# An Algorithm for Projective Representations of some Matrix Groups 

Kübra GÜL ${ }^{1}$, Abdullah ÇAĞMAN ${ }^{2}$, Nurullah ANKARALIOĞLU ${ }^{1}$<br>${ }^{1}$ Mathematics Department, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey<br>${ }^{2}$ Mathematics Department, Faculty of Science and Letters, Agri Ibrahim Cecen University, 04100, Ağrı, Turkey<br>kubra.gul@atauni.edu.tr, acagman@agri.edu.tr, ankarali@atauni.edu.tr


#### Abstract

We describe an algorithm which takes as an input $W$ to construct a projective representation of $G$ of dimension $d$, where $G$ is isomorphic to a group $H$ satisfying $S L(d, q) \leq H \leq G L(d, q)$ and $W$ is irreducible $F_{q} G$ module of dimension between $d^{2}$ and $d^{3}$. [Gül K, Çağman A, Ankaralığlu N. An Algorithm for Projective Representations of some Matrix Groups. Life Sci J 2014;11(10):1005-1009]. (ISSN:1097-8135). http://www.lifesciencesite.com. 154


Keywords: Matrix group, irreducible representation, $F G$-module, projective representation.

## 1. Introduction

One of the research topic in recent years is the development of the algorithms to construct an isomorphism between the natural representation and an arbitrary representation of a classical group.

In Kantor and Seress (2001), they present an algorithm that, given as input an arbitrary permutation or matrix representation $G$ of an almost simple classical group $H$ of Lie type of known characteristic, constructs an isomorphism between $G$ and the natural projective representation of $H$.

Magaard et al. (2008) provide efficient algorithms to construct such an isomorphism for a projective matrix representation of degree at most $d^{2}$ of the general lineer groups having natural module of dimension $d$.

In this paper, we present an algorithm dealing with irreducible representations $\Gamma_{1,1,0, . .2} \Gamma_{0,1,0, \ldots, 0}$, and $\Gamma_{2,0, \ldots, 0,}$, dimension of $n\left(d^{2} \leq n \leq d^{3}\right)$.

An effective algorithm in Beals et al. (2003) is given for representations of $A_{n}$ and $S_{n}$, and in Beals et al. (2005) a specialised algorithm does the same for the small degree case.

Babai, (1991) presents a black-box Monte Carlo algorithm that produces nearly uniformly distributed random elements of $G$. Also the product replacement algorithm produces random elements in a matrix group. For a general discussion of the product replacement algorithm you can see Pak (2000). We use the notation of Seress (2003) in our algorithm to construct random elements of a finite group $G$.

## 2. Background and Main Results

Let $S L(d, q) \leq H \leq G L(d, q)$ with $q=p^{f}$. Suppose that $H$ has the natural module $V$. Let $W$ be an irreducible $F_{q} G$-module of dimension between $d^{2}$ and $d^{3}$ and $H$ acts on $W$.

We now briefly give some informations about irreducible representations of dimension between $d^{2}$ and $d^{3}$.

The irreducible representation appears as a subspace of $\operatorname{Sym}^{a_{1}} V \otimes \operatorname{Sym}^{a_{2}}\left(\bigwedge^{2}(V)\right) \otimes \ldots \otimes \operatorname{Sym}^{a_{d-1}}\left(\bigwedge^{d-1}(V)\right)$
or equivalently as a subspace of the $d$-th tensor power $V^{\otimes d}$ of $V$.

The general irreducible representation $\Gamma_{a_{1}, \ldots, a_{d-1}}$ with highest weight

$$
\begin{gathered}
\left(a_{1}+\cdots+a_{d-1}\right) L_{1}+\left(a_{2}+\cdots+a_{d-1}\right) L_{2}+\cdots \\
+a_{d-1} L_{d-1}
\end{gathered}
$$

occurs in the tensor product of symmetric powers
$\operatorname{Sym}^{a_{1}} V \otimes \ldots \otimes$ Sym $^{a_{d-1}} \wedge^{d-1}(V) \rightarrow$
Sym $^{a_{1}-1} V \otimes \ldots \otimes$ Sym $^{a_{d-1}-1} \wedge^{d-1}(V)$.
Irreducible representations of dimension between $d^{2}$ and $d^{3}$ can be obtained as follows.
i. $\Gamma_{1,1,0}, \ldots$ is the irreducible representation with highest weight $2 L_{1}+L_{2}$ and its dimension $d(d-1)(d+1) / 3$,
ii. $\Gamma_{0,1,0, \ldots, 0,}$ is the irreducible representation with highest weight $L_{2}+L_{d-1}$ and its dimension $d(d-2)(d+1) / 2$,
iii. $\Gamma_{2,0, \ldots, 0,1}$ is the irreducible representation with highest weight $2 L_{1}+L_{d-1}$ and its dimension $d(d+2)(d-1) / 2$,
iv. Sym $^{3} V=\Gamma_{3,0, \ldots, 0}$ and $\Lambda^{3} V=\Gamma_{0,0,1,0, \ldots, 0 \text { re }}$ the irreducible representations with highest weights $3 L_{1}$ and $L_{1}+L_{2}+L_{3}$ and their dimensions $(d+2)(d+1) d / 6 \quad$ and $\quad d(d-1)(d-2) / 6$ respectively.

For further details about such irreducible representations look Fulton and Harris (1999).

In this paper, we consider $\Gamma_{1,1,0, \ldots} \Gamma_{0,1,0, \ldots, 0}$, 1 nd $\Gamma_{2,0}, \ldots, 0$, irreducible representations.

We will use an algorithm to find random elements in black-box groups. The algorithm outputs an $\varepsilon$-uniformly distributed random element $x$ of $G$ if
$(1-\varepsilon) /|G|<\operatorname{Prob}(x=g)<(1+\varepsilon) /|G|$ for all $g \in G$. 'Nearly uniform' means $\varepsilon$-uniform for some $\varepsilon<1 / 2$ (Seress, 2003).

Let $\xi_{G}$ be the cost of choosing a random element of $G$ and let $\rho_{q}$ be the cost of a field operation in a finite field $F_{q}$. In Magaard et al. (2008, Lemma 4.1), they set up a Las Vegas algorithm which constructs $F_{q^{d}}$, in $O\left(\rho_{q} d^{3} \log ^{2} d \log q\right)$ time.

Let $G$ is isomorphic to $H$. Assume that $s \in H, r$ is a $\operatorname{ppd}(q ; d)$ and that $r||s|$. Therefore, $s$ is a power of a singer cycle and there are $d$ one-dimensional eigenspaces in $V \otimes F_{q}^{d}$. Let $\sigma=\delta^{f}$ be the Frobenius map of $G L\left(d, q^{d}\right)$ whose fixed points contain $H$. Thus, $\sigma$ centralizes $\langle s\rangle$ and $\sigma$ transitively permutes the eigenspaces of $s$ acting on $V \otimes F_{q^{d}}$.

As a result, we can list the eigenspaces $\left\langle e_{i}\right\rangle$ of $s$ and choose the eigenvectors $e_{i}$ within the eigenspaces in such a way that $e_{i}^{\sigma}=e_{i+1}$ where the index is computed modulo $d$.

Our main results are stated in the following theorem:
Theorem 2.1. Let $q=p^{f}$ be a prime power and $V$ be the natural module of $H$. Suppose that $H$ is given as $G=\langle X\rangle$ acting irreducibly on $W$. For the input $G$ and $d$, there is a polynomial-time Las Vegas algorithm which, with probability at least $1-\epsilon$, sets up a data structure for rewriting $G$ as a $d$-dimensional projective representation in time
$O\left(\xi_{G} \log d^{2} \log q \log \epsilon^{-1}+\right.$
$\rho_{q} d^{9} \log d^{2} \log ^{2} q \log \epsilon^{-1}+$
$\rho_{q^{d}} d^{4} \log ^{2} d \log (d q) \log d^{2} \log q \log \epsilon^{-1}+$ $\left.\rho_{q^{d}} d^{11} \log q\right)$.

The procedure which finds the image of $g$ in a representation of degree $d$ costs $O\left(\left(\xi_{G}+\right.\right.$ $\left.\left.\rho_{q^{d}} d^{9} \log q\right) \log \epsilon^{-1}\right)$.
Algorithm 2.2. Here we give a summary for recognition algorithm which construct a matrix representation dimension of $d$.
i. Find a random element $s \in G$ which satisfies the following:
ii. $\quad s$ has $n$ one-dimensional eigenspaces and $r$ divides $|s|$ where $r$ is a $\operatorname{ppd}(q ; d)$.
iii. Label the eigenvalues and produce $F_{W}$, a basis of $s$-eigenvectors on $W \otimes F_{q^{d}}$.
iv. Compute the vector corresponding to $e_{i} \otimes e_{j} \otimes e_{k}$ from the eigenspace labelled with (i,j,k).
v. The data structure described in Theorem 2.1 consists of steps 1 to 3 and the image of $g \in G$ is obtained with the following step.
vi. First write $g$ in the basis $F_{w}$; then compute the action of $g$ on $V \otimes F_{q^{d}}$ in the basis $\mathfrak{F}=$
$\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$; finally rewrite with respect to the basis $\beta=\left\{b_{1}, b_{2}, \ldots, b_{d}\right\}$ for the natural module $V$.

## 3. Finding the special element

Step 1 is common for all representations, so we discuss it in this section.

We now consider whether or not a random element $s \in G$ with conditions given in Step 1 has order divisible by a $r$ primitive prime divisor of $q^{d}-1$. We know that if $(q, d)=(2,6)$, then define $m:=21$. If $(q, d)=(p, 2)$ with $p$ a Mersenne prime, then define $m:=p-1$. Otherwise

$$
m:=\prod_{j \mid d, j \neq d} \frac{d}{j}\left(q^{j}-1\right) .
$$

Order of $s$ is the factor of a $\operatorname{ppd}(q ; d)$ prime if and only if $s^{m} \neq 1$. Then, we say that we can decide this by taking $m$ th powers of $s$-eigenvalues.

As given in Step 1 of Algorithm 2.2, with probability at least $1-\epsilon$, there is an element $g \in G$ which satisfies the following:

Set $T:=\left\lceil\frac{2}{P} \log \left(\epsilon^{-1}\right)\right\rceil$, where $P$ is given as the proportion of special elements in G. $T$ is upper bound of random elements of $G$. Compute
i. the characteristic polynomial $c(x)$ of a random element $g \in G$,
ii. the square-free factorisation of $c(x)$,
iii. the distinct-degree factorisation of $c(x)$,
iv. the distinct linear factors of $c(x)$ over $F_{q^{d}}$,
hence, compute the eigenvalues of $g$ over $F_{q^{d}}$.
For a zero $s \in F_{q^{d}}$ of one of the irreducible divisors of $c(x)$ largest degree, compute $s^{m}$. If the value is 1 or if the computation of linear factors returns FAIL, then discard $g$ and return computing $c(x)$. Return $g$ and its eigenvalues over $F_{q^{d}}$ (Corr, 2014).
Lemma 3.1: There is a Las Vegas algorithm which finds a suitable $g \in G$ in

$$
\begin{aligned}
& O\left(\left(\xi_{G}+\rho_{q} d^{9}+\rho_{q} d^{3} \log q\right.\right. \\
& \left.\left.+\rho_{q^{d}} d^{4} \log ^{2} d \log (d q)\right) \log d^{2} \log q \log \epsilon^{-1}\right) \\
& \text { time. }
\end{aligned}
$$

Proof: We have the bound $P>\frac{1}{3 d^{2} \log q}$ (proportion of special elements in $G$ ) and we obtain $\frac{2}{P}<$ $6 d^{2} \log q$. The characteristic polynomial $c(x)$ of $g$ is computed by using the algorithm of Dumas et al. (2005) in $O\left(\xi_{H}+\rho_{q} d^{9}\right)$ time. Step (ii) costs $O\left(\rho_{q} d^{3} \log q\right)$ and (iii) runs faster than (ii). The distinct linear factors of $c(x)$ in $F_{q^{d}}$ are obtained using a Las Vegas algorithm of Beals et al. (2005) in

$$
\begin{aligned}
& O\left(\rho_{q^{d}} n \log n \log \left(n q^{d}\right) \log \log n \log \epsilon^{-1}\right) \\
& =O\left(\rho_{q^{d}} d^{4} \log ^{2} d \log (d q) \log \epsilon^{-1}\right)
\end{aligned}
$$

time. Taking $m$ th powers of the eigenvalues of $s$ requires $O\left(\rho_{q^{d}} \mathrm{~d}^{3 / 2} \log q\right)$ time. And then the Las

Vegas algorithm for finding special element has complexity

$$
\begin{aligned}
& O\left(\left(\xi_{G}+\rho_{q} d^{9}+\rho_{q} d^{3} \log q\right.\right. \\
& \left.\left.+\rho_{q^{d}} d^{4} \log ^{2} d \log (d q)\right) d^{2} \log q \log \epsilon^{-1}\right)
\end{aligned}
$$

In the last step of our algorithm, we find the image of $g$ which is a matrix in $G L\left(d, F_{q^{d}}\right)$. Hovewer, aim of the final stage of our algorithm is to rewrite the output as a $d \times d$ matrix over $F$. How to be done this is showed in Magaard et al. (2008, Lemma 4.6).
Lemma 3.2: Let $h \in H$ and let $A=\left(a_{i j}\right)$ be the matrix of $h$ in the basis $\mathfrak{F}$. For $i, j \in\{1, \ldots, d\}$,

$$
a_{i+1, j+1}=a_{i j}^{q}
$$

where the index $d+1$ is interpreted as 1 (Magaard et al., 2008, Lemma 4.7).
Lemma 3.3: Let $h \in H$ and let $A=\left(a_{i j}\right)$ be the matrix of $h$ in the basis $\mathfrak{E}$.
i. For $i, j \in\{1, \ldots, d\}, \operatorname{Prob}\left(a_{i j}=0\right)<4 / q^{d}$. If $q \geq 3$ then $\operatorname{Prob}\left(a_{i j}=0\right)<2 / q^{d}$.
ii. $\quad \operatorname{Prob}\left(\operatorname{all} a_{i j} \neq 0\right)>5 / 8$

For proof, see Magaard et al. (2008, Lemma 4.8).

One of the common steps is also avoiding division by zero. For details about this, see Magaard et al. (2008)

## 4. Labelling the Eigenvalues $\boldsymbol{l}_{\boldsymbol{i j k}}$

In this section, we aim to produce a suitable labelling of orbits of eigenvalues under the Frobenius map $\sigma$ and to find a basis for $W$ of $s$-eigenvectors. Let $l_{i}=w^{q^{i-1}}$, for $1 \leq i \leq d$, be $s$ - eigenvalues in its action on $V \otimes F_{q^{d}}$. Its eigenspaces on $W$ are $\left\langle e_{i, j, k}\right\rangle$ for $1 \leq i, j, k \leq d$. We know the set by $\left\{l_{i, j, k}:=l_{i} l_{j} l_{k} \mid 1 \leq i, j, k \leq d\right\}$ for the eigenvalues of $s$ in its action on $W$. We identify the indices as $(i, j, k) \mapsto l_{i, j, k}$ and choose a basis $F_{W}=\left\{f_{i, j, k}\right\}$, $f_{i, j, k} \in\left\langle e_{i, j, k}\right\rangle$.

Some properties about $W$ can be given as follows:

Let $W$ be $\Gamma_{1,1,0, \ldots} \Gamma_{0,1,0, \ldots, 1} \Gamma_{2,1,0, \ldots . .}$ irreducible representations. We consider the sets for the eigenvalues of $s$ in its action on $W$ by

$$
\left\{l_{i, j, k}:=l_{i} l_{j} l_{k} \mid 1 \leq i<j<k \leq d, \mathrm{i}=\mathrm{j} \text { or } i=k\right\}
$$

$\left\{l_{i, j, k}:=l_{i} l_{j} l_{k}^{-1} \mid 1 \leq i, j, k \leq d, i \neq j \neq k\right.$ and $\left.i<j\right\}$,

$$
\left\{l_{i, i, j}:=l_{i}^{2} l_{j}^{-1} \mid 1 \leq i, j \leq d, i \neq j\right\}
$$

respectively. Their eigenspaces on $W$ are $\left\langle e_{i, j, k}=e_{i} \otimes\left(e_{j} \wedge e_{k}\right)\right\rangle \quad, \quad\left\langle e_{i, j, k}=\right.$ $\left.\left(e_{i} \wedge e_{j}\right) \otimes e_{k}^{*}\right\rangle,\left\langle e_{i, i, j}=e_{i}^{2} \otimes e_{j}^{*}\right\rangle$.
Lemma 4.1. Let $l_{i}=w^{q^{i-1}}$, for $1 \leq i \leq d$, be eigenvalues of s on $V \otimes F_{q^{d}}$ and let $W$ be irreducible representations as given above. There are suitable
labellings $l_{i, j, k}$ of the eigenvalues of s on $W$ with a basis $F_{W}=\left\{f_{i, j, k}\right\}$. The cost of this labelling procedure is $O\left(\rho_{q^{d}} d^{11} \log q\right)$ where $\rho_{q^{d}}$ is the cost of a field operation in $F_{q^{d}}$.
Proof 4.1. We can give the proof for each of W respectively as the following.

If $W$ is $\Gamma_{(1,1,0, \ldots)}$ irreducible representation then we construct the orbits of eigenvalues under the Frobenius map $\sigma$ and choose an orbit and label an element of this orbit as $l_{1} l_{1} l_{2}$. Taking $q-t h$ powers determines $l_{2} l_{2} l_{3}, l_{3} l_{3} l_{4}$. We compute $l_{212}^{q+2}=l_{112}^{2 q+1}$, so $l_{212}$ is determined and we compute $l_{113}=l_{112}^{1-q} l_{212}^{q}$ and $l_{313}=l_{212}^{q-1} l_{112}$. For $4 \leq k \leq d$, we determine the general terms as $l_{1} l_{1} l_{k}=\left(l_{1} l_{1} l_{k-1}\right)^{q+1} /\left(l_{1} l_{1} l_{k-2}\right)^{q} \quad$ and $\quad l_{k 1 k}=$ $\left(l_{k-1} l_{1} l_{k-1}\right)^{q+1} /\left(l_{k-2} l_{1} l_{k-2}\right)^{q}$. We choose an arbitrary $l_{1,1, k}, l_{k, 1, k} \in \Omega$ from each orbit $\Omega$ and compute its eigenspace $\left\langle e_{i, j, k}\right\rangle$. For other eigenvalues $l_{i, j, k}^{\sigma r}$, we compute $f_{i+r, j+r, k+r}:=f_{i, j, k}^{\sigma}$.

If $W$ is $\Gamma_{(0,1,0, \ldots, 0,1}$ irreducible representation then we choose an orbit and label an element of this orbit as $l_{1,2,3}$ and taking $q-t h$ powers, determine $l_{234}, l_{d-1, d, 1}$. We have equalities $l_{1} l_{124}^{q^{d-1}}=$ $l_{123} l_{d-1, d, 1}^{q}$ and $l_{2} l_{124}=l_{123} l_{234}$ where we have $l_{2}=l_{1}^{q}$, so $l_{124}$ is obtained by these equalities. Then, we obtain $l_{134}$ using equality $l_{134}^{q+1}=l_{124} l_{123}^{q^{2}}$.

For $\quad k \in\{5, \ldots, d\}$
$l_{1,2, k}=\left(l_{1,2, k-1}\right)^{q+1} /\left(l_{1,2, k-2}\right)^{q}$ is determined. For $k \in\{4, \ldots, d-1\}$
$l_{1, k, k+1}=\left(l_{1, k-1, k}\right)^{q+1} /\left(l_{1, k-2, k-1}\right)^{q}$. For $k \in$ $\{3, \ldots, d-2\}$ and $r \in\{2, \ldots, d-k\}$,
$l_{1, k, k+r}=\left(l_{1, k, k+r-1}\right)^{q+1} /\left(l_{1, k, k+r-2}\right)^{q} . \quad$ For $j \in\{2, \ldots, d-k-r\} \quad, \quad r \in\{1, \ldots, d-k-j\}$ and $k \in\{1, \ldots, d-r\}$, we determine $l_{j, j+k, j+k+r}:=$ $l_{j-1, j+k-1, j+k+r-1}^{q}$ and then we determine $l_{d+1-k-r, d+1-r, 1}:=l_{d-k-r, d-r, d}^{q}$. We choose an arbitrary $l_{1, j, k} \in \Omega$ from each orbit $\Omega$ and compute its eigenspace $\left\langle e_{i, j, k}\right\rangle$. For other eigenvalues $l_{i, j, k}^{\sigma r}$, we compute $f_{i+r, j+r, k+r}:=f_{i, j, k}^{\sigma}$.

If $W$ is $\Gamma_{(2,1,0, \ldots)}$ irreducible representation then we choose one of this orbits and label the first element as $l_{1,1,2}$. For $i \in\{2, \ldots, d-1\}, l_{i, i, i+1}=$ $l_{i-1, i-1, i}^{q}$, and $l_{d, d, 1}=l_{d-1, d-1, d}^{q} . \quad$ For $\quad k \in$ $\{1, \ldots, d-1\}$, we perform the followings:
i. we have $l_{1} l_{113}^{q^{d-1}}=l_{112} l_{\mathrm{d}, \mathrm{d}, 1}$ and $l_{2} l_{113}=$ $l_{112} l_{223}$ where we have $l_{2}=l_{1}^{q}$, so $l_{113}$ is obtained by these equalities.
ii. For $k \notin\{1,2,3\}$, we determine $l_{1,1, k}=$ $l_{1,1, k-1}^{1+q} / l_{1,1, k-2}^{q}$.
iii. For $j \in\{2, \ldots, d-k\}$, we determine $l_{j, j, j+k}:=l_{j-1, j-1, j+k-1}^{q}$ and then we determine $l_{d+1-k, d+1-k, 1}:=l_{d-k, d-k, d}^{q}$.
iv. For $j \in\{d+2-k, \ldots, d\}$, we determine $l_{j, j, j-d+k}:=l_{j-1, j-1, j-d+k-1}^{q}$.

We choose an arbitrary $l_{i, i, j} \in \Omega$ from each orbit $\Omega$ and compute its eigenspace $\left\langle e_{i, j, k}\right\rangle$.
Proposition 4.2 Since we can assume that the first coordinate of each $e_{i}$ is 1 , the vector $f_{i, j, k}$ corresponds precisely to $e_{i} \otimes e_{j} \otimes e_{k}$, and so it needs not to a scalar multiple (Magaard et al.,2008).

## 5. Finding images

This section's goal is to construct the image of an arbitrary $g \in G$. We describe the procedure for constructing the matrix $a_{i j}$ representing an arbitrary $g \in G$. Firstly, we compute $K=\left(\kappa_{i j k, l m n}\right)$, the matrix representation defined with the action of $g$ on $W$. We then compute the $a_{i j}$ since we know $K=$ ( $\kappa_{i j k, l m n}$ ).
Lemma 5.1. Let $K=\left(\kappa_{i j k, l m n}\right)$ be the matrix representation defined with the action of $g$ on $W$ with respect to the basis $F_{W}=\left\{f_{i, j, k}\right\}$. The matrix $a_{i j}$ of $g$ is determined with the cost $O\left(\left(\xi_{G}+\rho_{q^{d}}\left(d^{9}+\right.\right.\right.$ $\left.\left.d^{2} \log q\right)\right) \log \epsilon^{-1}$ ) where $\xi_{G}$ is the cost of choosing a random element of $G$, and $\rho_{q^{d}}$ is the cost of a field operation in $K$.
Proof. The basic equation for $\kappa_{i j k, l m n}$ is $\kappa_{i i k, l m n}=$ $a_{i l} a_{i m} a_{k n}$. We choose an arbitrary nonzero entry $\kappa_{i_{0} j_{0} k_{0}, l_{0} m_{0} n_{0}}$ in $K$. The matrix with $(i, l)$ entry $\kappa_{i j_{0} k_{0}, l m_{0} n_{0}}=a_{i l} a_{j_{0} m_{0}}\left(a_{k_{0} n_{0}}\right)$ is a projective image of $g$.

If $W$ is $\Gamma_{(0,1,0, \ldots, 0,1}$ irreducible representation, the basic equation for $\kappa_{i j k, l m n}$ is

$$
\kappa_{i j k, l m n}=a_{i l} a_{j m} a_{k n}^{*}
$$

We may use (2.1) for $i \neq j \neq k$ and $l \neq m \neq n$ and so we find $a_{11}^{*} a_{i l} a_{j m}$ for any $i, l, j, m$ by using the following equations:

$$
\begin{aligned}
& \kappa_{i j 1, l m 1}=a_{i l} a_{j m} a_{11}^{*} \text { for } i \neq j \neq 1, l \neq m \neq 1, \\
& \kappa_{i j 2, l m 2}=a_{i l} a_{j m} a_{22}^{*} \text { for } i \neq j \neq 2, l \neq m \neq 2, \\
& \kappa_{i j 3, l m 3}=a_{i l} a_{j m} a_{33}^{*} \text { for } i \neq j \neq 3, l \neq m \neq 3, \\
& a_{11}^{*} / a_{22}^{*}=\kappa_{i j 1, l m 1} / \kappa_{i j 2, l m 2} \text { for distinct } i, j \text { and } \\
& l, m \quad i, j, l, m \notin\{1,2\}, \\
& \\
& a_{11}^{*} / a_{33}^{*}=\kappa_{i j 1, l m 1} / \kappa_{i j 3, l m 3} \text { for distinct } i, j \text { and }
\end{aligned}
$$

$l, m i, j, l, m \notin\{1,3\}$,

$$
\begin{aligned}
& \kappa_{i 21, l 21}=a_{i l} a_{22} a_{11}^{*} \quad \text { for } i, l \notin\{1,2\} \\
& \kappa_{i 31, l 31}= a_{i l} a_{33} a_{11}^{*} \quad \text { for } i, l \notin\{1,3\} \\
& \kappa_{i 41, l 4}=a_{i l} a_{44} a_{11}^{*} \quad \text { for } i, l \notin\{1,4\} \\
& \kappa_{132, l 32}= a_{11} a_{33} a_{22}^{*} \quad \text { for } l \notin\{2,3\} \\
& \kappa_{k 32,132}= a_{k 1} a_{33} a_{22}^{*} \quad \text { for } k \notin\{2,3\} \\
& \kappa_{133,233}=a_{12} a_{33} a_{33}^{*} \\
& \kappa_{233,133}=a_{21} a_{33} a_{33}^{*}
\end{aligned}
$$

$$
a_{22} / a_{33}=\kappa_{i 21, l 21} / \kappa_{i 31, l 31} \text { for } i, l \notin\{1,2,3\}
$$

$$
a_{22} / a_{44}=\kappa_{i 21, l 21} / \kappa_{i 4} 1, l 4 \text { for } i, l \notin\{1,2,4\}
$$

If $W$ is $\Gamma_{(2,0, \ldots, 0,1)}$ irreducible representation we may use (2.1) for $i=j \neq k$ and $l=m \neq n$ and so we find $a_{11}^{*} a_{i l} a_{i l}$ for any $i, l$ by using the following equations:

$$
\begin{aligned}
& \kappa_{i i 1, l l 1}=a_{i l}^{2} a_{11}^{*} \quad \text { for } i \neq 1, l \neq 1 \\
& \kappa_{i i 2, l l 2}=a_{i l}^{2} a_{22}^{*} \quad \text { for } i \neq 2, l \neq 2 \\
& \kappa_{i i 3, l l 3}=a_{i l}^{2} a_{33}^{*} \quad \text { for } i \neq 3, l \neq 3 \\
& \kappa_{112, l l 2}=a_{1 l}^{2} a_{22}^{*} \quad \text { for } l \neq 2 \\
& \kappa_{k k 2,112}=a_{k 1}^{2} a_{22}^{*} \text { for } k \neq 2 \\
& \kappa_{113,223}=a_{12}^{2} a_{33}^{*} \\
& \kappa_{223,113}=a_{21}^{2} a_{33}^{*} \\
& a_{11}^{*} / a_{22}^{*}=\kappa_{i i 1, l l 1} / \kappa_{i i 2, l l 2} \text { for } i, l \notin\{1,2\}, \\
& a_{11}^{*} / a_{33}^{*}=\kappa_{i j 1, l m 1} / \kappa_{i j 3, l m 3} \text { for } i, l \notin\{1,3\}
\end{aligned}
$$

If $W$ is $\Gamma_{(1,1,0, \ldots)}$ irreducible representation, we choose an arbitrary nonzero entry $\kappa_{i_{0} j_{0} k_{0}, l_{0} m_{0} n_{0}}$ in $K$. The matrix with $(i, l)$ entry $\kappa_{i j_{0} k_{0}, l m_{0} n_{0}}=$ $a_{i l}\left(a_{j_{0} m_{0}}\right)\left(a_{k_{0} n_{0}}\right)$ is image of $g$. In this case, we apply a procedure as above.

## Corresponding Author:

Assoc. Prof. Dr. Nurullah ANKARALIOĞLU
Mathematics Department, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
E-mail: ankarali@atauni.edu.tr

## References

1. Babai L. Local expansion of vertex-transitive graphs and random generation in finite groups.in: Theory of Computing, Los Angeles, (Association for Computing Machinery, New York, 1991). 1991; pp. 164-174.
2. Beals R, Leedham-Green CR, Niemeyer AC, Prager CE, Seress Á. A black-box group algorithm for recognizing finite symmetric and alternating groups I. Trans. Amer. Math. Soc. 2003;355, 2097-2113.
3. Beals R, Leedham-Green CR, Niemeyer AC, Prager CE, Seress Á. Constructive recognition of finite alternating and symmetric groups acting as matrix groups on their natural permutation modules. Journal of Algebra, 2005;292 (1):4-46
4. Corr BP. Estimation and computation with matrices over finite fields. Phd Thesis, The University of Western Australia Department of Mathematics. January, 2014;180.
5. Dumas JG, Pernet C, Wan Z. Efficient computation of the characteristic polynomial. In Proceedings of the 2005 international symposium on Symbolic and algebraic computation, pages 2005;140-147. ACM.
6. Fulton W, Harris J. Representation Theory A First Course. Graduate Texts in Mathematics, Springer. 1999:551.
7. Kantor WM, Seress Á. Black box classical groups. Mem. Amer. Mat. Soc. 2001 :149,168.
8. Magaard K, O’Brien E, Seress A. Recognition of small dimensional representations of general lineer groups. J. Avustralian Math. Soc., 2008;85, 229-250.
9. Neumann PM, Praeger CE. A recognition algorithm for special linear groups.
10. Proc. London Math. Soc. 1992;65, 555-603.
11. Niemeyer AC, Praeger CE. A recognition algorithm for classical groups over finite fields. Proceedings of the London Mathematical Society, 1998;77(1):117-169.
12. Pak I. The product replacement algorithm is polynomial. in: 41st Ann. Symp. on Foundations of Computer Science, (Redondo Beach, CA, 2000, IEEE Computer Society Press, Los Alamitos, CA) 2000; 476-485.
13. Seress Á. Permutation Group Algorithms. Cambridge University Press. 2003:274.
