based approaches. The most common 
approach is to use information from the decision-
maker and decision-maker preferences to reduce the 
number of solutions. The articulation of decision-
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maker preferences may be done either before (a 
priori methods), during (interactive methods), or 
after (a posteriori methods) to aid the decision-
making, and in effect, the optimization process. 
Several studies have proposed ways to reduce the 
number of Pareto solutions to a reasonable number 
based on prior information known by the decision-
maker. However, multiobjective decision-making 
approaches are widely used to select the most 
appropriate solution among the other available 
solutions (Noghin, 2011). 
 
4. A Proposed A Posteriori Approach for 
Reducing the Number of the Non-Dominated 
Pareto Solutions 

In this proposed methodology, an innovative 
approach that effectively reduces and then prioritizes 
the set of Pareto solutions while considering the 
stochastic nature of m objective functions is 
developed. Figure 2 shows the general logic of the 
proposed approach. 

 

 
Figure 2. General logic of the proposed approach 

 
First, the proposed approach begins with a given 

set of P Pareto optima compromise (or, trade-off) 
solutions as input. The reduction of the candidate set 
of compromise solutions is performed while 
considering the statistical precision of the 
performance measures under study and preferences 
on objectives by the decision-maker. Second, the 
reduced set of solutions is prioritized to assist the 
decision-maker in identifying the most appropriate 
compromise solution. 
 
5. Numerical Example and Computational Study 

In this example, a two-objective, two-variable 
minimization problem is considered. The proposed 

approach begins after the optimization process with a 
given set of P Pareto optima solutions. Figure 3 
shows the original Pareto optimal front generated by 
using a simulation multiobjective optimization 
approach that uses multiobjective evolutionary 
algorithms and discrete-event simulation. Each point 
on the curve (as shown in Figure 3) is generated after 
running n = 100 independent simulation replications. 
As such, the points along the Pareto frontier are the 
mean objective values across the replications, and 
each has an associated standard deviation along each 
dimension in the objective space. 

 

 
Figure 3. Objective space for the original mean 
objective functions – 2 objectives to minimize and 
100 Pareto solutions 

 
Using the standard deviations, the precision of 

the mean objective values of the Pareto points is 
represented by the confidence interval along each 
objective dimension computed using 

, (1) 

where  is the mean objective value from the n 
independent replications, s is the standard deviation 
of the objective value from the n independent 
replications,  is the level of significance, and t/2,n-1 
is the upper /2 critical value for the t-distribution 
with n-1 degrees of freedom. Stage 1 of the proposed 
approach starts after the optimization process with 
computing the upper and lower confidence limit for 
each Pareto point using Eq. 1 (Mendenhall & 
Sincich, 2012). Here, for illustration, a level of 
significance  = 10% is assumed. In addition, the 

preferred objective,  for this example, is identified 
by the decision-maker. 

First, the set of  solutions is sorted from 
largest to smallest and then the overlapping 
confidence intervals among the whole set are 
identified. On the other hand, the marginal error 

values associated to   is calculated. One solution is 
selected among each set of overlapping confidence 

intervals for the set of  solutions by identifying the 

smallest marginal error value associated to . The 
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first iteration reduces the original set of 100 Pareto 
optimal solutions to 36 solutions, as shown in Figure 
4. Second, the previous step is repeated to ensure that 
there are no more overlapping confidence intervals 

for  solutions. In the example, this second iteration 
reduces the previous set of 36 Pareto solutions to 29 
solutions, as shown in Figure 5. Third, the first step is 
repeated to make sure that there are no more 

overlapping confidence intervals for  solutions. For 
the example, there are no more overlapping 

confidence intervals for the  objective. 
 

 
Figure 4. Set of 36 Pareto optimal solutions generated 
after the first iteration for the f2 objective 

 

 
Figure 5. Set of 29 Pareto optimal solutions generated 
after the second iteration for the f2 objective 

 

Now, the first step is performed for the   
objective in order to check for overlapping 

confidence intervals for the  objective solutions. 
After the first iteration for the f1 objective, the 
previous set of 29 Pareto solutions is reduced to 26 
solutions, as shown in Figure 6. The previous step is 
repeated for the f1 objective to make sure that there 

are no more overlapping confidence intervals for  
objective solutions. For the example, there are no 

more overlapping confidence intervals for the  

solutions. Now, the final reduced set of Pareto  is 
considered for Stage 2, which is the set of solutions 
with no overlapping confidence intervals, as shown 
in Figure 6. 

 

 
Figure 6. Set of 26 Pareto optimal solutions generated 
from the first iteration for the f1 objective 

 
Stage 2 of the proposed approach prioritizes the 

representative solutions identified in Stage 1. Many 
researchers have used the popular swing-weighting 
approach among the other multicriteria decision-
making approaches in the presence of multiple 
objectives. Using swing weights, the decision-maker 
determines the solutions that are the most important, 
then the second most important, etc. In addition, the 
decision-maker also specifies the degree of 
importance of each solution relative to the others. 
The importance values are then normalized to sum to 
1.0 (Clemen & Reilly, 2004; Weber, Eisenführ, & 
Von Winterfeldt, 1988). The swing-weighting 
approach is used in the proposed approach. 

Considering the current example, assuming a small  

objective value is desired first, and then a small  
objective value is desired second. Table 1 shows the 
prioritized solutions using the swing-weighting 
approach. Table 2 summarizes the assessment of the 
swing weights. 

 
Table 1. The feasible solutions with priority 

Priority f1 f2 
1 9.3392 16.5312 
3 9.7002 15.0016 
5 9.9405 13.7149 
6 10.2172 12.8005 
7 10.5606 11.2652 
8 11.1592 9.3721 
9 12.4009 8.1761 
10 12.7776 7.2942 
11 13.5532 6.3289 
13 14.4148 5.6274 
14 15.2220 4.9464 
15 16.0767 4.4184 
16 16.7845 3.9056 
18 17.8300 3.1504 
19 19.6535 2.3465 
21 21.3838 1.8605 
22 22.3329 1.5400 
24 23.4215 1.2334 
25 25.1981 0.9443 
26 26.1460 0.8195 
23 29.7536 0.4388 
20 30.9444 0.3129 
17 32.7454 0.2248 
12 34.6728 0.1596 
4 37.4140 0.0879 
2 53.0004 0.0467 
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Table 2. The assessment of swing weights 
Attribute Swing  

from Worst to Best 
Consequence to Compare Rank Rate Weight 

(Benchmark) 53.000 16.531 3 0 0.000 
f1 9.339 16.531 2 75 0.429 
f2 53.000 0.047 1 100 0.571 

    
175 1.000 

 
The overall utility for different feasible 

solutions is determined as shown in Eqs. 2-27. The 
value of the corresponding weight or the relative 
utility shows how the prioritized solutions are 
computed. Eqs 2 and 27 show how the weight values 

shown on Table 2 are calculated for  and . The 
decision-maker identifies the prioritized solutions 
based on the value of the corresponding weight or the 
relative utility. With largest value of the weight, the 
solution is considered the most important whereas the 
smallest value of the weight place the solution with 
the least important. 

 
U (9.3392, 16.5312)   = H(0)      + B(1)      = 0.5714 (2) 
U (9.7002, 15.0016)   = H(0.96) + B(0.00) = 0.4144 (3) 
U (9.9405, 13.7149)   = H(0.94) + B(0.00) = 0.4046 (4) 
U (10.2172, 12.8005) = H(0.91) + B(0.00) = 0.3938 (5) 
U (10.5606, 11.2652) = H(0.88) + B(0.00) = 0.3814 (6) 
U (11.1592, 9.3721)   = H(0.84) + B(0.00) = 0.3615 (7) 
U (12.4009, 9.3721) = H(0.75) + B(0.01) = 0.3260 (8) 
U (12.7776, 7.2942) = H(0.73) + B (0.01) = 0.3169 (9) 
U (13.5532, 6.3289) = H(0.69) + B(0.01) = 0.2995 (10) 
U (14.4148, 5.6274) = H(0.65) + B(0.01) = 0.2824 (11) 
U (15.2220, 4.9464) = H(0.61) + B(0.01) = 0.2683 (12) 
U (16.0767, 4.4184) = H(0.58) + B(0.01) = 0.2683 (13) 
U (16.7845, 3.9056) = H(0.56) + B(0.01) = 0.2453 (14) 
U (17.8300, 3.1504) = H(0.52) + B(0.01) = 0.2330 (15) 
U (19.6535, 2.3465) = H(0.48) + B(0.02) = 0.2150 (16) 
U (21.3838, 1.8605) = H(0.44) + B(0.03) = 0.2015 (17) 
U (22.3329, 1.5400) = H(0.42) + B(0.03) = 0.1965 (18) 
U (23.4215, 1.2334) = H(0.40) + B(0.04) = 0.1925 (19) 
U (25.1981, 0.9443) = H(0.37) + B(0.05) = 0.1871 (20) 
U (26.1460, 0.8195) = H(0.36) + B(0.06) = 0.1856 (21) 
U (29.7536, 0.4388) = H(0.31) + B(0.11) = 0.1953 (22) 
U (30.9444, 0.3129) = H(0.30) + B(0.15) = 0.2146 (23) 
U (32.7454, 0.2248) = H(0.29) + B(0.21) = 0.2409 (24) 
U (34.6728, 0.1596) = H(0.27) + B(0.29) = 0.2826 (25) 
U (37.4140, 0.0879) = H(0.25) + B(0.53) = 0.4106 (26) 
U (53.0004, 0.0467) = H(1)      + B(0)      = 0.4286 (27) 

 
6. Application of Simulation Optimization to the 
Case Study 

In this section a comparison between the results 
of the problem generated by using the a posteriori 
approach, and the simulation framework for the (s, S) 
inventory with backlogging model integration with 
the NSGA II are illustrated. However, for the 
simulation optimization approach, the population size 
is four assuming the desired number of representative 
solutions is four for this case study. Table 3 and 
Figure 7 show the feasible solutions for the different 
approaches. 

 

Table 3. The feasible solutions for different 
approaches 

A Posteriori Approach 
Simulation Optimization  
Approach (Population Size of 4) 

f1 f2 f1 f2 
53.000 0.047 40.721 0.050 
37.414 0.088 23.164 1.375 
9.700 15.002 11.219 9.618 
9.339 16.531 8.966 18.925 

 

 
Figure 7. The feasible solutions for the different 
approaches 

 
Table 3 and Figure 7 show the feasible solutions 

for the different approaches. Assuming a lower value 
of f2 is desired first, and then a lower value of f1 is 
desired second. The results of the a posteriori 
approach and the simulation optimization approach 
show similar spread in the representative solutions 
along the Pareto frontier. In addition, the lowest 
value of 0.04 for f2 with a posteriori approach among 
the candidate solutions is improved compared to the 
simulation optimization approach value for f2 of 
0.05. 
 
7. Conclusions and Future Work 

The objective of this study is the improvement 
of the decision-making selection process in the 
presence of multiple stochastic objectives. The a 
posteriori proposed approach reduces a large set of 
trade-off solutions after the optimization process to a 
manageable number of representative solutions while 
considering the stochastic nature of the objective 
functions. Prioritization in support of the 
representative solutions is considered to assist the 
decision-maker in identifying the most appropriate 
solution. With the a posteriori approach, preference 
information is applied by the decision-maker after the 
optimization process. The results discussed herein 
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show the promise of the proposed approach. The a 
posteriori approach compared to the simulation 
optimization approach (assuming a population size of 
four) show better results for the interest of decision-
maker. It is important to now note that a pressing area 
to consider for future research is to enhance the 
proposed approach with identifying the final number 
of representative solutions taking into consideration 
the decision-maker preferences. 
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