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Abstract: Markov chain Monte Carlo (MCMC) method has been used to estimate the parameters of inverse Weibull 
(IW) model depended on a complete sample. In order to obtain Bayes estimates of parameters for the IW model 
using MCMC simulation method in OpenBUGS (an established software for Bayesian analysis using MCMC 
method), independent non-informative set of priors for IW parameters are assumed to obtain samples from the 
posterior density function. It has been shown that the MCMC is easy to implement computationally. In addition, the 
estimates always exist and statistically consistent and their probability intervals are convenient to construct. 
Applying MCMC to estimate parameters of IW is elaborated. A real software reliability data set is considered to 
illustrate the methods of inference discussed in this paper. 
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1. Introduction 

The inverse Weibull distribution (IWD) is found 
to be appropriate over Weibull distribution when data 
indicates the non-monotone hazard rate. There are 
various real life examples where data do not shows the 
monotone hazard rate. For example, [15] have studied 
breast cancer data and observed that the mortality 
increases initially, reaches to a peak after some time 
and then declines slowly i.e., associated hazard rate is 
modified bathtub or particularly unimodal. 

Since last decade, the inverse Weibull distribution 
is increasingly attracting the attention of the 
researchers. The two-sample Bayesian prediction for 
inverse Weibull distribution from complete sample of 
observations have been discussed in [3]. Recently, [22] 
showed that the classical as well as Bayesian 
estimation procedures for the estimation of the 
unknown parameters of inverse Weibull distribution 
under censoring schemes. For more details on inverse 
Weibull distribution and related inferences, see [7, 9, 
10, 26]. 

IWD plays an important role in many 
applications, including the dynamic components of 
diesel engines and several data sets such as the times to 
breakdown of an insulating fluid subject to the action 
of a constant tension, see [3,5, 8, 18-20] for more 
practical applications. 

For instance, an interpretation of the IWD in the 
context of the load strength relationship for a 
component has discussed in [2]. Fitted IWD to the 
flood data is considered, for more details see [6, 18, 19, 

22]. It has remarked that the IWD will be an 
appropriate model for analyzing such data, see [14]. 

In this paper, the authors proposed the IWD for 
modeling the software reliability data and obtaining the 
ML estimates with associated probability intervals. The 
Bayes estimation of the IW model is considered, when 
both parameters are unknown. It is observed that the 
Bayes estimates cannot be computed explicitly under 
the assumption of independent uniform priors for the 
parameters. 

The authors developed the procedure to generate 
MCMC samples using Gibbs sampling technique from 
the posterior density function in OpenBUGS, based on 
the generated posterior samples. In addition, it can 
compute the Bayes estimates of the unknown 
parameters and construct highest posterior density 
credible intervals. Moreover, it can estimate the 
reliability function. All Statistical computations and 
functions for IW were built using R statistical software 
see, [12, 13, 17, 23-25]. Real set of data has been 
considered, in order to demonstrate how the proposed 
method can be used in practice for software reliability 
data. 
 
2. Model Analysis 
2.1 Probability density function (pdf) 

The two-parameter inverse weibull (IW) model 
has the probability density function 

 

 
 (1) 
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where  and  are the shape and scale parameters, 
respectively. The probability density function with the 
two-parameter of the inverse Weibull model will be 

denoted by IW( , ). 
Some of the typical IW density functions for 

different values of  and for  = 1 are depicted in 
Figure 1. 
 

 

Fig 1. The PDF of IW model for =1 and different 

values of . 
 

From the graph above, it can be seen clearly that 
the density function of the inverse Weibull model can 
take different shapes. 
 
2.2 Cumulative density function (CDF) 

The distribution function of the inverse Weibull 
model with two parameters is given by 

 

  (2) 
 
2.3 The Reliability function 

The reliability (survival) function of inverse 
Weibull model is 

 

 
 (3) 
 
2.4 The Hazard function 

The hazard rate function of inverse Weibull 
model is 

 

  (4) 
 
The hazard rate is an increasing function. It has 

been graphed in Figure 2 for scale parameter  =1 and 

different values of shape parameter . 
2.5 The cumulative hazard function 

The cumulative hazard function H(x) of inverse 
Weibull model defined as 

 

  (5) 
 

 

Fig 2. The hazard function of IW model for  and 

different values of . 
 
2.6 The Failure rate average (fra) and Conditional 
survival function (csf) 

Two other relevant functions useful in reliability 
analysis are failure rate average (fra) and conditional 
survival function (csf). The failure rate average of X is 
given by 

 

,  (6) 
 
where H(x) is the cumulative hazard function. An 

analysis for FRA(x) on x permits to obtain the IFRA 
(increasing failure rate average) and DFRA (decreasing 
failure rate average) classes. 

The survival function (s.f.) and the conditional 
survival of X are defined by 

 

 
and 

 (7) 
 
respectively, where F(·) is the cdf of x. Similarly 

to h(x) and FRA(x), the distribution of x belongs to the 
new better than used (NBU), exponential, or new worse 
than used (NWU) classes, when R (x | t) < R(x), R(x |t) 
= R(x), or R(x | t) > R(x), respectively. 
2.7 The Quantile function 

The quantile function of inverse Weibull model is 
given by 

 

  (8) 
 
2.8 The random deviate generation function 

Let U be the uniform (0,1) random variable and 
F(.) a cdf for which F-1(.) exists. Then 
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F-1(u) is a draw from distribution F(.). Therefore, 

the random deviate can be generated from IW( , ) by 
 

  (9) 
 
where u has the U(0, 1) distribution. 

3. Maximum Likelihood Estimation, (Mle) And 
Information Matrix 

For completeness purposes, in this section, we 
briefly discuss the maximum likelihood estimators 
(MLE’s) of the two-parameter inverse Weibull model 
and discuss their asymptotic properties to obtain 
approximate confidence intervals based on MLE’s, see 
[6]. 

Let  be an observed sample of 

size n from IW( , ), then the log-likelihood function 

L( , ) can be written as 
 

,  (10) 
 

Therefore, to obtain the MLE’s of  and , see 

[7], we can maximize (10) directly with respect to  

and  or solve the following two non-linear equations 
using Newton- Raphson method 

 

 
 (11) 

  (12) 
 

3.1 Information Matrix and Asymptotic Confidence 
Intervals 

Let us denote the parameter vector by  

and the corresponding MLE of  as  as then 
the asymptotic normality results in 

 

( ,  (13) 
 

where I( ) is the Fisher’s information matrix 
given by 

 

.  (14) 
 

In practice, it is useless that the MLE has 

asymptotic variance  because  is unknown. 
Hence, it approximate the asymptotic variance by 
“plugging in” the estimate value of the parameters [8]. 
The common procedure is to use observed Fisher 

information matrix O( ) (as an estimate of the 

information matrix I ) is given by 
 

, 
 (15) 

 
where H is the Hessian matrix. The Newton-

Raphson algorithm to maximize the likelihood 
produces the observed information matrix. Therefore, 
the variance-covariance matrix is given by 

 

.  (16) 
 
Hence, from the asymptotic normality of MLEs, 

approximate 100(1- )% confidence intervals for  and 

 can be constructed as 

 and 

 , 

where  is the upper percentile of standard 
normal variate. 
3.2 Computation of Maximum Likelihood 
Estimation 

In this section, real set of data analysis for 
illustrating the methods proposed in the previous 
sections. The set of data is extract from [1], and it 
represents the survival times (in days) of guinea pigs 
injected with different doses of tubercle bacilli. It is 
known that guinea pigs have a high susceptibility to 
human tuberculosis and that is why they were used in 
this particular study. The regimen number is the 
common logarithm of the number of bacillary units in 
0.5 ml. of challenge solution; i.e., regimen 6.6 
corresponds to 4.0 x 106 bacillary units per 0.5 ml. (log 
(4.0 x 106) =6.6). Corresponding to regimen 6.6, there 
were 72 observations listed below: 

 
12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56 
57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75 
76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 
146 175 175 211 233 258 258 263 297 341 341 376         
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The mean, standard deviation and the coefficient 
of skewness are found as 99.82, 81.12 and 1.83, 
respectively. The measure of skewness indicates that 
the data are positively skewed where the coefficient of 
skewness is the unbiased estimator for the population 
skewness obtained by 

 

   
 
The inverse Weibull model is used to fit this data 

set which provide above. We have started the iterative 
procedure by maximizing the log-likelihood function 
given in (10). We have used optim( ) function in R with 
option Newton- Raphson method [23]. It has obtained 

1.414756, 283.831339 and the corresponding 
log-likelihood value = -395.6491. The similar results 
are obtained using maxLik package available in R. An 
estimate of variance-covariance matrix, using (15) and 
(16), is given by 

 

 
 

By using (16), we constructed the approximate 
95% confidence intervals for the parameters of inverse 
Weibull model based on MLE’s. Table 1 shows the 
MLE’s with their standard errors and approximate 95% 

confidence intervals for  and . 

 
Table 1. Maximum likelihood estimate, standard error and 95% confidence interval. 

Parameter MLE Std. Error 95% Confidence Interval 
alpha 1.414756 0.1174773 (1.184505, 1.645007) 
lambda 283.831339 125.8085636 (37.251085, 530.411593) 

 
4. Model Validation 

In order to study the goodness of fit of the inverse 
Weibull model, it is important to compute the 
Kolmogorov-Smirnov (K-S) statistics between the 
empirical distribution function and the fitted 
distribution function when the parameters are obtained 
by method of maximum likelihood [25]. The authors 
found the result of K-S test is D= 0.1380984 with the 
corresponding p-value = 0.1166077. Therefore, the 
high p-value clearly indicates that IW model can be 
used to analyze this data set. 

The plot of the empirical distribution function and 
the fitted distribution function in Figure 3 indicates that 
the graph is reasonable coincided match between the 
empirical distribution function and the fitted 
distribution function. 

 

 
Fig 3. The graph of empirical distribution function and 
fitted distribution function. 

 

From previous results, it is clear that the estimated 
IW model provides excellent fit to the given set of data. 

The graphical methods widely used for checking 
whether a fitted model is in agreement with the data are 
Quantile- Quantile (Q-Q) and Probability-Probability 
(P-P) plots in model validation. 

 

 
Fig 4. Quantile-Quantile (Q-Q) plot using MLEs as 
estimate. 

 

Let  be an estimate of F(x) based on 

 The scatter plot of the points 

 versus , i = 1 , 2, . . . ,n , is called a Q-
Q plot. 

The Q-Q plot shows the estimated versus the 
observed quantiles. If the model fits the set of data 
well, the pattern of points on the Q-Q plot will roughly 
exhibit a 45-degree straight line. As can be seen from 
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the approximately straight line pattern in Figure 4, the 
IW model fits the data well. This is also supported by 
the Probability-Probability(P-P) plot in Figure 5. 

Let  be a sample from a given 

population with estimated cdf . The scatter plot of 

the points  versus , i = 1 , 2, . . . ,n , is called 
a P-P plot. If the model fits the data well, the graph will 
be close to the 45- degree line [24]. Here we note that 
all the points in the P-P plot are inside the unit square 
[0, l] x [0, 1]. 

 

 
Fig 5. Probability-Probability(P-P) plot using MLEs as 
estimate. 

 
As can be seen from Figure 4 and Figure 5 that 

the data do not deviate dramatically from the line. 
5. Bayesian Estimation Using Markov Chain Monte 
Carlo (MSMC) 

A Monte Carlo method is an algorithm that relies 
on repeated pseudo-random sampling for computation, 
and is therefore stochastic (as opposed to 
deterministic). Monte Carlo methods are often used for 
simulation. The union of Markov chains and Monte 
Carlo methods is called MCMC [21]. A Markov chain 
is a random process with a finite state-space and the 
Markov property, meaning that the next state depends 
only on the current state, not on the past [4]. 

The most widely used piece of software for 
applied Bayesian inference is the OpenBUGS [27]. The 
software offers a user-interface, based on dialogue 
boxes and menu commands, through which the model 
may then be analyzed using MCMC techniques. It is a 
fully extensible modular framework for constructing 
and analyzing Bayesian probability models for the 
existing probability models, [16]. As the IW model is 
not available in OpenBUGS, thus it requires 
incorporation of a module to estimate parameters of IW 

model. The Bayesian analysis of a probability model 
can be performed for the models defined in 
OpenBUGS. Recently, a number of probability models 
have been incorporated in OpenBUGS to facilitate the 
Bayesian analysis [11]. The readers are referred to [12, 
23-25] for implementation details of some models. 
5.1 Bayesian Analysis under Uniform Priors 

The developed module is implemented to obtain 
the Bayes estimates of the IW model using MCMC 
method. The main function of the module is to generate 
MCMC sample from posterior distribution for non-
informative set of priors, i.e. Uniform priors. It 
frequently happens that the experimenter knows in 

advance that the probable values of  lie over a finite 
range [a, b] but has no strong opinion about any subset 
of values over this range. In such a case a uniform 
distribution over [a, b] may be a good approximation of 
the prior distribution, and its p.d.f. is given by 

 

 
 

The authors run the two parallel chains for 
sufficiently large number of iterations until 
convergence attained at the length of 40000 with 5000 
the burn-in. Final posterior sample of size 7000 is taken 
by choosing thinning interval five i.e. every fifth 
outcome is stored. Therefore, we have the posterior 

sample {  }, i = 1,…,7000 from chain 1and 

{  }, i = 1,…,7000 from chain 2. The chain 1 is 
considered for convergence diagnostics plots. The 
visual summary is based on posterior sample obtained 
from chain 2 whereas the numerical summary is 
presented for both the chains. 
 
5.2 Convergence diagnostics 

We started the simulation draws or chains at 
initial values for each parameter of priors. Because of 
dependence in successive draws, first draws were 
discarded as a burn-in to obtain independent samples. 
Therefore, we need to be sure that the chains have 
converged in MCMC analysis in order to make 
inferences from the posterior distribution. This were 
checked by several diagnostic analysis as follows. 
 
5.3 History(Trace) plot 

From the graph above, we can conclude that the 
chain has converged as the plots show no long upward 
or downward trends, but it looks like a horizontal band. 
5.4 Autocorrelation plot 

For this autocorrelation plot, it’s clear that, the 
chains are hardly autocorrelated at all. The letter is 
good as our posterior sample contains more 
information about the parameters than when successive 
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draws are correlated. The graph shows that the 
correlation is almost negligible. So we may consider 
the independent samples from the target distribution, 
i.e., posterior. 
 

 
Fig 6. Sequential realization of the parameters  and . 

 

 
Fig 7. The autocorrelation plots for  and . 
 

5.5 Visual summary by using Kernel density 
estimates 

Histograms can provide insights on skewness, 
behaviour in the tails, presence of multi-modal 
behaviour, and data outliers; histograms can be 
compared to the fundamental shapes associated with 
standard analytic distributions. 

Histogram and kernel density estimate of  and  
based on MCMC samples, vertical lines represent the 
corresponding MLE and Bayes estimate. 

 

 
Fig 8. Histogram and kernel density estimate of  and 

. 

 
Table 2: Numerical summaries based on MCMC sample of posterior characteristics for IW model under uniform 
priors 

Characteristics 
Chain 1 Chain 2 
alpha lambda alpha lambda 

Mean 1.43 313.6 1.429 312.6 
Standard Deviation 0.08912 94.3988 0.08954 94.86215 
Naïve SE 0.0004764 0.5045828 0.0004786 0.5070595 
Time-Series SE 0.0006651 0.7261442 0.0006284 0.6555530 
Minimum 1.086 100.1 1.090 100.1 
2.5th percentile (P2.5) 1.238 144.1 1.235 142.3 
First Quartile (Q1) 1.371 240.3 1.370 239.0 
Median 1.438 310.5 1.437 309.1 
Third Quartile (Q3) 1.498 387.2 1.497 386.4 
97.5th percentile (P97.5) 1.575 485.0 1.576 486.1 
Maximum 1.679 500.0 1.662 500.0 
95% Credible Interval 1.238, 1.575 144.1, 485.0 1.235, 1.576 142.3, 486.1 
95% HPD Credible Interval 1.252, 1.584 163.8,499.9 1.245, 1.581 160.9, 499.7 
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5.6 Numerical Summary 
Various quantities of interest and their numerical 

values based on MCMC sample of posterior 
characteristics for inverse Weibull model under 
uniform priors, have considered, in Table 2. The 
numerical summary is based on final posterior sample 
(MCMC output) of 7000 samples for alpha and 
lambda. 

 

{  }, i = 1,…,7000 from chain 1, 
and 

{  }, i = 1,…,7000 from chain 2. 
 
5.7 Running Mean (Ergodic mean) Plot 

It can be studied the convergence pattern by 
calculating the running mean, i.e. the mean of all 
sampled values up to and including that at a given 
iteration. Time series (Iteration number) graph of the 
running mean for each parameter in the chain, is 
generated. The Ergodic mean plots for the parameters 
shown in figure 9 depict the convergence pattern. 

 

 
Fig 9. The Ergodic mean Plots for alpha and lambda. 

 

 
Fig 10. The BGR plots for alpha and lambda. 

5.8 Brooks-Gelman-Rubin Diagnostic 
It is clear from the graph in Fig 10 that the 

evidence for convergence comes from the black line 
being close to 1 on the y-axis and from the red line 
being stable (horizontal) across the width of the plot. 

From the Figure 10, it is clear that convergence is 
achieved, so that it can obtain the posterior summary 
statistics. 
5.9 Visual Summary by Using Box Plots 

The boxes represent inter-quartile ranges and the 
solid black line at the Centre of each box is the mean, 
the arms of each box extend to cover the central 95 per 
cent of the distribution - their ends correspond, 
therefore, to the 2.5% and 97.5% quantiles. (Note that 
this representation differs somewhat from the 
traditional.) 

 

 
Fig 11. The boxplots for alpha and lambda. 

 
6. Comparison with Mile 

For the comparison with MLE, we have plotted 
three graphs. Fig 12 represents the density functions 
using MLEs and Bayesian estimates, computed via 
MCMC samples under uniform priors, are plotted. 

 

 
Fig 12. The density functions f(x, using MLEs 
and Bayesian estimates. 
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Fig 13. Q-Q plot of empirical quantiles and theoretical 
quantiles computed from MLEs and Bayesian 
estimates. 

 
Whereas, Fig.13 represents the Quantile-Quantile 

(Q-Q) plot of empirical quantiles and theoretical 
quantiles computed from MLE and Bayes estimates. 

The Fig.14 exhibits the estimated reliability 
function using Bayes estimate under uniform priors and 
the empirical reliability function. 

 

 
Fig 14. The estimated reliability function using Bayes 
estimate and the empirical reliability function. 

 
Thus, It is clear from the above Figures 12, 13 

and 14, the MLEs and the Bayes estimates with respect 
to the uniform priors are quite close and fit the data 
well. 

 
7. Conclusion 

The inverse Weibull model with shape parameter 

 and scale parameter  has been discussed and 
estimate of its parameters obtained based on a complete 
sample using the Markov chain Monte Carlo (MCMC) 
method. The MCMC method has proven more effective 
as compared to the usual methods of estimation. 

Bayesian analysis under different set of priors has 
been carried in to OpenBUGS to study the convergence 
pattern. A numerical summary based on MCMC 
samples of posterior characteristic for inverse Weibull 
model has been worked out under non-informative 
priors. A visual summary under different set of priors 
which include box plot, kernel density estimation and 
comparison with MLE has been attempted and it has 
been found that the proposed methodology is suitable 
for empirical modeling and best suited for data set, 
which is considered for illustration under uniform sets 
of priors. 

 
References 
1. Bjerkedal, T. (1960). Acquisition of resistance in 

guinea pigs infected with different doses of 
virulent tubercle bacilli. American Journal 
Hygiene, 72, 130-148. 

2. Calabria, R. and Pulcini, G. (1990). On the 
maximum likelihood and least-squares estimation 
in the Inverse Weibull distributions. Statistical 
Application, 2(1), 53–66. 

3. Calabria, R. and Pulcini, G. (1994). An 
engineering approach to Bayes estimation for the 
Weibull distribution. Microelectronics Reliability, 
34(5), 789–802. 

4. Chen, M., Shao, Q. and Ibrahim, J.G. (2000). 
Monte Carlo Methods in Bayesian Computation, 
Springer, New York. 

5. Drapella, A. (1993). The complementary Weibull 
distribution: unknown or just forgotten?. Quality 
and Reliability Engineering International, 9, 383–
385. 

6. Dumonceaux, R. and Antle, C.E. (1973). 
Discrimination between the lognormal and 
Weibull distribution. Technometrics, 15, 923–
926. 

7. Noor, F. and Aslam, M. (2013). Bayesian 
inference of the inverse weibull mixture 
distribution using type-I censoring. Journal of 
Applied Statistics, 2013. 
doi:10.1080/02664763.2013.780157. 

8. Jiang, R., Murthy, D.N.P. and Ji, P. (2001). 
Models involving two inverse Weibull 
distributions. Reliability Engineering and System 
Safety, 73(1), 73–81. 

9. Khan, M.S., Pasha, G.R. and Pasha, A.H. (2008). 
Theoretical analysis of inverse weibull 
distribution. WSEAS Transictions on 
Mathematics, 7. 

10. Kim, D.H. , Lee, W.D. and Sang Gil Kang, S.G. 
(2012). Non-infromative priors for inverse 
weibull distribution. Journal of Statistical 
Compuation and Simuation, 1-16, 

11. Kumar, V., Ligges, U. and Thomas,A. (2010). 
ReliaBUGS user Manual: A subsystem in Open 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

1003 

BUGS for some statistical models, Version 1.0, 
OpenBUGS 3.2.1, 
http://openbugs.info/w/Downloads/. 

12. Kumar, R., Srivastava, A.K. and Kumar, V. 
(2012). Analysis of Gumbel Model for Software 
Reliability Using Bayesian Paradigm. 
International Journal of Advanced Research in 
Artificial Intelligence (IJARAI), 1(9), 39-45. 

13. Kumar, R., Srivastava, A.K. and Kumar, V. 
(2013). Exponentiated Gumbel Model for
 Software Reliability Data Analysis using 
MCMC Simulation Method. International Journal 
of Computer Applications, 62(20), 24-32. 

14. Kundu, D. and Howlader, H. (2010). Bayesian 
Inference and prediction of the inverse Weibull 
distribution for Type-II censored data. 
Computational Statistics and Data Analysis, 54, 
1547-1558. 

15. Langlands, A.O., Pocock, S.J., Kerr, G.R. and 
Gore. S.M. (1997). Long-term survival of patients 
with breast cancer: a study of the curability of the 
disease. British Medical Journal, 2, :1247-1251, 
1997. 

16. Lunn, D.J., Andrew, A., Best, N. and 
Spiegelhalter, D. (2000). WinBUGS – A Bayesian 
modeling framework: concepts, structure, and 
extensibility, Statistics and Computing, 10, 325-
337. 

17. Lyu, M.R. (1996). Handbook of Software 
Reliability Engineering. IEEE Computer Society 
Press, McGraw Hill, 1996. 

18. Maswadah, M. (2003). Conditional confidence 
interval estimation for the inverse Weibull 
distribution based on censored generalized order 
statistics,” Journal of Statistical Computation and 
Simulation, 73(12), 887–898. 

19. Murthy, D.N.P., Xie, M. and Jiang, R. (2004). 
Weibull Model, JohnWiley & Sons, New York, 
NY, USA, 2004. 

20. Nelson, W.B. (1982). Applied Life Data Analysis. 
John Wiley & Sons, New York, NY, USA. 

21. Robert, C.P. and Casella, G. (2004). Monte Carlo 
Statistical Methods, 2nd ed., New York, Springer-
Verlag. 

22. Singh, S.K., Singh, U. and Kumar, D. (2013). 
Bayesian estimation of parameters of 
inverseWeibull distribution. Journal of Applied 
Statistics, 40(7), 1597-1607. 

23. Srivastava, A.K. and Kumar V. (2011a). Analysis 
of Software Reliability Data using Exponential 
Power Model. International Journal of Advanced 
Computer Science and Applications, 2(2), 38-45. 

24. Srivastava, A.K. and Kumar V. (2011b). Software 
reliability data analysis with Marshall-Olkin 
Extended Weibull model using MCMC method 
for non-informative set of priors, International 
Journal of Computer Applications, 18(4), 31-39. 

25. Srivastava, A.K. and Kumar V. (2011c). Markov 
Chain Monte Carlo methods for Bayesian 
inference of the Chen model. International Journal 
of Computer Information Systems, 2(2), 7-14. 

26. Sultan, K.S. and Al-Moisheer, A.S. (2012). 
Approximate Bayes estimation of the parameters 
and reliability function of a mixture of two 
inverse weibull distributions under type-2 
censoring. Journal of Statistical Computation and 
Simulation, 83(10), 1900-1914. 

27. Thomas, A. (2010). OpenBUGS Developer 
Manual. Version 3.1.2, http://www. 
openbugs.info/. 

 

 
 
 
12/20/2014 


