
 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

647 

Mid Infrared spectroscopy and PLS to predict soil contaminant under different soil conditions 
 

Ahmed A. Afifi and Refat A. Youssef 
 

Soils and Water Use Dept., National Research Centre, El-Behouse st., Dokki, Giza, Egypt 
a.afifinrc@gmail.com 

 
Abstract: Soil contamination by naturally occurring and anthropogenic organic and inorganic chemicals is a serious 
human health and environmental problem in many industrialized and non-industrialzed nations.  This process has 
dramatically increased in their extent and intensity over the last decades. Progressively, actions have been taken in 
order to evaluate and reduce the major threats that have already done devastation on soil conditions. The objective of 
the present study is to examine critically the suitability of Mid infrared reflectance spectroscopy (MIRS) as a tool for 
soil contamination assessment. A quicker method is developed based on a multivariate calibration procedure using 
partial least squares (PLS) regression to establish a relationship between reflectance spectra in the mid infrared 
(MIR) region and spectral of soil characteristics, that are inter-correlated with concentration levels of Cd and Pb. 
Several spectral pre-processing methods (normalization, multiplicative scatter correction (MSC), derivation, 
standard normal variant (SNV) transforms) were employed to improve the robustness and performance of the 
calibration models. The principal component analysis (PCA) was performed prior to MIR-PLS regression analysis 
that identified spectral outliers in the absorbance spectra of soil samples. Pearson correlation identified two elements 
(Cd, Pb). The obtained calibration models showed high regression (r) for Pb, and relatively high (r) for Cd  (r > 
0.95), while for Cd (r>0.98). Based on this result support the conclusion that mid-infrared spectroscopy could aid 
conventional method analyses of soils heavily contaminated with certain heavy metals after a robust model is 
developed. 
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different soil conditions. Life Sci J 2014;11(12):647-654]. (ISSN:1097-8135). http://www.lifesciencesite.com. 124 
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1. Introduction: 

NIRS utilizes wavelengths between 750 and 
2500 nm, but this range is often extended to 400-2500 
nm. Near infrared radiation is absorbed by different 
chemical bonds such as O-H, C-H, N-H, S-H and 
C=O. Absorption of NIR radiation results in bending, 
stretching, twisting and scissoring of the bonds 
(WORKMAN, 1993 and WORKMAN, 2000). The 
amount of NIR radiation that is absorbed is 
determined by the nature and number of bonds present 
in the analyzed material. Hence, NIR spectra contain 
detailed information on the chemical composition of 
that material (FOLEY, et al., 1998). 

The NIR spectra do not contain sharp and 
distinct peaks because they consist of overtones and 
combinations from primary absorption in the mid-
infrared region. These overtones are anharmonic and 
impede interpretation of NIR spectra (WORKMAN, 
1993). Since a direct interpretation of NIR spectra of 
complex mixtures is extremely difficult, the 
application of NIRS for analysis of environmental 
materials requires a calibration procedure using 
sophisticated statistical techniques (FOLEY, et al., 
1998). 
Sample Preparation Requirements 

The MIR spectra depend not only on chemical 
characteristics of the analyzed material but also on its 
moisture (due to strong absorption of water molecules 

at 1450 nm and 1930 nm) and particle size (Foley, et 
al., 1998 and Casler and Shenk, 1985). Therefore, in 
order to ensure reliable MIR measurements samples 
need to be dried carefully and ground to a consistent 
particle size. The latter can be achieved by using 
laboratory grinders with the same grinding 
performance. 
Calibration and Validation Procedures 

The most essential step in the calibration 
procedure is the selection of a proper sample set. The 
calibration sample set should cover the entire range of 
spectral variation in the whole population for which 
the calibration is being carried out. Spectra that differ 
significantly from the average spectrum should be 
rejected from the calibration set as outliers. To 
identify outlier samples to be rejected, the entire 
population is ranked in terms of Mahalanobis distance 
from the average spectrum. There are numerous 
methods of selecting samples to be rejected, the 
CENTER algorithm (Shenk and Westerhaus, 1991) 
being the most popular. Usually it is much easier to 
achieve large spectral data sets, whereas obtaining the 
reference data may be more time consuming. In order 
to minimize the size of calibration sample set, and 
thus the amount of necessary reference analyses, the 
samples in which spectra are very similar may be 
rejected. Removal of spectrally similar samples is 
based on the assumption that only one sample is 
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required to represent all samples in its neighbourhood 
(Shenk and Westerhaus, 1991). A select algorithm, 
based on the matrix of Mahalanobis distances between 
all pairs of spectra, can be used to identify 
neighbouring samples (Shenk and Westerhaus, 
1991). 

The samples selected for calibration should cover 
not only the entire spectral variation of the analyzed 
population but also the entire variability of the 
components or characteristics for which the 
calibration is carried out. Therefore, sometimes it is 
necessary to expand the calibration set by the samples 
not included in the calibration set chosen according to 
the center and select algorithms. calibration procedure 
relies on developing a regression equation between the 
absorbance spectra and the components or 
characteristics of interest. The most commonly used 
regression procedures include multiple linear 
regression (MLR), principal component regression 
(PCR), partial least square regression (PLS) and 
modified PLS regression (mPLS). The two latter 
methods are considered more powerful since – unlike 
the MLR – they use the entire spectral information. 
The other available approaches involve neural 
networks and wavelet theory (Foley, et al., 1998). 
Prior to the calibration the spectra should be corrected 
for a scatter by any available methods (e.g. Detrend 
and Standard Normal Variate or Multiplicative Scatter 
Correction). For development of calibration equations 
several mathematical treatments of spectra are usually 
used. 

These include taking derivatives of 1st to 3rd 
order, defining the segment length over which the 
derivative is to be calculated and smoothing the 
spectra. Since there is no single “best” treatment for 
all variables and all sample types, usually the only 
way to optimize the mathematical treatment is to 
follow a trial and error procedure (Couteaux, et al., 
1998; Ludwig and Khanna, 2001 and Couteaux, et 
al., 2003). In order to avoid overfitting, when using 
PCR, PLS or mPLS methods for model development, 
a procedure called crossvalidation should be used. The 
cross-validation approach enables us to determine an 
optimal number of terms or principal components to 
be included in the model. The calibration sample set is 
divided into several groups and a prediction is made 
for one group based on calibration equation developed 
from the remaining groups. This procedure is repeated 
until all groups are used for validation once. The 
residuals of the predictions are then pooled to 
calculate the standard error of cross-validation 
(SECV). The best model should have the smallest 
SECV. Although cross validation may help in 
selecting the number of PC or PLS components it 
should not be used blindly. Further statistical test 
should be applied to assess performance and relevance 

of the developed models and to detect irregularities in 
the data (eg. outliers) that may harm developed 
regressions. Detailed descriptions of calibration 
procedures are given in Nas et al. (2002) and Wold et 
al. (2001). 

Quality of the developed calibration equations is 
assessed in the validation stage. The validation sample 
set includes the samples for which the reference data 
were measured using classical methods. During 
validation the NIRS predicted values are regressed 
against the reference values. The quality criteria 
include correlation coefficient (r2) and regression 
coefficient (a) of linear regression measured against 
NIRS predicted values and standard error of 
prediction (SEP). SEP is calculated according to the 
equation: 

 
where n is the number of samples, yi is the mean 

value of a constituent in sample i derived by the 
reference method, and xi is the NIRS predicted mean 
value for the sample i. The other commonly used 
quality parameters include ratio of standard deviation 
(SD) of the laboratory results to SEP (RPD) and the 
ratio of standard error of calibration (SEC) to SD. The 
use of RPD and SEC to SD ratio enables us to 
compare the accuracy of the models for constituents 
that are measured in different units. 

Proper validation is a prerequisite for using the 
developed calibration models in routine analysis. It is 
essential to use for validating entirely independent 
samples, otherwise predictive accuracy of the 
developed models may be overestimated (Brown, et 
al., 2006). Furthermore, validation should simulate the 
intended model application. For instance, in regional 
models, randomly selected, independent, hold-out 
sites should be used for validation. When the number 
of available samples is too restrictive to carry out 
calibration and independent validation, the results of 
cross-validation may be used to assess the quality of 
calibration equations (Martens and Dardenne, 
1998). 

In cross-validation the quality criteria include 
SECV, values of r2 (reference vs MIRS predicted 
values), bias (mean of the MIRS predicted value less 
the mean of reference values), and the SD to SECV 
ratio (referred to as RPD or RSC) or standard error of 
calibration (SEC) to SD ratio (Couteaux, et al., 
2003). 

The objective of this study is to investigate the 
possibilities of predicting soil contaminant levels 
under different soil conditions (like clay and 
calcarous) from high-resolution reflectance spectra 
based on laboratory measurements of soil samples and 
multivariate calibration using partial least squares 
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(PLS) regression. Therefore, several data pre-
processing methods are tested to verify what is most 
appropriate to produce acceptable results. 

 
2. Methods: 
2.1. Bulk soil and particle-size fraction 

Tested soils were collected from abuMatameir 
area in the northern part of Egypt, representing a clay 
soil. In addition to, a calcareaous soil which has been 
collected from north-western coast of egypt. The study 
area is located in the mediteranean arid to semi arid 
zone. The annual mean temperature in the region is 25 
to 30 °C and the annual average precipitation ranges 
from 10 to 60 mm. Soil sample consisted of amixture 
of nine subsamples from the surface to a depth of 50 
cm. Soil sample was air-dried at room temperature 
and thoroughly mixed before chemical analyses. 

The method used for the density fractionation of 
naturally occurring organic-mineral aggregates was 
loosely based on the method described by Huang et al. 
(2008). Briefly, 100 g of soil sample was placed into a 
500-mL flask and 500 mL of saturated NaI solution 
(1.7 g/cm3) was then added to isolate the plant 
residues. The plant residues suspended on the liquid 
surface of the NaI solution were removed after the 
sample had been grounded into a paste with a glass 
stick, subjected to thorough agitation and then 
centrifuged. 
2.2. Sorption of cadmium onto soil aggregates 

Sorption obtained using a batch equilibrium 
technique at 25 °C in 50 ml acid-cleaned polystyrene 
centrifuge tubes. Aliquots of the dry and sieved soil 
aggregates and the bulk soil were accurately weighed 
and mixed with 0.01 mol/L Ca(NO3)2 as the 
background solution. Cadmium and Lead solutions 
with concentrations of 0, 20, 50, and 80 mg/L and 0, 
100, 200, 300 mg/L respectively were added and the 
tubes were shaken on a variable speed reciprocal 

shaker at 100 strokes/min for 24 h. After shaking, the 
sample solutions were centrifuged at 5000 rpm for 3 
min and then filtered. The supernatant was then used 
for analysis. Each curve consisted of four 
concentration points, and each point, including the 
blank, was run in triplicate. Concentrations of 
cadmium and lead in the supernatant were analyzed 
using atomic absorption. Because there was little 
adsorption by the flasks and no biodegradation, 
cadmium and lead sorbed by the sorbents and 
partitioned in the soil–water system. 
2.3. Spectral measurements 

Soil reflectance characteristics were investigated 
in two soils type (clay and calcareous). 

Soil samples were dried at 80◦C for 24 h to 
standardise the moisture level. In order to minimise 
anisotropic scattering of light by soil aggregates of 
variable size, soils were grounded with a mortar and 
passed through a 2mm sieve. 

The absorbance spectra of the soil samples were 
obtained by means of a MIRS, The spectra were 
measured between 400 and 4000 cm-1, using a 
resolution of about 4cm-1 bandwidth. The sample for 
irradiation is prepared by mixing the powdered sample 
with spectral grade KBr in the ratio of 1:20, KBr 
pellets having 13 mm diameter and 1 mm thickness 
are prepared under vacuum condition by applying a 
pressure of 10 torr on the stainless steel dies. The 
spectra were corrected for background absorption by 
division of a reference spectrum of KBr, and the final 
spectrum is an average based on the number of scans. 
The FT-IR measurements were performed using 
JASCO Model FT-IR spectrometer available at Soils 
and Water Use Department, National Research Centre, 
Egypt. To obtain a high signal/noise ratio 100 scans 
were accomplished for each sample. 

 
3. Results and disscusion 

 
1. Analysis of soil characteristics 

Vegetation: 
Parent material 
Topography 
Drainage 
Classification 

Wheat. barley. pea, potato, cabbage and lettuce. 
Nile alluvial deposits 
Nearly level 
Moderately drained 
Vertisols, Typic Torrerts 

Hori. Depth (cm) Description 

Ap 0-20 
Vcry dark greyish brown (10 YR 3/2. moist); strong,  medium, sub-angular, blocky structure; very sticky, 
very plastic; strong effervescence with HCl; many fine roots 20 em in depth. many fine roots; diffuse 
boundary. 

AC 20-40 
Dark greyish brown (10 YR 4/2, moist); clay; strong. medium. sub-angular blocky structure; very sticky, 
very plastic; strong effervescence with HC!; many fine roots; diffuse boundary. 

Ccn 40-60 
Dark grayish brown (10 YR 4/2, moist); clay; strong, coarse, sub-angular blocky structure; very sticky, very 
plastic; strong effervesence with HCl; few CaCO. concretions; slickensides; few fine roots, clear boundary. 

Clor 60-80 
Very darkrayish brown (10 YF 3/2, moist); clay; strr-ig, coarse, sub-angular blocky structure; very sticky, 
very plastic; strc.ig effervescencewith HCI; few CaC03 concretions. distinct slickensides; some grey and 
rust mottles; diffuse boundary. 

G2ro 80-120 As the above layer except the mottles increase with depth. 
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Table 2. Soil physical properties of the soil. 
Depth cm Mechanical composition Texture CaCO3 % 

Sand 
2-0.02 nm 

Silt 
0.02-0.002 nm 

Clay 
<0.002nm 

0-20 15.6 29.7 54.7 Clay 3.3 
20-40 15.3 30.8 53.9 Clay 3.3 
40-60 15.1 30.3 54.6 Clay 2.7 
60-80 12.2 32.4 55.4 Clay 3.5 

 
Table 3. Soil chemical properties 

Depth 
cm 

EC 
dS/cm 

pH Cations meq/100g soil Anions meq/100g soil CEC 
Meq/100g soil 

OM 
% Ca++ Mg++ Na+ K+ Cl- SO4

-- HCO3
- 

0-20 1.03 8.1 0.261 0.078 0.405 0.004 0.349 0.064 0.334 58.8 1.22 
20-40 0.86 8.0 0.223 0.047 0.388 0.002 0.233 0.010 0.418 50.1 1.11 
40-60 0.73 8.3 0.169 0.077 0.264 0.002 0.176 0.032 0.304 55.0 1.45 
60-80 0.99 8.0 0.226 0.116 0.360 0.002 0.275 0.036 0.339 52.0 1.41 

 
Table 4. Soil heavy metals analysis of the surface layer 

Depth 
(cm) 

Concentration (ppm) 
Ni Cu Cd Pb Fe Zn Mn Co Cr 

0-20 0.534 0.056 0.324 1.432 0.224 0.014 0.089 0.149 0.082 
 
1. Relationships between Wavelengths and 
Chemical Structures 
1.1. Spectra of the pure component 

Linking particular MIR wavelengths to well-
defined compounds is an extremely difficult task. Due 
to the broadband nature of MIR spectra, consisting of 
overlapping peaks, the individual chemical structures 
are not well resolved. Numerous constituents of 
analyzed materials absorb within the entire MIR 
region and the spectral information is repeated 
through successive overtones and combinations. 

The prepared soils and pure chemicals have been 
characterizing by MIR spectra to build up the model 
reference which will be used to identify the polluted 
soils, as seen the figures (1 and 2). 

 

 
Figure (1) MIR of the pure soil samples 

 

 
Figure (2) MIR of the pure chemicals 

 
1.2. As seen in the prvious figures, it is cleary to 
see the deferences in spectra of all the pure 
compounds. 

 
1.3. MIR spectral features 

The spectra show several stretching and bending 
bands which were attributed to the mineral and 
organic components in soil. For example, the presence 
of hydroxyl (−OH) stretching and bending bands in 
the spectral region from 3750−3300 cm−1 and 
950−820 cm−1 was possibly due to the presence of 
structural −OH groups in clay minerals and metal 
(Fe/Al) oxides (Johnston and Aochi 1996). 
Phyllosilicates can be distinguished into the −OH 
stretching (3750−3400 cm−1), −OH bending (950−600 
cm−1), Si−O stretching (1200−700 cm−1) and Si−O 
bending (600−400 cm−1) vibrations (see Figure, 3) 
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(Haberhauer et al. 1998). The presence of a band at 
3145 cm−1 in the spectra of samples tested in this 
study could possibly be attributed to −OH stretching 
in Fe oxides, as reported by Haberhauer et al. (1998) 
who also attributed the presence of −OH stretching 
band at 3140 cm−1 to Fe oxides. The spectral peaks 
observed in the region between 3695 and 3622 cm–1 
could be attributed to the presence of −OH stretching 
band for kaolinite (Janik et al. 2009). The bands 
observed between 428 and 470 cm−1 in the spectra of 
soil samples were attributed to the Fe−O/Al−O 
bending vibrations (Cornell and Schwertmann 2003; 
Ibrahim et al. 2008). 

The spectral bands in the region from 1510−1230 
cm−1 and at 1730 cm−1 have been reported to be 
associated with the presence of aromatic and 
carboxylic (−COOH) functional groups (Pirie et al. 
2005). The spectral band identified in the analysed 
soil samples at 1720 cm−1 in Figure, 3 could be 
associated with the presence of −COOH group in soil 
organic fraction. The bands in the spectral region from 
2928−2852 cm−1 could be attributed to the aliphatic 
(−CH2) stretching vibrations present in organic 
fraction in the studied soil samples. This is in 
agreement with those reported by Janik et al., (2009) 
and Haberhauer et al. (1998) for the presence of 
−CH2 functional group in spectra of soils (i.e. bands 
at 2930−2851 cm−1). 

 

 
Figure (3) MIR spectral of the clay and calcaereous 

soils 
 

In this study, the author used FTIR spectroscopy 
to investigate sorption complexes of pollutants on the 
surface of soils. Cd adsorption was identified due to 
the presence of spectral bands at 450 cm−1 and 
between 550 and 1200cm−1 due to the adsorption of 
Cd on the surface of soil. While the adsorption of Pb 
was identified in the spectral band between 400-850 
cm-1 in the both types of the soils. However, the 
spectral bands for the Mn, Cu and Mo were 400-750, 
450-1100, and 460-850 cm-1 respectively. 

1.4. Building up the references of Cd and Pb on 
clayey soil 
Three concentration in Cd and Pb were used on 

clay soil as (20, 50, 80 ppm) and (100, 200, 300 ppm) 
respectively. As shown in figure (4) the Cd absorbed 
on the clay will be recognized at the band ranges from 
400 to 1600 cm-1. As well as, it can be recognized that 
the effect of the concentration of Cd, where it increase 
the broading or sharpness in the spectra peaks. 

Regarding the Pb effect of the peak on the clay 
soil, the the Pb absorbed on the clay will be 
recognized at the band ranges from 400 to 1500 cm-1. 
As well as, the Pb concentration will affect the spectra 
at the range form 1550 to 3250 cm-1. As seen in figure 
(5). 
1.5. Building up the references of Cd and Pb on 

Calcareous soils 
For the effect of the lime content on the 

absorption and Cd and Pb, it is shown, in figure (6) for 
Cd and figure (7) for Pb. 

 
Figure (4) MIR spectra of clay soils under different 
cd concentration compared with the pure chemical 
spectra 
 

 
Figure (5) MIR spectra of clay soils under different 
Pb concentration compared with the pure chemical 
spectra 
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Figure (6) MIR spectra of calcareous soils under 
different cd concentration compared with the pure 
chemical spectra 
 

The spectal range for Cd and Pb at the calcaerous 
soils between 400 and 1800 cm-1. While, for the effect 
of the concentration of the heavy metals used in the 
study can be seen also in the range 1800 to 1600 cm-1. 

 
Figure (7) MIR spectra of calcareous soils under 
different Pb concentration compared with the pure 
chemical spectra 
 
Chemometric Methods:- 
When handling a large data set in NIRS/MIRS, we 
must not only look for the typical peak or the 
significant peak. But, it is better to perform 
multifactor analysis. We should realize that two  
spectra can be different just because of a shift in 
baseline. So, we add the possible methods for 
correcting change in baseline (e.g. multiplicative 
scatter correction, Standard Normal Variate, 
derivative of first and second order). 

PCA was carried out to detect the presence of 
any spectral outliers inthe spectral data, prior to 
develop a prediction model using PLS regression. In 
PCA, the eigenspectra and their respective 
eigenvalues are calculated. The number of 
components in the data are then reduced to a smaller 
group of principal components, termed as PCA 
loadings, Figures (8 and 9). 
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Figure (8) Loading plot of PC 
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Figure (9) Eigen value of PC 

 
PCA performed on the (first derivative pre-

treated) reflactance spectra of all soil samples n = 49). 
The green filled circles are the 3 spectral outliers in 
the soil samples, Figure (10). 

 
Figure (10) PCA 

 
Previous studies indicate that PCA is a useful 

tool for the identification of spectral outliers in the 
absorbance spectra of the samples and can be 
employed to increase the quality of the prediction 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

653 

model (Pirie et al. 2005). A PCA was performed on 
the (first derivative pretreated) absorbance spectra of 
all soil samples which enabled to detect 3 spectral 
outliers in the data (see Figure 10, red colour filled 
circles. The absorbance spectra of these (spectral 
outlier) samples were included in the preliminary 
calibration model (data not shown), however, 
excluded from the PLS analysis performed to develop 
a final calibration model. 
PLS cross-validation prediction 

The calibration model was developed using 
leave-one-out cross validation (LOOCV) method in 
PLS regression analysis. The LOOCV procedure 
estimates the prediction error by removing samples 
one by one from the calibration samples data and 
predicting them as unknown samples using the 
remaining samples in the data. The PLS model 
training process continues until the minimum 
prediction residual sum of squares (PRESS) is 
attained, which is used to choose the optimal number 
of PLS factors in order to diminish the possibility of 
overfitting the model (Haaland and Thomas 1988). 

After excluding the spectral outliers, the 
remaining samples were randomly split into two sets. 
One (calibration set) set of samples was used for 
constructing MIR-PLS calibration model and the 

second set was used for the validation of the 
calibration model, referred to as validation set, Figure 
(11). 

It is also important to estimate the true errors in 
the prediction model and validate it using a set of 
unknown soil samples, i.e. validation set (n = 49), as 
mentioned earlier. The prediction equation obtained 
from the calibration model was applied to the 
validation set in order to predict the concentration of 
Pb and Cd in soil in these samples. To evaluate the 
efficiency of the prediction-model, predicted Pb and 
Cd concentration values were plotted against the 
measured soil pollutants concentrations. The 
following statistics was used to assess the prediction 
ability of calibration and validation models including, 
the coefficient of determination in calibration (R2c) 
and validation (R2v), the standard error of cross 
validation (SECV) in calibration, the standard error of 
prediction (SEP) in validation, and the residual 
prediction deviation (RPD) in calibration (RPDc) and 
validation (RPDv) models (Pirie et al. 2005; Islam et 
al. 2003). 

As the obtained results table (5) it si clearly to 
see that the clay and Cd have RSQ more than 97% 
prediction while, Pb and Lime has RSQ more than 
95%. 

 
With MIRS (Mid infrared) and with scatter correction and derivative of 1st order (pre-treatment SNV): the 
adjustments are not enhanced. Table (5) 

Figure (11) predicted value and measured of soil pollutant 
 

Table 5: PLS cross-validation prediction 
CCoonnssttiittuueenntt TTyyppee NN MMeeaann EEsstt..  MMaaxx EEsstt..  MMiinn EEsstt..  MMaaxx SSEECC RRSSQQ SSEECCVV 11--VVRR 
CC 11 4499 5555..88339944 114400..66664433 00..00000000 114400..66664433 44..22994499 00..99776699 55..00992266 00..99667744 

LL 11 4499 5544..77779944 114411..77225522 00..00000000 114411..77225522 77..11999900 00..99338833 99..55442222 00..88990099 

PPbb 11 4499 5533..44228866 113377..88004477 00..00000000 113377..88004477 66..33665511 00..99448888 88..44556699 00..99009922 

CCdd 11 4499 5544..99663355 113399..44335522 00..00000000 113399..44335522 44..00226677 00..99779955 44..77881144 00..99771100 
 
Conclusions: 

Reflectance spectroscopy is a simple and 
nondestructive analytical method that can be used to 

predict not only spectral active constituents but also 
trace elements, which are spectrally featureless. 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

654 

This study showed that high resolution spectra 
of soil samples can be used for predicting the soil 
contamination levels in this material. Soil 
spectroscopy in the MIR region with a PLS model is 
shown to be a very promising method for the 
determination of both soil properties and metal 
concentrations in soils. 

Mid-infrared spectroscopy exhibited potential 
utility in detection of metal-contaminated soils. 
Results indicate that MIR may be used for 
quantitative measurements of metals in diverse soils 
if the calibration is developed from soils within the 
region. 

Application of the calibration models for soil 
quality characterisation could be achieved. Types of 
soil and pollutant can be recognized from the spectra 
with acurately also the concentrations. 
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References 
1. Brown D.J., Bricklemyer R.S., Miller P.R. Validation 

requirements for diffuse reflectance soil 
characterization models with case study of VNIR soil 
C prediction in Montana. Geoderma 129, 251, 2006. 

2. Casler M.D., Shenk J.S. Effect of sample grinding on 
forage quality estimates of smooth bromegrass 
clones. Crop Sci. 25, 167, 1985. 

3. Cornell RM, Schwertmann U (2003) The iron oxides: 
structure, properties, reactions, occurrences, and uses. 
Completely rev. and extended edn. Wiley-VCH, 
Weinheim. 

4. Couteaux M.M., Berg B., Rovira P. Near infrared 
reflectance spectroscopy for determination of organic 
matter fractions including microbial biomass in 
coniferous forest soils. Soil Biol. Biochem. 35, 1587, 
2003. 

5. Couteaux M.M., Mctternan K.B., Berg B., Szuberla 
D., Dardenne P., Bottner P. Chemical composition 
and carbon mineralization potential of Scots pine 
needles at different stages of decomposition. Soil 
Biol. Biochem. 30, 583, 1998. 

6. Foley W.J., Mcilwee A., Lawler I., Aragones L., 
Woolnough A.P., Berding N. Ecological applications 
of near infrared reflectance spectroscopy – a tool for 
rapid, cost-effective prediction of the composition of 
plant and animal tissues and aspects of animal 
performance. Oecologia 116, 293, 1998. 

7. Haaland DM, Thomas EV (1988) Partial least-squares 
methods for spectral analyses. 2. Application to 

simulated and glass spectral data. Anal Chem 60 
(11):1202-1208. 

8. Haberhauer G, Rafferty B, Strebl F, Gerzback MH 
(1998) Comparison of the forest soil litter derived 
from three different sites at various decompositional 
stages using FTIR spectroscopy. Geoderma 83:331-
342. 

9. Huang, Q., Li, F.S., Xiao, R.,Wang, Q.H., Tan,W.J., 
2008. Characterization of organo-mineral aggregates 
of chernozem in Northeast China and their adsorption 
behavior to phenanthrene. 

10. Ibrahim M, Hameed AJ, Jalbout A (2008) Molecular 
spectroscopic study of River Nile sediment in the 
greater Cairo region. Appl Spectrosc 62 (3):306-311. 

11. Islam, K., Singh, B., & McBratney, A. 2003. 
Simultaneous estimation of several soil propertie by 
ultra-violet, visible, and near-infrared reflectance 
spectroscopy. Australian Journal of Soil Research 41, 
1101–1114. 

12. Janik LJ, Merry RH, Forrester ST, Lanyon DM, 
Rawson A (2009) A rapid prediction of soil water 
retention using Mid Infrared spectroscopy. Soil Sci 
Soc Am J 71:507-514. 

13. Johnston CT, Aochi CT (1996) Fourier transform 
infrared and raman spectroscopy. In: Sparks DL (ed) 
Methods of Soil Analysis, Part 3: Chemical Methods. 
Soil Science Society of America, Madison, WI, USA, 
pp 269-321. 

14. Ludwig B., Khanna P.K. Use of near infrared 
spectroscopy to determine inorganic and organic 
carbon fractions in soil and litter. In: Assessment 
Methods for soil Carbon. Advances in Soil Science. 
pp 361 – 370, 2001. 

15. Martens H.A., Dardenne P. Validation and 
verification of regression in small data sets. Chemom. 
Intell. Lab. Syst. 44, 99, 1998. 

16. Nas T., Isaksson T., Fearn T., Davies T. A user 
friendly guide to multivariate calibration and 
classification. NIR Publications, Chichester, UK. 
2002. 

17. Pirie A, Singh B, Islam K (2005) Ultra-violet, visible, 
near-infrared, and mid-infrared diffuse reflectance 
spectroscopic techniques to predict several soil 
properties. Aust J Soil Res 43 (6):713-721. 

18. Shenk J.S., Westerhaus M.O. Population definition, 
sample selection, and calibration procedure for near 
infrared reflectance spectroscopy. Crop Sci. 31, 469, 
1991. 

19. Wold S., Sjostrom M., Eriksson L. PLS-regression: a 
basic tool of chemometrics. Chemom. Intell. Lab. 
Syst. 58, 109, 2001. 

20. Workman  J. Handbook of Organic Compounds: NIR, 
IR, Raman, and UV-Vis Spectra Featuring Polymers 
and Surfactants. Vol 1, Academic Press, pp 77 – 197, 
2000. 

21. Workman Jr J.J. A brief review of the near infrared 
measurement technique. NIR news 4, 8, 1993. 

 
11/11/2014 


