
 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

1005

An Algorithm for Projective Representations of some Matrix Groups

Kübra GÜL1, Abdullah ÇAĞMAN2, Nurullah ANKARALIOĞLU1

1Mathematics Department, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
2Mathematics Department, Faculty of Science and Letters, Agri Ibrahim Cecen University, 04100, Ağrı, Turkey

kubra.gul@atauni.edu.tr, acagman@agri.edu.tr, ankarali@atauni.edu.tr

Abstract: We describe an algorithm which takes as an input � to construct a projective representation of � of
dimension �, where � is isomorphic to a group � satisfying ��(�, �) ≤ � ≤ ��(�, �) and � is irreducible ���-

module of dimension between �� and ��.
[Gül K, Çağman A, Ankaralıoğlu N. An Algorithm for Projective Representations of some Matrix Groups. Life
Sci J 2014;11(10):1005-1009]. (ISSN:1097-8135). http://www.lifesciencesite.com. 154

Keywords: Matrix group, irreducible representation, ��-module, projective representation.

1. Introduction

One of the research topic in recent years is the
development of the algorithms to construct an
isomorphism between the natural representation and
an arbitrary representation of a classical group.

In Kantor and Seress (2001), they present an
algorithm that, given as input an arbitrary
permutation or matrix representation � of an almost
simple classical group � of Lie type of known
characteristic, constructs an isomorphism between �
and the natural projective representation of �.

Magaard et al. (2008) provide efficient
algorithms to construct such an isomorphism for a
projective matrix representation of degree at most ��
of the general lineer groups having natural module of
dimension �.

In this paper, we present an algorithm dealing
with irreducible representations ��,�,�,… , ��,�,�,…,�,� and
��,�,…,�,� dimension of � (�� ≤ � ≤ ��).

An effective algorithm in Beals et al. (2003) is
given for representations of �� and ��, and in Beals
et al. (2005) a specialised algorithm does the same
for the small degree case.

Babai, (1991) presents a black-box Monte Carlo
algorithm that produces nearly uniformly distributed
random elements of �. Also the product replacement
algorithm produces random elements in a matrix
group. For a general discussion of the product
replacement algorithm you can see Pak (2000). We
use the notation of Seress (2003) in our algorithm to
construct random elements of a finite group �.

2. Background and Main Results

Let ��(�, �) ≤ � ≤ ��(�, �) with � = � � .
Suppose that � has the natural module � . Let � be
an irreducible ���-module of dimension between ��

and �� and � acts on �.

We now briefly give some informations about
irreducible representations of dimension between ��
and ��.

The irreducible representation appears as a
subspace of
������⨂��� ��(⋀�(�))⨂ …⨂��� ����(⋀���(�))

or equivalently as a subspace of the �-th tensor
power �⨂� of �.

The general irreducible representation ���,…,� ���

with highest weight
(�� + ⋯+ � ���)�� + (�� + ⋯+ � ���)�� + ⋯

+ � �������
occurs in the tensor product of symmetric

powers
������⨂…⨂��� ����⋀���(�) →

��������⨂…⨂��� ������⋀���(�).
Irreducible representations of dimension

between �� and �� can be obtained as follows.
i. ��,�,�,… is the irreducible representation with

highest weight 2�� + � � and its dimension
�(� − 1)(� + 1) 3⁄ ,

ii. ��,�,�,…,�,� is the irreducible representation
with highest weight �� + � ��� and its dimension
�(� − 2)(� + 1) 2⁄ ,

iii. ��,�,…,�,� is the irreducible representation
with highest weight 2�� + � ��� and its dimension
�(� + 2)(� − 1) 2⁄ ,

iv. ����� = ��,�,…,� and ⋀�� = ��,�,�,�,…,� are
the irreducible representations with highest weights
3�� and �� + � � + � � and their dimensions
(� + 2)(� + 1)� 6⁄ and �(� − 1)(� − 2) 6⁄
respectively.

For further details about such irreducible
representations look Fulton and Harris (1999).

In this paper, we consider ��,�,�,… , ��,�,�,…,�,� and
��,�,…,�,� irreducible representations.

We will use an algorithm to find random
elements in black-box groups. The algorithm outputs
an ε-uniformly distributed random element � of � if

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

1006

(1 − �) |�|<⁄ Prob (� = �) < (1 + �) |�|⁄ for all
� ∈ � . 'Nearly uniform' means ε-uniform for some
� < 1 2⁄ (Seress, 2003).

Let �� be the cost of choosing a random element
of � and let �� be the cost of a field operation in a

finite field ��. In Magaard et al. (2008, Lemma 4.1),

they set up a Las Vegas algorithm which constructs
���, in �(���

� log� � log�) time.

Let � is isomorphic to �. Assume that � ∈ �, �
is a ppd(�;�) and that � ∣|�|. Therefore, � is a power
of a singer cycle and there are � one-dimensional
eigenspaces in � ⊗ � �

�. Let � = � � be the Frobenius

map of ��(�, ��) whose fixed points contain � .
Thus, � centralizes 〈�〉 and � transitively permutes
the eigenspaces of � acting on � ⊗ � ��.

As a result, we can list the eigenspaces 〈��〉 of �
and choose the eigenvectors �� within the eigenspaces
in such a way that ��

� = � ��� where the index is
computed modulo �.

Our main results are stated in the following
theorem:
Theorem 2.1. Let � = � � be a prime power and � be
the natural module of �. Suppose that � is given as
� = 〈�〉 acting irreducibly on �. For the input � and
�, there is a polynomial-time Las Vegas algorithm
which, with probability at least 1 − � , sets up a data
structure for rewriting � as a � -dimensional
projective representation in time

���� log �
� log � log ��� +

���
� log �� log� � log ��� +

��� �
� log� � log(��)log �� log � log ��� +

����
�� �og ��.

The procedure which finds the image of � in a
representation of degree � costs �((�� +
����

� log �)log ���).

Algorithm 2.2. Here we give a summary for
recognition algorithm which construct a matrix
representation dimension of �.

i. Find a random element � ∈ � which satisfies
the following:

ii. � has � one-dimensional eigenspaces and �
divides |�| where � is a ppd(�;�).

iii. Label the eigenvalues and produce �� , a
basis of �-eigenvectors on � ⊗ � ��.

iv. Compute the vector corresponding to
�� ⊗ � � ⊗ � � from the eigenspace labelled with

(�, �, �).
v. The data structure described in Theorem 2.1

consists of steps 1 to 3 and the image of � ∈ � is
obtained with the following step.

vi. First write � in the basis ��; then compute
the action of � on �⨂��� in the basis � =

{��, ��,… , � �} ; finally rewrite with respect to the
basis � = {��, ��,… , � �} for the natural module �.

3. Finding the special element

Step 1 is common for all representations, so we
discuss it in this section.

We now consider whether or not a random
element � ∈ � with conditions given in Step 1 has
order divisible by a � primitive prime divisor of
�� − 1 . We know that if (�, �) = (2,6), then define
� ≔ 21. If (�, �) = (�, 2) with � a Mersenne prime,
then define � ≔ � − 1 . Otherwise

� ≔ �
�

�
 (�� − 1)

�∣�,���

.

Order of � is the factor of a ppd(�;�) prime if
and only if �� ≠ 1. Then, we say that we can decide
this by taking �th powers of �-eigenvalues.

As given in Step 1 of Algorithm 2.2, with
probability at least 1 − � , there is an element � ∈ �
which satisfies the following:

Set � ≔ �
�

�
 log (���)�, where � is given as the

proportion of special elements in G. � is upper bound
of random elements of �. Compute

i. the characteristic polynomial �(�) of a
random element � ∈ � ,

ii. the square-free factorisation of �(�),
iii. the distinct-degree factorisation of �(�),
iv. the distinct linear factors of �(�) over ���,

hence, compute the eigenvalues of � over ��� .

For a zero � ∈ ��� of one of the irreducible divisors

of �(�) largest degree, compute ��. If the value is 1
or if the computation of linear factors returns FAIL,
then discard � and return computing �(�). Return �
and its eigenvalues over ��� (Corr, 2014).

Lemma 3.1: There is a Las Vegas algorithm which
finds a suitable � ∈ � in

�((�� + ���
� + ���

� log �

+ � �� �
� log� � log(��)) log �� log � log ���)

time.

Proof: We have the bound � >
�

��� ��� �
 (proportion

of special elements in �) and we obtain
�

�
<

6�� log�. The characteristic polynomial �(�) of � is
computed by using the algorithm of Dumas et al.
(2005) in �(�� + ���

�) time. Step (ii) costs

�(���
� log �) and (iii) runs faster than (ii). The

distinct linear factors of �(�) in ��� are obtained

using a Las Vegas algorithm of Beals et al. (2005) in

������ log � log(��
�)log log � log����

= � �����
� log� � log(��) log����

time. Taking �th powers of the eigenvalues of �

requires ����� d
� �⁄ log �� time. And then the Las

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

1007

Vegas algorithm for finding special element has
complexity

��(�� + ���
� + ���

� log �

+ � �� �
� log� � log(��)) �� log � log ����.

In the last step of our algorithm, we find the
image of � which is a matrix in ��(�, ���) .

Hovewer, aim of the final stage of our algorithm is to
rewrite the output as a � × � matrix over �. How to
be done this is showed in Magaard et al. (2008,
Lemma 4.6).
Lemma 3.2: Let ℎ ∈ � and let � = (� ��) be the

matrix of ℎ in the basis �. For �, � ∈ {1, … , � },
����,��� = � ��

�

where the index � + 1 is interpreted as 1
(Magaard et al., 2008, Lemma 4.7).
Lemma 3.3: Let ℎ ∈ � and let � = (� ��) be the

matrix of ℎ in the basis �.

i. For �, � ∈ {1, … , � }, Prob���� = 0 � < 4 � �⁄ .

If � ≥ 3 then Prob���� = 0 � < 2 � �⁄ .

ii. Prob(all ��� ≠ 0) > 5 8⁄
For proof, see Magaard et al. (2008, Lemma

4.8).
One of the common steps is also avoiding

division by zero. For details about this, see Magaard
et al. (2008)

4. Labelling the Eigenvalues ����

In this section, we aim to produce a suitable
labelling of orbits of eigenvalues under the Frobenius
map � and to find a basis for � of �-eigenvectors.

Let �� = �
����, for 1 ≤ � ≤ �, be �- eigenvalues in its

action on � ⊗ � ��. Its eigenspaces on � are 〈��,�,�〉

for 1 ≤ �, �, � ≤ � . We know the set by
���,�,�: = � ������1 ≤ �, �, � ≤ �� for the eigenvalues of

� in its action on � . We identify the indices as

(�, �, �) ↦ ��,�,� and choose a basis �� = ���,�,�� ,

��,�,� ∈ 〈��,�,�〉.

Some properties about � can be given as
follows:

Let � be ��,�,�,… ,��,�,�,…,� ,��,�,�,… irreducible
representations. We consider the sets for the
eigenvalues of � in its action on � by
���,�,�: = � ������1 ≤ � < � < � ≤ �, i = j �� � = ��,

���,�,�: = � �����
���1 ≤ �, �, � ≤ �, � ≠ � ≠ � ��� � < ��,

���,�,� : = � �
���

���1 ≤ �, � ≤ �, � ≠ ��,

respectively. Their eigenspaces on � are
〈��,�,� = � �⨂(� � ∧ ��)〉 , 〈��,�,� =

(�� ∧ ��)⨂� �
∗〉, 〈��,�,� = � �

�⨂� �
∗〉.

Lemma 4.1. Let �� = �
���� , for 1 ≤ � ≤ � , be

eigenvalues of s on �⨂� �� and let � be irreducible

representations as given above. There are suitable

labellings ��,�,� of the eigenvalues of s on � with a

basis �� = ���,�,��. The cost of this labelling

procedure is �(����
�� �og�) where ��� is the cost of

a field operation in ���.

Proof 4.1. We can give the proof for each of W
respectively as the following.

If � is �(�,�,�,…) irreducible representation then
we construct the orbits of eigenvalues under the
Frobenius map � and choose an orbıt and label an
element of this orbit as ������. Taking � − �ℎ powers

determines ������, ������ . We compute ����
���

= � ���
����

,

so ���� is determined and we compute ���� = � ���
���

����
�

and ���� = � ���
���

���� . For 4 ≤ � ≤ � , we determine
the general terms as
������ = (� �������)

��� (��������)
�⁄ and ���� =

(����������)
��� (����������)

�⁄ . We choose an
arbitrary ��,�,� , ��,�,� ∈Ω from each orbit Ω and
compute its eigenspace 〈��,�,�〉. For other eigenvalues

��,�,�
�� , we compute ����,���,���: = ��,�,�

�� .

If � is �(�,�,�,…,�,�) irreducible representation

then we choose an orbit and label an element of this
orbit as ��,�,� and taking � − �ℎ powers, determine

����, ����,�,� . We have equalities ������
����

=

��������,�,�
�

 and ������ = � ������� where we have

�� = � �
�

, so ���� is obtained by these equalities. Then,

we obtain ���� using equality ����
���

= � �������
��

.
For � ∈ {5, … , � } ,

��,�,� = ���,�,����
���

���,�,����
�

� is determined. For

� ∈ {4, … , � − 1 } ,
��,�,��� = (� �,���,�)

��� (��,���,���)
�⁄ . For � ∈

{3, … , � − 2 } and � ∈ {2, … , � − � },
��,�,��� = (� �,�,�����)

��� (��,�,�����)
�⁄ . For

� ∈ {2, … , � − � − � } , � ∈ {1, … , � − � − � } and
� ∈ {1, … , � − � }, we determine ��,���,�����: =

����,�����,�������
�

 and then we determine

��������,�����,�: = � �����,���,�
�

. We choose an

arbitrary ��,�,� ∈ Ω from each orbit Ω and compute its

eigenspace 〈��,�,�〉. For other eigenvalues ��,�,�
�� , we

compute ����,���,���: = ��,�,�
�� .

If � is �(�,�,�,…) irreducible representation then
we choose one of this orbits and label the first
element as ��,�,� . For � ∈ {2, … , � − 1 } , ��,�,��� =

����,���,�
�

, and ��,�,� = � ���,���,�
�

. For � ∈

{1, … , � − 1 }, we perform the followings:

i. we have ������
����

= � �����,�,� and ������ =

�������� where we have �� = � �
�
, so ���� is obtained by

these equalities.
ii. For � ∉ {1,2,3} , we determine ��,�,� =

��,�,���
���

��,�,���
�� .

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

1008

iii. For � ∈ {2, … , � − � } , we determine
��,�,���: = ����,���,�����

�
 and then we determine

������,�����,�: = � ���,���,�
�

.

iv. For � ∈ {� + 2 − �, … , � } , we determine
��,�,�����: = ����,���,�������

�
.

We choose an arbitrary ��,�,� ∈ Ω from each orbit

Ω and compute its eigenspace 〈��,�,�〉.

Proposition 4.2 Since we can assume that the first
coordinate of each �� is 1 , the vector ��,�,�

corresponds precisely to ��⨂� �⨂� �, and so it needs
not to a scalar multiple (Magaard et al.,2008).
5. Finding images

This section's goal is to construct the image of
an arbitrary � ∈ � . We describe the procedure for
constructing the matrix ��� representing an arbitrary

� ∈ � . Firstly, we compute � = (� ���,���) , the

matrix representation defined with the action of � on
� . We then compute the ��� since we know � =

(����,���).

Lemma 5.1. Let � = (� ���,���) be the matrix

representation defined with the action of � on � with

respect to the basis �� = ���,�,��. The matrix ��� of �

is determined with the cost �((�� + � ��(�
� +

�� log �)) log ���) where �� is the cost of choosing a
random element of �, and ��� is the cost of a field

operation in �.
Proof. The basic equation for ����,��� is ����,��� =

��������� . We choose an arbitrary nonzero entry
�������,������

 in � . The matrix with (�, �) entry

������,�����
= � �������

(�����) is a projective image

of �.
If � is �(�,�,�,…,�,�) irreducible representation,

the basic equation for ����,��� is

����,��� = � ����� ���
∗ (2.1)

We may use (2.1) for � ≠ � ≠ � and � ≠ � ≠ �
and so we find ���

∗ ������ for any �, �, �, � by using

the following equations:
����,��� = � ����� ���

∗ for � ≠ � ≠ 1, � ≠ � ≠ 1,

����,��� = � ����� ���
∗ for � ≠ � ≠ 2, � ≠ � ≠ 2,

����,��� = � ����� ���
∗ for � ≠ � ≠ 3, � ≠ � ≠ 3,

���
∗ ���

∗⁄ = � ���,��� ����,���⁄ for distinct �, � and

�, � �, �, �, � ∉ {1,2},
���
∗ ���

∗⁄ = � ���,��� ����,���⁄ for distinct �, � and

�, � �, �, �, � ∉ {1,3},
����,��� = � ����� ���

∗ for �, � ∉ {1,2}
����,��� = � ����� ���

∗ for �, � ∉ {1,3}
����,��� = � ����� ���

∗ for �, � ∉ {1,4}
����,��� = ������ ���

∗ for � ∉ {2,3}
����,��� = � ����� ���

∗ for � ∉ {2,3}
����,��� = ������ ���

∗
����,��� = � ����� ���

∗

��� ���⁄ = � ���,��� ����,���⁄ for �, � ∉ {1,2,3},
��� ���⁄ = � ���,��� ����,���⁄ for �, � ∉ {1,2,4}.
If � is �(�,�,…,�,�) irreducible representation we

may use (2.1) for � = � ≠ � and � = � ≠ � and so
we find ���

∗ ������ for any �, � by using the following
equations:

����,��� = � ��
� ���

∗ for � ≠ 1, � ≠ 1,

����,��� = ���
����

∗ for � ≠ 2, � ≠ 2,

����,��� = ���
����

∗ for � ≠ 3, � ≠ 3,

����,��� = ���
� ���

∗ for � ≠ 2,

����,��� = � ��
� ���

∗ for � ≠ 2,
����,��� = ���

� ���
∗

����,��� = � ��
� ���

∗
���
∗ ���

∗⁄ = � ���,��� ����,���⁄ for �, � ∉ {1,2},
���
∗ ���

∗⁄ = � ���,��� ����,���⁄ for �, � ∉ {1,3}

If � is �(�,�,�,…) irreducible representation, we

choose an arbitrary nonzero entry �������,������
 in �.

The matrix with (�, �) entry ������,�����
=

���(�����
)(�����) is image of � . In this case, we

apply a procedure as above.

Corresponding Author:
Assoc. Prof. Dr. Nurullah ANKARALIOĞLU
Mathematics Department,
Faculty of Science, Ataturk University,
25240, Erzurum, Turkey
E-mail: ankarali@atauni.edu.tr

References
1. Babai L. Local expansion of vertex-transitive

graphs and random generation in finite
groups.in: Theory of Computing, Los Angeles,
(Association for Computing Machinery, New
York, 1991). 1991; pp. 164-174.

2. Beals R, Leedham-Green CR, Niemeyer AC,
Prager CE, Seress Á. A black-box group
algorithm for recognizing finite symmetric and
alternating groups I. Trans. Amer. Math. Soc.
2003;355, 2097–2113.

3. Beals R, Leedham-Green CR, Niemeyer AC,
Prager CE, Seress Á. Constructive recognition
of finite alternating and symmetric groups
acting as matrix groups on their natural
permutation modules. Journal of Algebra,
2005;292 (1):4-46

4. Corr BP. Estimation and computation with
matrices over finite fields. Phd Thesis, The
University of Western Australia Department of
Mathematics. January, 2014;180.

5. Dumas JG, Pernet C, Wan Z. Efficient
computation of the characteristic polynomial. In
Proceedings of the 2005 international
symposium on Symbolic and algebraic
computation, pages 2005;140-147. ACM.

 Life Science Journal 2014;11(10) http://www.lifesciencesite.com

1009

6. Fulton W, Harris J. Representation Theory A
First Course. Graduate Texts in Mathematics,
Springer. 1999:551.

7. Kantor WM, Seress Á. Black box classical
groups. Mem. Amer. Mat. Soc. 2001 :149,168.

8. Magaard K, O’Brien E, Seress A. Recognition
of small dimensional representations of general
lineer groups. J. Avustralian Math. Soc.,
2008;85, 229-250.

9. Neumann PM, Praeger CE. A recognition
algorithm for special linear groups.

10. Proc. London Math. Soc. 1992;65, 555–603.

11. Niemeyer AC, Praeger CE. A recognition
algorithm for classical groups over finite fields.
Proceedings of the London Mathematical
Society, 1998;77(1):117-169.

12. Pak I. The product replacement algorithm is
polynomial. in: 41st Ann. Symp. on
Foundations of Computer Science, (Redondo
Beach, CA, 2000, IEEE Computer Society
Press, Los Alamitos, CA) 2000; 476-485.

13. Seress Á. Permutation Group Algorithms.
Cambridge University Press. 2003:274.

9/26/2014

