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Abstract: O-glycosylation of mammalian proteins is one of the most important post-translational modifications 
(PTMs). Hence, there is significant interest in the development of computational methods for reliable prediction of 
O-Glycosylation sites from amino acid sequences. One particular challenge in training the classifiers comes from the 
fact that the available dataset is highly imbalanced, which makes the classification performance for the minority 
class becomes unsatisfactory. Traditional sampling approaches generally rely on random re-sampling from a given 
dataset. However, these methods cannot utilize all the information available in the training set and it increases the 
false positive rate. This paper proposes a new approach for predicting the O-glycosylation sites which is based on 
Particle Swarm optimization (PSO) and Random Forest (RF). PSO is used as evolutionary under-sampling technique 
for balancing the dataset, and Random Forest is used as a classifier. The results obtained from the proposed 
approach and other related researches, demonstrate that the proposed approach outperforms the performance of other 
approaches for the experimented dataset. 
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1. Introduction 

Glycosylation is one of the most common and 
complex post-translational modifications of proteins 
(PTMs) in eukaryotic cells, which involves the 
attachment of carbohydrate chains to amino acids in 
proteins. Glycosylated proteins (glycoproteins) play 
an important role in a number of biological processes 
[1]. Hence, they believed to occur in the development 
and progression of several diseases, such as 
Alzheimer’s disease, cancer, autoimmune diseases, 
respiratory illness, diabetes and congenital disorders 
[2, 3]. Therefore, the prediction of glycosylation sites 
(glycosylated amino acid residues) in proteins is of 
great interest to biologists. 

The experimental identification of glycosylation 
sites in proteins is expensive and laborious. That’s 
why there is a significant interest in the development 
of computational methods for reliable prediction of 
glycosylation sites from amino acid sequences. 

There are four types of protein glycosylation, N-
linked glycosylation to the amide nitrogen of 
asparagine side chains, O-linked glycosylation to the 
hydroxyl of serine and threonine side chains, C-
linked glycosylation to the tryptophan side chains and 
glycosylphosphatidylinositol (GPI). The prediction of 
O-linked glycosylation sites in proteins is a 
challenging problem because the O-linked 
glycosylation is not yet known to occur on any amino 
acid consensus sequence in eukaryotes (unlike the N-
linked glycosylation) [4, 5]. Thus, we will focus only 

on predicting O-linked glycosylation protein 
sequence in this paper. 

Several approaches to predict O-glycosylation 
sites have been reported, which are based on 
Artificial Neural Networks (ANNs) [6], PCA [7], 
Support Vector Machines (SVMs) [8-11], Random 
Forests (RFs) [12], and other machine learning 
techniques. The overall prediction accuracy achieved 
is about 70-85%. The most widely used glycosylation 
sites predictors are NetOGlyc and Oglyc [1]. 
NetOGlyc is reported to predict with accuracy over 
83% [8], and Oglyc with a reported accuracy of 85% 
correctly classified instances [9], both are Support 
Vector Machine-based predictors. 

Although work on predicting glycosylation sites 
exists in the literature, there is significant room for 
improvement. One particular challenge in training the 
classifiers, using standard machine learning 
algorithms, comes from the fact that the available 
dataset is highly imbalanced; the fraction of 
glycosylation sites (positive class) is relatively small 
compared to the fraction of non-glycosylation sites 
(negative class), which makes the classification 
performance for the positive class becomes 
unsatisfactory. 

One solution for the imbalanced dataset 
problem on the prediction of glycosylation sites task 
was to apply an ensemble technique for resampling 
the original dataset where samples are randomly 
selected with replacement [13]. One of the main 
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disadvantages of random resampling based approach 
is that it does not utilize additional information such 
as sample quality and their discriminative ability 
among classes, which could be useful in data 
classification. 

In recent researches, Particle Swarm 
optimization (PSO) has been used as evolutionary 
under-sampling technique for identifying a subset of 
highly discriminative samples in the majority class 
for the imbalanced dataset problem in some 
bioinformatics applications [14-16], these researches 
showed that the PSO under-sampling approach can 
improve the quality of base classifiers and increase 
the classification accuracy. 

In this paper, we proposed a new approach for 
predicting the O-glycosylation sites which is based 
on PSO and Random Forest. PSO is used as 
evolutionary under-sampling technique, and then the 
Random Forest is used as a classifier. The results 
obtained from the proposed approach and other 
related researches, demonstrate that the proposed 
approach outperforms the performance of other 
approaches on the problem of predicting O-
glycosylation sites for the experimented dataset. 

This paper is organized as follows: Section 2 
explains the methods used for constructing the 
dataset, reviews the RF and the PSO algorithms, and 
it also explains the proposed approach which is based 
on the PSO and RF algorithms. In Section 3, several 
experimental results are presented and discussed. 
Finally, the conclusion is given in Section 4. 
 
2. Methods 

2.1 Dataset Construction 
The dataset used in the experiments comes from 

O-GlycBase database [17], which contains 
experimentally verified glycosylation sites compiled 
from protein databases. The dataset has 242 
glycoproteins from different spices. Each protein 
sequence in the dataset has http-linked cross-
references to other protein sequence databases. In our 
study, the sequences that don’t have cross-reference 
to SWISS-PROT database were excluded, so 220 
glycoproteins sequences were left. Out of the 220 
sequences, 207 sequences have verified Serine or 
Threonine (S or T) sites. Those are the sequences that 
were used in our experiments. 

The sequences were truncated by a sliding 
window (window size: W) into several sub-sequences 
to only include the verified O-glycosylation sites 
(serine/threonine) region windows, we used W=21 for 
our experiments as suggested by similar researches 
[6, 13]. This process is shown in the Figure 1. 

We represent the sub-sequence which has S or T 
residue at the center and experimentally verified to be 
glycosylated as a positive instance. The sub-sequence 

that has S or T at the center but not annotated 
experimentally as being glycosylated is represented 
as negative instance. A dataset of 2091 positive and 
11110 negative instances were obtained which has a 
class ratio of 0.188. 

 

 
Figure 1. Sequence window of size 21 

 
The protein sequences (excluding S or T at the 

center because only the sequence of the surrounded 
residues are needed to indicate whether the S or the T 
in the middle is glycosylated or not) with a length of 
W-1 are used for analysis. There are many methods 
for protein sequence coding, such as sparse coding, 
5-letter coding, hydropathy coding and physical 
properties based coding. In this study, we used the 
sparse coding scheme for representation of the 
protein sequence as it has widely been used in similar 
researches [6, 7, 9]. The common 20 amino acids are 
coded by 20-D vectors only composed of 0 and 1 (the 
site of amino acid A is coded as 
10000000000000000000, C is coded as 
01000000000000000000 and so on). Thus the total 
length of coded sequence or dimension of sample 
vector is (W-1) * 20. 

2.2 Particle Swarm Optimization (PSO) 
The Particle Swarm Optimization (PSO) is a 

robust stochastic optimization technique based on 
simulation of the social behavior of birds within a 
flock. PSO uses a number of particles that constitute 
for a swarm moving around in the search space 
looking for the best and randomly initialized. A 
swarm consists of N particles, where each particle 
represents a candidate solution moving around D-
dimensional search space [18-21]. 

All of the particles have fitness values, which 
are evaluated by a fitness function to be optimized, 
and have velocities which direct the movement of the 
particles. During movement, the changes to a particle 
within the swarm are influenced by the experience, or 
knowledge, of its neighbors and each particle adjusts 
its position according to two fitness value, pbest and 
gbest. pbest is the personal best fitness value 
occurred during the history of a particle, whereas 
gbest constitutes the global best fitness value 
occurred during the history of the whole swarm. 

Along all iterations, the particles are flying 
through search space and always accelerated towards 
better solutions. This process can be achieved by 
updating the velocity  of each particle  with Eq. 
(1): 

IKRGIISALLVPPETEEAKQVLFLDTVY 

IISALLVPPETEEAKQVLFLD 
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                      (1) 
 
The first part of equation (1) represents the 

inertia of the previous velocity, the second part is the 
cognition part and it tells us about the personal 
thinking of the particle, the third part represents the 
cooperation among particles and is therefore named 
as the social component. Acceleration constants , 

 and inertia weight  are predefined by the user 
and ,  are uniformly generated random numbers 
in the range of [0, 1]. 

In this paper, a binary version of a PSO 
algorithm (BPSO) is used for particle swarm 
optimization [22]. Each particle represents its 
position in binary values which are 0 or 1. In binary 
PSO the velocity of a particle defined as the 
probability that a particle might change its state to 
one. Each particle position is updated according to 
Eq. (2) and Eq. (3): 

 

                             (2) 
 

                (3) 
 
Where  is a uniform random number in the 

range [0-1]. 
The basic process of the PSO algorithm can be 

presented as follows: 
Step 1 – Initialization: Randomly create initial 

particles. 
Step 2 – Fitness: Measure the fitness of each 

particle in the population. 
Step 3 – Update: Calculate the velocity of each 

particle using Eq. (1). 
Step 4 – Construction: For each particle, move 

to the next position according to Eq. (2) and Eq. (3). 
Step 5 – Termination: Stop the algorithm if the 

termination criterion is satisfied; return to Step 2 
otherwise. 

PSO possesses the advantages such as high-
performance and global optimization, which make it 
very popular in many biological related applications 
[14]. In this paper, the PSO is used to select the best 
possible samples from the majority class in order to 
construct a balanced dataset. In Section 2.4, the 
solution representation and the flowchart of PSO for 
subset selection is discussed. 

2.3 Random Forest Classifier (RF) 
Random forest classifier (RF) [23] is an 

ensemble classifier that consists of several decision 

trees. The output of this classifier is the class number 
that most frequently occurs individually in the output 
of decision trees classifiers. The main idea of 
decision trees is to predicate a target based on a 
group of input data. Decision trees also named 
classification trees, where the tree leaves represent 
the class labels and the branches represent the 
conjunction of feature vectors that lead to class 
labels. 

RF is one of the state-of-the-art machine 
learning classifiers and has been used for a large 
number of biological problems [24]. One important 
advantage of RF is that it provides the importance 
information of each input variable, which is suitable 
for information retrieving from a dataset of high 
dimension with noise. 

The forest error rate depends on two factors: 
- The correlation between any two trees in the 

forest. Increasing the correlation increases the forest 
error rate. 

- The strength of each individual tree in the 
forest. A tree with a low error rate is a strong 
classifier. Increasing the strength of the individual 
trees decreases the forest error rate. 

RF is considered as an appropriate model to 
handle large number of input dataset, imbalance, and 
due to its averaging strategy, RF classifier is robust to 
outliers and noise, avoids overfitting, and it is 
relatively fast, simple, and performs well in many 
classification problems. 

2.4 The Proposed Approach 
PSO has been used as a frequency ranking 

procedure, to detect the most useful subset of samples 
from the majority class that can be combined with the 
samples from the minority class so that the subset 
could best represent the decision boundary between 
the two classes. 

The samples from majority class that are most 
frequently included in the optimized subsets are 
selected to match the number of minority samples to 
generate a balanced dataset, then the balanced dataset 
has been used for training a Random Forest classifier 
which is developed using WEKA [25], a widely-used 
machine learning work-bench in bioinformatics 
implemented in Java. Figure 2 illustrates the 
proposed approach. 

PSO for best possible sample subset selection is 
constructed through the following procedures: 

(1) Cross-validation: The K-fold cross-
validation approach [26] is applied for a given dataset 
to partition the dataset into training sets (sampling 
sets) and test sets (evaluation sets). The training sets 
are used for sampling, while the testing sets are used 
for guiding the optimization process. We used a 3-
fold cross-validation for our experiments similar to 
[14]. 
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Figure 2. The Proposed Approach 
 
(2) Solution representation: As shown in Figure 

3, for each sample from the majority class, a 
dimension in the particle space is assigned. Assuming 
that we have D majority samples for a training fold, a 
particle  in PSO can be coded as an indicator 
function set Pi= {I1, I2... ID}. for each dimension, an 
indicator function Ij takes value 1 when the 
corresponding jth sample is included to train a 
classifier. Similarly, a 0 denotes that the 
corresponding sample is excluded from training. 

 
I1 I2 ………… ID 

Ij: Sample j is selected or not 
 

Figure 3. Solution representation 
 
(3) Sampling: As shown in Figure 4, the 

population of particles is initialized, each particle 
having a random position within the D-dimensional 
space and a random velocity for each dimension. 
Each particle’s fitness is compared with the particle’s 
best fitness and the global best fitness. If the 
particle’s fitness is better than its best previous 
experience, its best previous experience is updated 
accordingly. Furthermore, if the particle’s fitness is 
better than the global best fitness, the global best 
fitness is also updated. When the termination 
criterion is met, the selected samples from the last 
iteration are ranked by their selection frequency in 
the optimization process. 

 

 
 

Figure 4. The flowchart of PSO for sample subset 
selection 

 
(4) Fitness and evaluation metrics: The fitness 

of each particle here is a function of classification 
accuracy in terms of the area under the ROC Curve 
(AUC) [27]. The subsets that can create more 
accurate classification are favored and optimized in 
each PSO iteration.  For each training subset 
generated the decision tree classifier (J48 
implementation) is trained on the training subset and 
then tested on the corresponding test subset to obtain 
the classification accuracy. We used decision tree as 
a classifier for guiding the optimization process 
because it is sensitive to small perturbation on 
datasets. 

 
Table 1.PSO setting parameters 

Number of Particles 20 
Maximum Iterations 100 

Cognitive acceleration constant  1.43 

Social acceleration constant ( ) 1.43 

Inertia Weight (  0.689 
 
(5) Termination criteria: If the number of 

iterations reaches the pre-determined maximum 
number of iterations, then the algorithm is 
terminated. 

Randomly initialize  
population positions and 

velocities 

Evaluate fitness of particle 

Termination? 

Update pbest of 
particles and gbest 

Update particles velocity 
and positions 

Best sample subset from 
the majority class 

Sampling 

Classification 

Sample selection 
frequency 

Balanced 
Dataset 

RF Classifier 

Original  
Dataset  

(Imbalanced) 

PSO for best sample 
subset selection from 

the majority class 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 
 

1023 

The parameters of PSO algorithm are 
summarized in Table 1. They have been used for 
solving similar problems [15] and they were found to 
give good results in our experiments. 

The following example demonstrates the 
procedures of PSO for sample subset selection: 

Suppose that the majority class has 3 samples, 
and the location of global best is (1, 0, 1), which 
means the first and the third samples are selected. 
The location of the particle’s best of particle i is (0, 1, 
1), which means the second and the third samples are 
used. The current position of particle i is (0, 0, 1), 
which means only the third sample is selected. The 
current velocity vector of particle i is assumed to be 
(0.98, 0.02, 0.51). 

The velocity vector for the particle is updated 
using Eq. (1) as follows, 

 

 

 

 

 

 
Then using these new velocities, the new 

location of particle i can be obtained using Eq. (2) 
and Eq. (3), 

 

Supposing that , 

Then,  

 
Now the location of the particle is moved to (1, 

1, 0), meaning that the first and the second samples 
are selected. The J48 classifier is thus constructed 
using the selected samples from the majority class 
(according to the new positions), combined with all 
the samples from the minority class to construct the 
training dataset, and with the testing dataset of the 
fold, the classification accuracy in terms of AUC is 
calculated, which is the fitness value of particle i. In 
each iteration, the same procedure is applied for all 
particles. If the fitness of the ith particle is better than 
that particle’s best fitness, then the position vector is 
saved for the particle best (pbest). If one of the 

particle’s fitness is better than the global best fitness, 
then the position vector is saved for the global best 
(gbest). The procedure is iterated until termination 
condition is met. For each sample in the majority 
class, the frequency of including the sample in the 
optimized subsets is calculated, so that the samples 
that are most frequently included in the optimized 
subsets are selected to match the number of minority 
samples, in order to generate a balanced dataset. 
 
3. Results and Discussion 

We experimented the performance of the single 
Support Vector Machine (SVM) and the Random 
Forest (RF) classifiers, as well as the ensembles of 
SVM on the original (imbalanced) dataset, as these 
methods are the most widely used for the O-
Glycosylation sites prediction. We also evaluated the 
performance of the SVM and RF classifiers based on 
the balanced dataset which is sampled using the PSO 
evolutionary under-sampling technique, (PSO+SVM) 
and (PSO+RF) as shown in Table 2. 

WEKA has been chosen as the data mining 
system in this analysis because of its user-
friendliness. For the SVM models, we used the 
LibSVM [28] classifier with the radial basis function 
(RBF) kernel for the classification, the other 
parameters were fixed at the default values. For 
evaluating the ensemble methods, we experimented 
the Bagging[29] and the AdaBoost[30] classifiers 
with LibSVM as base classifier, using 5 and 10 
iterations. And we experimented the RF classifier 
based on 100, 200 and 500 as number of trees. The 
experiments were performed on Intel(R) Core(TM) 
i5-4200U CPU @ 1.60 GHz 2.30GHz computer, with 
4GB of RAM. 

We evaluated the performances of the classifiers 
in terms of AUC based on 10-fold cross-validation of 
our datasets (for both cases balanced and imbalanced) 
in order to avoid over fitting. 10-fold cross-validation 
is selected as it is the most common for machine 
learning applications [31]. Also the classifier building 
time is reported in seconds for each method. The 
results of the experiments indicate that: 

- The RF classifier in general gives better 
performance in terms of AUC over the SVM and the 
ensembles of the SVM for the problem of predicting 
the O-Glycosylation sites. 

- The SVM classifier didn’t give better 
accuracy over the ensembles of SVMs when the 
dataset was resampled using the PSO as an 
evolutionary under-sampling technique. 

- RF classifiers gives higher accuracy when 
the dataset is resampled using PSO as an 
evolutionary under-sampling technique. 

- The classifiers building time enhances when 
the database is sampled using PSO. 
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Table 2.Performance comparison between different 
classification methods and the proposed PSO+RF 
approach 

Methods Num. 
Iterations 

Num. 
Trees 

Building 
Time 

AUC 
 

SVM 
[28] - - 18.04 0.815 

Bagging 
[29] 

5 
10 - 98.03 

187.62 
0.8255 
0.8286 

AdaBoost 
[30] 

5 
10 - 793.01 

1681.64 
0.9027 
0.9065 

RF - 
100 
200 
500 

26.01 
54.87 
142.45 

0.933 
0.9469 
0.9507 

PSO+SVM - - 3.62 0.8357 

PSO+RF - 
100 
200 
500 

7.79 
15.18 
43.4 

0.947 
0.9497 
0.9511 

 
4. Conclusion 

This study proposes a new approach for 
predicting the O-Glycosylation sites based on PSO 
and Random Forest. PSO is used to select the best 
possible sample subset from a majority class in order 
to enhance the Random Forest classifier results. 
Comparison of the obtained results with those of 
other approaches demonstrates that the proposed 
approach has higher classification accuracy in terms 
of AUC than other tested approaches. That is, the 
proposed approach can be applied to remove 
unnecessary samples and further enhancing the 
overall classification results. 
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