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Abstract. This article discusses the methods of evolutional synthesis of hardware that can be used for solving 
problems of hardware design in case of incomplete information about the object being synthesized. Development of 
a probabilistic evolutional algorithm is shown, and focus is made on the development of genetic operators, coding 
methods and assessment of circuits, as well as methods of probabilistic transferring hereditary information. 
Elements of inaccuracy are introduced into the algorithm by means of probabilistic methods for transferring 
information. They make it possible to escape from the classical concepts of solutions in evolutional algorithms 
presented in the form of a diagram with preset structure, to dynamically changing structure and data. This extends 
the scope of evolutional algorithms for designing complex or open systems by modeling open evolution. 
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Introduction 

This article is based on solving the problem 
of building a probabilistic genetic algorithm where a 
fundamentally new for genetic algorithms method of 
transferring hereditary information is proposed. It is 
based on determining the probability of transferring to 
descendants a set of characteristics that determine the 
genotype of the elite ancestors’ domain [1]. In the 
proposed method for transferring hereditary 
information, hereditary characteristics are not, unlike 
in classical genetic algorithms, transferred directly, 
but with a certain probability, which prevents 
premature convergence of the algorithm. At the stage 
of generating a new population this ensures evolution 
process with a variety of genetic material within the 
specified reaction norm, which rules out the necessity 
to use the crossing-over operator and models 
properties of non-heritable mutations.  

Fuzzy methods of transferring hereditary 
information make it possible to work with arbitrary 
values of genes and chromosome structure, i.e., they 
act as the mechanism for maintaining the irregular 
reaction norm, which, for existing evolutional 
algorithms, is rigidly defined by the developer of 
genetic algorithm and remains invariable for the 
whole duration of evolutional search. Viability of the 
solutions obtained was assessed not from the point of 
view of adequacy to the circuit set by the developer 
(reaction norm), but from the point of view of 
mathematical model for each solution obtained.  

Solving the problem of modeling open 
evolution using evolutional parameters is an important 
issue for developing the evolutional modeling theory 
[2] in the whole. These parameters are used for 
solving problems of designing complex [3, 4] and 
multi-level hierarchical systems [5]. Within the 

framework of this work, results of development and 
research of hardware evolution design methods have 
been shown. They are based on the principles of 
probabilistic transferring of hereditary information 
combined with abandoning the crossing-over operator.  

 
Evolutional synthesis algorithm 

Evolutional synthesis algorithms (ESA) are 
based on using a population (set, array) of alternative 
potential solutions. This is its fundamental difference 
from the methods with one possible solution. Each 
solution in ESA, gradually gets better, worse, or 
remains unchanged. The problem here is detecting 
"bad" solutions and rejecting them. After that, one has 
to choose those "good" solutions that will influence 
improving the remaining "bad" solutions and will 
create new, even better solutions. There is no distinct 
borderline between the "bad" and the "good" 
solutions. "Bad" solutions may make it possible to 
obtain optimal solutions in next generations, and vice 
versa. The methods where ideas, principles and 
approaches of population biology, genetics and 
evolution are used are called Evolutional Calculations 
(EC). 

The main algorithm relating to EC is called 
Evolution Algorithm (EA)  

EA's are divided into Genetic Algorithms 
(GA) and Evolution Strategies (ES). The first stage of 
a Generic EA (GEA) is the creation or initialization of 
a population of alternative solutions for the problem 
or the task in question. Usually, the population is 
created using a random, a randomly directed 
(adaptive), or an integrated method. In the first case, n 
random species (individuals or chromosomes), i.e., 
alternative solutions are created. In the second case, if 
the Decision Maker (DM) has information about 
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search areas where it is highly probable to find 
alternative solutions with a "good" Target Function, 
one can generate a population out of these areas. In 
the third case, alternatives are randomly chosen from 
the whole task area. In the third case, the first three 
are integrated. 

The first case is called "the Blanket 
Principle" in the theory of Genetic Algorithms [2, 6]. 
The second one is called the "the Focusing Principle". 
The third one is called "the Shotgun Principle" The 
fourth one is called "the Integration Principle". 

Genetic Algorithms (GA) are based on the 
biological evolution model and on random search 
methods [7-9]. GA work with a population of species 
(individuals or chromosomes) or of alternative 
solutions of the problem. Population evolves through 
using the recombination mechanism (combining two 
or more parents for obtaining descendants) and 
mutation (random individual change).  

The evolutional synthesis algorithm for 
combinational circuits is shown in Figure 1. The 
frame contains the iteration part of the algorithm that 
includes generation of the population, analysis of 
synthesized circuits by building a Mathematical 
Model, assessing the circuits basing on calculation of 
criterion value, checking of finding the solution. If the 
criterion for stopping has not been reached (the set 
number of solutions has not been found or the set 
number of iteration cycles has not been made), elite 
area is formed and the probability is calculated. After 
calculating the probability for all genes of the 
chromosome, a transfer to the next iteration cycle 
occurs. 

In work [1], authors proposed to use 
probabilistic methods for transmitting hereditary 
information for storage and transferring of 
functionally correct areas of the circuit underlying the 
developed probabilistic genetic algorithm. Thus, 
convergence of genetic material to the required 
parameters is faster, since each generation of 
synthesized circuits inherits many of the best 
parameters of circuit design from the previous 
iteration, and the estimates of probability introduce an 
element of randomness, which prevents premature 
convergence of the algorithm to local optimum values.  

Let us consider the use of evolutional 
algorithms for solving the problem of circuit design 
on the example of combinational circuit synthesis. Let 
us present the problem of synthesizing combinational 
circuits as set R = {H, cF, P}, where element of set H 
determines the genotype of the synthesized solution, 
cF determines assessment of its mathematical model, 
and P determines probability of genetic material 
inheritance from the current population into the next 
one. The genotype of the synthesized solution H is 
determined using the chosen method of coding 

synthesized circuits, and codes presentation method 
for representing the architecture of the target device. 
Then building a mathematical model is none other 
than transition from architecture building method to 
representation (mathematical or physical) of the 
circuit synthesized. Then assessment of cF 
mathematical model is none other than a selection 
criterion that is the basis for selecting optimum 
solutions and forming a symptom of finding the 
solution. 

 
Fig. 1. Algorithm of evolutional synthesis in 
combinational circuits 
 

For the algorithm of evolutional synthesis in 
combinational circuits for the basis of logical 
elements (LE), chromosome coding is determined on 
the basis of a matrix representation circuit Mm,n 
(Figure 1a) containing abstract logical elements, by 
transferring in the synthesized circuit from a two-
dimensional LE indexing (column m, line n) to the 
single-dimension one. Number of inputs xс to the 
circuit make the zeroth column of element inputs L0,n, 
where n = c defines the number of lines in the Mm,n 
matrix. Number of circuit outputs yq is determined 
according to the number of expressions q describing 
functioning law of the desired circuit. Numbers of 
elements Lr,t in the circuit are numbered continuously, 
matching the numbering of logic elements within 
the matrix Mm,n, and used in circuit synthesis for 
denoting element output. Indices of elements Lr,tr and 
t are set according to the order of elements in 
the matrix Mm,n, ascending from left to right and from 
top to bottom, where 0 ≤ t < n and 0 ≤ r ≤ m (zero 
column m = 0 contains the circuit inputs signals, i.e., 
the number of columns m is complemented by the 



Life Science Journal 2014;11(10s)      http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com         lifesciencej@gmail.com  361

column of inputs). Outputs of circuit y are only 
connected to the outputs of elements Lr,t in column m 
(r = m), wherein an element of the zeroth line Lm,0 
corresponds to the zeroth output y0 of the circuit, etc.  

As a minimum basis for LE, let us define set 
L = {Li | i = 1, 2, ..., nl}, elements of which are 
standard two-input AND, OR, XOR elements and 
single-input elements NOT and WIRE with one 
output, where nl is the number of elements in the set. 
Functional components of AND, OR, XOR and NOT 
elements are similar to their corresponding logical 
elements. The WIRE functional element (jumper) 
transmits to the output the signal coming to the only 
input of the element, without changing functional 
component of the input signal. Functional basis 
elements are encoded by setting the code to their 
ordinal numbers in ascending order. 

Location of ALE in circuit grid points 
remains unchanged during the synthesis of the circuit, 
and only their functional component (code) and 
connections between input and output elements are 
changed. The logic element Lr,t encoded by gene gr,t is 
populated into chromosome H successively, by 
columns, from the junior element t in column r to the 
senior one, where 0 <r ≤ m, 0 ≤ t <n. Each gene in 
chromosome H is defined by vector gn = {gni | i = 
1,2,3}, which encodes a separate LE Lr,t, where 
elements of vector gn1 and gn2 specify information 
about inputs r and t of the LE Lr,t, and gn3 sets the 
code of encoded LE Lr,t. Gene locus in the 
chromosome corresponds to set position of the circuit 
element encoded by it, thus the value obtained at the 
output of the LE is associated with the gene identified 
with it. Transition to multi-input circuits is possible by 
supplementing the functional basis with new elements 
and modifying the structure of the gene in the 
chromosome. For analyzing the synthesized circuit, a 
method of building a mathematical model (MM) of 
the circuit is shown, with its subsequent analysis for s 
= 2c input sets of TI, where c is the number of variable 
input functions. Building an MM circuit for LE-based 
circuits is defined as a transition from a one-
dimensional LE array that encodes the phenotype as a 
chromosome, to a number of two-dimensional arrays 
Zm,n (matrices with dimensions m times n), elements 
of which reflect the functional component of the 
object synthesized. Elements Zm,n are presented as 
matrices Zem,n, Zin1m,n, Zin2m,n, and Zoutm,n, where 
Zem,n sets the matrix of LE codes, Zin1m,n and Zin2m,n 
define addresses of LE connected to inputs of 
the current LE, Zoutm,n contains values of LE outputs. 
MM circuit is built by analyzing genes in the 
chromosome and building on their basis a Zem,n LE 
codes matrix and matrices of inputs addresses Zin1m,n 
and Zin2m,n. Matrices of LE outputs Zoutm,n are 
generated for each set s of input signals in the circuit 

based on the set of states of input signals in TI on all 
possible input sets s = 2c. 

Elements Zouti in set Z can be represented as 
a matrix of dimensions n times m as follows: 
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where i = 1, 2, ..., 2c, and elements triZ ,)( , define the 
values of output signals of logic elements Lr,t of the 
circuit synthesized with the set of signals i at the input 
of the circuit, with 0 ≤ r ≤ m and 0 ≤ t <n. The zeroth 

column of Zouti matrices includes input sequence of 
signals i applied to inputs of the circuit. Order of 

evaluation of triZ ,)( elements in matrix Zouti is 

specified as successive formation of triZ ,)( elements in 

columns r. Elements triZ ,)(  in current column r take 
values based on execution of the logical operation. It 

is determined by code 3cgn  of this element Lr,t, above 
input values coming to inputs of this element from 
outputs of elements Lv,t, where addresses of elements 
Lv,t in the synthesized circuit are determined according 

to the value of elements trtrtr rgntgnrgn ,,, 2,1,1  and 

trtgn ,2  of matrices 2r1t1r , , gngngn  and 2tgn , 
respectively, and 0 ≤ v <r. 

 
Criterion selection 

Degree of compliance with evolving and 
desired circuit is defined as criterion cF, with its value 
ranging between zero and one, i.e. with full 
compliance with evolving and desired circuit cF gets 
equal to the unity. The desired TI is determined basing 
on input functions, the evolving TI is calculated by 
setting s of input values from required TI to inputs of 
MM of the circuit with tabulating values from circuit 
outputs. The result of building an MM is an evolving 
TI THz, elements of which are compared to elements 
of the required TI Tiff, where TI are presented as 
matrices [1]: 
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with dimensions s times q elements. Then the value of 
the hiti relation is calculated as: 
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where 0 ≤ i<U, 0 ≤ j < s, 0 ≤ v < q and hiti defines the 
result of executing the operation of comparing the i-th 

element of matrices TTz and TTf. Thus, the criterion 
for assessing cF for chromosome j is calculated on the 
basis of the following ratio:  

U

hit

jcF

U

i
i

 1)( . 

This value of the criterion assesses the 
functional component of the circuit and when the 

value is 1)( jcF , circuit j encoded by chromosome 
H(j) tends to reach the desired solution. Thus, the 
parameter of evolution is the extent to which the 
circuit corresponds to the desired solution. The taking 
into account of the specifics of target devices 
functioning for MM, as well as methods for assessing 
circuits with memory, synchronization by fronts, etc., 
makes it possible to modify algorithms of synthesis 
for various circuits and target devices, thus expanding 
the scope of application for our synthesis algorithm. 

 
Probabilistic methods of transferring genetic 
material 

Genetic material is transferred basing on the 
best solutions. They are selected by a selection 
operator that performs transfer from population Pcs 
with size Ps, a set number Es of chromosomes el(i) 
with the maximum value of criterion cF(j) in 
descending order of cF(j), where 0 <i ≤Es, 0 <j ≤ Ps 
and i ≤ j. The developed method of transferring 
hereditary information is defined by the probability 
vector P = {pi | i = 1, 2, ..., hL} for inheritance of 
genetic material from a variety of elite chromosomes 
Hel from current Pсs population onto the next Псs+1 
population where hL is the length of the chromosome. 
The pi value determines how much diversity of 
genetic material for gene gi represented in locus i of 
chromosomes in elite area relates to value Es of the 
elite area. In case of binary chromosome encoding, 
value pi defines probability of inheriting single genes: 
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With decimal encoding circuit, when the 
gene of a chromosome defines LE, elements pi of 
vector P define probability of inheriting all possible 
states of gene gi, and have length determined by the 
number of states that the gene gi can take. Values of 
probability vectors pi may range between zero and 
unity, and unity value means that genes in locus i of 
chromosomes H of next population Псs+1 inherit 
dominant meaning of this gene's genetic material.  

Initial population of a set number Ps of 
chromosomes H is generated randomly. In the process 

of evolution, i-th chromosome gene is generated on 
the basis of selecting probability values that determine 
probability of inheriting combinations for the i-th gene 
of the chromosome as a result of comparing a number 
generated randomly to values of the probability vector 
represented by the appropriate vector pi. 

Segregation method is proposed as an 
additional method for transferring genetic material, 
being based on the method of elitism (dominance of 
elite chromosomes), making it possible to accumulate 
genetic material, which has significant impact on the 
algorithm convergence [1]. Directed mutation method 
serves as a mechanism for preventing early 
convergence of algorithms. It does not destroy the 
circuit. It should be used only if the algorithm gets 
into a local optimum. In order to expand variety of 
topologies of the synthesized solutions, a procedure is 
proposed for withdrawing the population from the 
area of global extremum, based on reduction method 
that excludes chromosomes that represent the desired 
solution [10-13] from the population. 

 
Results of the experiment 

As comparison object, we will use results of 
works of experts [12] and results of the synthesis 
algorithm for combinational logic circuits based on an 
evolutionary approach, as presented in work [12]. In 
the algorithm of synthesis of combinational logic 
circuits based on probabilistic genetic algorithm [1], 
the following synthesis parameters were set: 
probability of crossing-over operator: 35%; 
probability of mutation operator: 50%; population 
size: 1,200 chromosomes; number of generations: 
200; circuit search space is limited to a 4 times 4 
elements matrix. At the 50th iteration, genetic search 
resulted in finding the best solution. The obtained 
circuit consisted of 9 elements: 3 OR, 3 XOR, 1 NOT 
and 2 WIRE elements. Search time for the solution 
was 102 seconds. 

In the shown algorithm of evolutionary 
synthesis of combinational circuits, the following 
synthesis parameters had been set: population size: 90 
chromosomes; elite area: 20 chromosomes; 
dominance of elite chromosomes: 6; mutation 
coefficient: 0.235%, number of iteration cycles: 300; 
circuit size was limited to 4 times 5 elements matrix. 
At the 65th iteration (chromosome No.1), evolutional 
synthesis resulted in finding the best solution. The 
obtained circuit consisted of 7 elements: 1 NOT, 3 
OR, and 3 XOR elements. Search time for the solution 
was 1,360 milliseconds. Compared results are shown 
in Table. 1. 

Comparing synthesis results shown in Table 
1, we can conclude that the algorithm for automated 
synthesis of combinational circuits ensures synthesis 
of similar quality circuits in shorter time. 
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Table 1. Comparison of results of combinational 
circuits synthesis based on work of experts, genetic 
algorithm and combinational circuits evolutionary 
synthesis algorithm 

 
 
Results of studying the algorithm of 

evolution synthesis of combinational circuits showed 
better performance of this algorithm compared to its 
analogues in case of software implementation. In 
work [1, 4], a detailed description of hardware 
implementation of evolutional synthesis algorithm is 
given that makes it possible to increase operating 
speed of this algorithm more than 4 times compared to 
software implementation.  

 
Conclusion 

The Evolutional synthesis algorithm for 
combinational circuits proposed in the article can be 
generalized for solving more complex tasks used for 
searching successive circuits within the framework of 
defined functional basis of elements that correspond 
to required time and topology limitations for the case 
where the task is not formulated clearly, or with loss 
of some information that does not have first-rank 
importance. The obtained experimental results let us 
state that the developed methods and algorithms not 
only can be used as evolutional search strategies, but 
also show the advantage of the solutions proposed in 
comparison to existing methods of practical problem 
solving. Consequently, solving the problem of 
structure synthesis using evolutional algorithms is 
required for further research in the area of building 
algorithms for evolutional design of complex systems 
where either separate parts, or overall requirements to 
the system are often incorrectly or incompletely 
described [13,14]. In this case, structural synthesis is 
viewed together with parametric and functional 
synthesis to find optimum design and technological 
solutions. 
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