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Abstract: In big data application sets, the values of the data used change continually in practice. Therefore, 
applications involving frequently updated data require index structures that can efficiently handle frequent update of 
data values. Several methods to index the values of frequently updated data have been proposed, and most of them 
are based on R-tree-like index structures. Research has been conducted to try to improve the update performance of 
R-trees, and focuses on query performance. Even though these efforts have resulted in improved update performance, 
the overhead involved and the immaturity of the concurrency control algorithms of R-trees render the proposed 
methods a less-than-ideal choice for frequently updated data. In this paper, we propose an update-efficient indexing 
method. The proposed index is based on the B+-tree and the Hilbert curve. We present an advanced Hilbert curve 
that automatically adjusts the order of the Hilbert curve in sub-regions, according to the data distribution and the 
number of data items. We show through experiments that our strategy achieves a faster response time and higher 
throughput than competing strategies. 
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1. Introduction 

Big data has recently emerged as an important 
concept in information technology (IT). Big data 
poses a challenge for information technology in terms 
of providing effective counterplans and making more 
accurate predictions through the utilization and 
analysis of massive amounts of data. Governments 
and leading enterprises across the globe expect big 
data to become a major new source of economic 
value. Therefore, they are researching its effects on 
market trends, and studying new business models that 
use big data (Azhar et al., 2010). Data sets for big 
data applications are being collected at an increasing 
rate by ubiquitous information-sensing mobile 
devices, aerial sensory technologies (remote sensing), 
software logs, cameras, microphones, radio-
frequency identification readers, and wireless sensor 
networks. The actual values of the data used in big 
data applications change continually. In the database 
community, much research has been conducted on 
frequent updation of data in an effort to meet the 
requirements posed by big data applications. A major 
issue in this area is the improvement of application 
performance by using efficient index structures for 
frequently updated data. 

Generally, big data applications are 
characterized by a high volume of updates that occur 
when data values (i.e., multidimensional data) change 
frequently and continually. The high volume of 
updates poses several new challenges for the design 
index structures, one of which derives from the need 
to accommodate very frequent updates while 

allowing for the efficient processing of queries. This 
combination of desired functionalities is particularly 
troublesome in the context of indexing 
multidimensional data. The dominant indexing 
technique for multidimensional data with low 
dimensionality involves the use of R-tree families 
(Antonin, 1984). However, they have been conceived 
for largely static datasets and exhibit poor update 
performance. Several techniques based on R-tree 
families have been proposed for indexing frequently 
updated data, but while they are efficient for queries, 
their update performance is poor. 

Consequently, a few techniques to improve the 
update performance of R-tree families have been 
proposed (Dongseop et al., 2002; Mongli et al., 
2003). They employ lazy update and bottom-up 
update techniques to improve update performance. 
However, update performance remains an issue. The 
problem is exacerbated by the concurrency control 
algorithms of R-trees, such as the Rlink-tree (Philip et 
al., 1981). These simply cannot adequately handle a 
high volume of concurrent access involving updates. 
Notably, frequent tree ascents caused by node 
splitting and the propagation of minimum-bounding 
rectangle (MBR) updates lead to costly lock 
conflicts. This problem is inherent in many 
multidimensional index structures. Another problem 
with existing index structures for frequently updated 
data is that they are not easily integrated into existing 
database systems. 

Two studies in particular (Christian et al., 2004; 
Man et al., 2008) propose another approach, which 
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uses classical B+-tree indexing and is based on a 
space-filling curve to transform multidimensional 
data into one-dimensional values. There are several 
advantages to using the B+-tree. First, the B+-tree is 
used widely in commercial database systems and has 
proved to be very efficient with respect to queries as 
well as updates. It is both scalable and robust with 
respect to varying workloads. Second, being a one-
dimensional index, it does not exhibit the update 
performance problems associated with R-tree 
families. Third, it is typically appropriate for 
modeling multidimensional data extents as points, 
which enables linearization and subsequent B+-tree 
indexing. Usually, the order of the space-filling curve 
of an index is static. In practice, however, data are 
not uniformly distributed and the number of data 
points is not fixed. Thus, at a certain point in time, an 
excessive number of data points may have the same 
curve value. This situation can severely degrade the 
performance of indexing methods. Taking this 
shortcoming as our motivation, we propose a B+-tree 
based on a dynamic Hilbert curve. This is a novel 
way of indexing frequently updated data based on the 
Hilbert curve, the order of which can be varied 
dynamically according to data distribution. Our 
proposed index structure dynamically adjusts the 
order of the space-filling curve according to the data 
distribution of sub-regions in order to mitigate 
performance degradation issues. 

This paper is organized as follows: in Section 2, 
we review previous work directly related to ours. We 
present our proposed indexing method in Section 3, 
and show our experimental results in Section 4. 
Finally, we conclude this paper in Section 5 with 
directions for our future work. 

 
2. Related Works 

Traditional index structures for 
multidimensional data, such as R-trees and their 
variants (e.g., R*-trees), were designed to support 
efficient query processing rather than to enable 
efficient updates. These index structures work well in 
applications where queries occur much more 
frequently than updates. However, they are not 
adequate for applications involving the indexing of 
frequently updated data because such applications 
bear workloads characterized by heavy loads of 
updates and frequent queries. Consequently, several 
new index structures have been proposed to index 
frequently updated data. The Lazy Update R-tree 
(Dongseop et al., 2002) aims to reduce update cost by  
handling separately updates of data that do not move 
outside their leaf-level MBRs. A generalized 
approach to bottom-up updates in R-trees has also 
been recently examined  (Mongli et al., 2003). The 
Time Parameterized R-tree (TPR-tree) (Yufei et al., 

2003) indexes linear functions of time. The current 
value of a data item is found by simply applying the 
function representing its value to the current time. 
MBRs are also functions of time. Specifically, in 
each dimension, the lower bound of an MBR is set to 
move with the maximum downward change of all 
enclosed data, while the upper bound is set to move 
with the maximum upward change of all enclosed 
data. As enclosed data can be both frequently updated 
points and rectangles, this approach ensures that the 
bounding rectangles are indeed bounding at all times. 
Frequent updates are needed to ensure that updated 
data currently in the vicinity are assigned to the same 
bounding rectangles. Further, bounding rectangles 
never shrink and are generally larger than needed. To 
counter this phenomenon, a so-called “tightening” is 
applied to bounding rectangles when they are 
accessed. 

The aforementioned solutions cannot be easily 
integrated into an existing relational database, as 
considerable changes are required in the “kernel” of a 
system (e.g., query optimization, concurrency 
control, etc.). Jensen et al. (Christian et al., 2004) 
propose the Bx-tree, which consists of B+-trees 
indexing the transformed one-dimensional values of 
multidimensional data based on a space-filling curve 
(e.g., Hilbert curve). In one study (Man et al., 2008), 
a Bdual-tree is proposed to enhance query efficiency 
by eliminating false hits of Bx-trees. These index 
structures employ the Hilbert curve to transform 
multidimensional data into one-dimensional data. In 
order to make this transformation, the order of the 
Hilbert curve must first be determined. The order 
influences the performance of the indexing methods. 
If a large order value is used for indexing, the index 
size becomes large. On the other hand, if we use a 
small order value, the number of data points whose 
curve values are identical increases. As previously 
mentioned, a large number of identical curve values 
decreases search performance. 

 
3. Dynamic Hilbert Curve-based B+-Tree 
3.1 Naïve Approach based on the Hilbert Curve 

In order to explain our index structure more 
clearly, we will first present the naïve approach 
followed by our proposed approach. The basic 
structure is similar to that of the Blink-tree (Srinivasan 
et al., 1993), the latter of which is a version of the B+-
tree that has been modified to support concurrency 
control techniques. Internal nodes at the same level in 
a Blink-tree are linked in concurrency control 
algorithms. The leaf nodes contain the Hilbert curve 
values of multidimensional data that are being 
indexed. The Hilbert curve is one of a variety of 
space-filling curves. A space-filling curve is a 
continuous path that visits every point in a discrete, 



Life Science Journal 2014;11(10)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  456

multidimensional space exactly once and never 
intersects itself. Although other curves may be used, 
we use the Hilbert curve because it has been found to 
be slightly better than the Peano curve (Man et al., 
2008; Bongki et al., 2001). A leaf entry of the Blink-
tree is the (cv, pid) pair, where cv is a Hilbert curve 
value and pid is a data page identifier. Data pages 
contain information about multidimensional data. 
Our index decides the order of the Hilbert curve in 
favor of storing all data with the same cv value on 
one disk page. Consequently, the tree size is very 
small. It can also handle frequent updates of data, 
since regions covered by the cvs are virtually static 
unless the order of the Hilbert curve is changed. 

It is very simple to construct our index using 
curve values, as shown in Figure 1. Before 
constructing our index, we acquire the Hilbert curve 
values of the data. We decide that the order of the 
Hilbert curve will be 2, according to the number of 
entries that can be stored on a disk page. Assume that 
this order is the optimal value for storage utilization. 
When the order is 2, the data space is divided into 16 
sub-regions, and cvs are assigned to each sub-region. 
The leaf nodes of our index contain (cv, pid) pairs, 
and each leaf node has a maximum of two entries. 
Through our index, an inserter finds a data page for a 
new data item using its cv. As shown in Figure 1, 
data that have the same curve value are stored on the 
same data page. A data page can be represented by a 
cv value because the data with the same curve value 
are retrieved through cv. 

 

 
Figure 1. Basic structure of the proposed index 

 
A range search is then performed, as follows. 

First, we acquire all cv values in the searcher’s query 
range. For example, in Figure 1, the range of query Q 
overlaps with two regions that are covered by cvs 
0010b and 0011b. We then traverse our index with cvs 
0010b and 0011b, and locate leaf entries that contain 

P1 and P2. The searcher loads data pages P1 and P2 
and then filters objects (O1, O2, O3) stored in P1 and 
P2, in order to achieve the final results (O1, O2). 

In this approach, index structures are very small 
because the order of the Hilbert curve is determined 
to maximize storage utilization. Furthermore, the 
index structures change much less frequently because 
regions covered by cvs are virtually static unless the 
order of the Hilbert curve is changed. However, in 
practice, data are not uniformly distributed at any 
given time. They can be highly skewed in sub-
regions, and the number of data points in some data 
spaces may increase. Eventually, the number of data 
points with the same cv value exceeds the optimal 
level. For this reason, in spite of high storage 
utilization, the overall performance of the algorithm 
in terms of updating and searching is degraded. To 
solve this problem simply, we can use the highest 
order of the Hilbert curve. However, the performance 
of the algorithm will suffer because this lowers 
storage utilization. In particular, using the highest 
order severely affects update performance because it 
increases the likelihood of the curve value of an 
object being updated. 

In Figure 2(a) and Figure 2(b), we assign 
Hilbert curve values to data when the order is 1 and 
2, respectively. Both data spaces have the same size 
and O1 and O2 move along the same paths, which are 
denoted by arrows. In Figure 2, the curve value of O1 
does not change, but the O2 curve value changes 
twice. Again, as the order increases, so too will the 
possibility of the curve values being updated. If the 
order of the Hilbert curve can be varied according to 
the data distribution and the number of data points in 
a certain sub-region, the performance of the index 
structures can improve. However, using different 
orders for different sub-regions makes mapping data 
to cvs impossible. In this paper, we propose a new 
indexing method based on the Hilbert curve that 
dynamically varies the order of the Hilbert curve in 
sub-regions. We also propose a technique to map the 
values of data to cvs in different curve orders. 

 

 
Figure 2. The order of the Hilbert curve and the 

likelihood of curve value updates 
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3.2 Construction Process 
In Figure 3, we assume that the initial order of 

the Hilbert curve is 2 and the blocking factor of a 
data page is 4. Our index in the figure consists of a 
Blink-tree and data pages. A leaf entry of our index 
consists of (key, pid). A pid is the identifier of a data 
page where data having the same key are stored. A 
key is made up of (o, cv), where o is the order of the 
Hilbert curve and cv is the Hilbert curve value when 
the order is o. The order o is adopted dynamically 
according to the data distribution. An inserter 
performs insertion operations in three phases. In the 
first phase, the inserter creates a key for a newly 
inserted datum. In the second phase, the inserter 
locates the data page for the new key by traversing 
our index and adjusts the order of the Hilbert curve, if 
necessary. Finally, in the third phase, the new datum 
is inserted into the located data page. In this phase, if 
the object page cannot accommodate the new datum, 
the inserter performs split operations. 

The initial order of the Hilbert curve is set by 
the user. With its location, the inserter calculates a cv 
value for the new datum. It then concatenates the bit 

string of cv and the bit string of the initial order o to 
create the key of the new datum. For example, in 
Figure 3(a), the cv of O1 is 0001b, and the order is 
10b. Thus, the key for O1 is 100001b (10b + 0001b). 
Even though both bit strings are concatenated, the 
key is not treated as an integer in the compare 
function of our index. We will show how to compare 
keys when we describe the next phase. In this phase, 
the inserter locates a proper data page for the new 
datum by traversing our index with the new key. As 
mentioned above, a leaf entry of our index consists of 
the key and the pid. If the inserter finds a leaf entry 
whose key is the same as the new key, it skips to the 
last phase. Otherwise, the inserter gets the pid of the 
previous leaf entry to make a new entry for the new 
datum, and places the new entry on the leaf page. In 
Figure 3(a), O4 is the new datum to be inserted and 
there is no leaf entry that matches its key. The 
inserter thus fetches the pid of the previous entry to 
make a new entry and places the new entry (101010b, 
P1) on the leaf page. O4 is then inserted into the pid 
data page in the next phase. 

 

 
Figure 3. Construction processing phases of the proposed index 
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When locating a leaf entry in our index, the 
inserter examines neighboring keys and determines 
whether they can be merged with the new key. If the 
number of the neighboring keys that are covered with 
the lower-order key on the new key is 2, the new key 
is merged with those neighbors. However, if the 
number of neighboring keys is 1, the keys do not 
merge because this would increase dead space and 
degrade search performance. Merging the keys means 
that the sub-regions covered by them are merged as 
well, thus lowering their order. Assume that O5 is 
being inserted into our index in Figure 3(a). The key 
for O5, 100010b, is placed between 100001b and 
100011b, and the number of leaf entries in our index 
is 5. However, as previously mentioned, the inserter 
investigates neighboring keys and the new key to see 
if sub-regions covered by them can be merged to a 
lower-order sub-region. As shown in Figure 3(a), the 
sub-regions of O1, O2, and O5 can be merged into 
sub-region 00b. O1, O2, and O5 are stored on the same 
page and are always loaded together. Thus, their 
curve values do not need to be assigned to each sub-
region. In this case, we lower the order of the sub-
region and assign the same key to the objects, i.e., O1, 
O2, and O5. The existing keys (100001b and 100011b) 
are deleted, and a single new key for O1, O2, and O5 
namely, 0100b is entered on the leaf node, as shown 
in Figure 3(b). Merging keys reduces the index 
structure without affecting search performance. Once 
the keys are merged, O5 is inserted into data page P1. 

If the page has enough space, O5 is saved on it. 
Otherwise, a split operation for the data page is 
initiated. The inserter divides the data on page P1 and 
the new datum into two groups, according to the 
following grouping criteria: (1) data with a common 
key must be placed in the same group; (2) data with 
similar key values should be placed in the same 
group; (3) the number of data items in both groups 
should be similar; (4) each group should be filled to 
over 30% of its capacity. Since we assume that the 
maximum number of data items on a page is 4, O5 
cannot be placed in data page P1. Consequently, the 
inserter starts a split operation. The sub-regions of 
O1, O2, and O5 were earlier merged into the lower 
sub-region 00b, so that the keys of P1 and O5 are 
ordered as 0100b (O1, O2, O5), 101001b (O3), and 
101010b (O4). According to the above split criteria, 
the inserter stores O1, O2, and O5 to P1, and O3 and O4 
to the new page P2. Our index contains curve values 
derived from different orders, i.e., the order of 0100b 
is 1, and the order of 1010001b and 101010b is 2. 
Keys in our index are arranged in order of ascending 
value of cv. If cvs of keys are the same, the order is 
decided based on the value of o. Therefore, our index 
uses a new key comparison method, as shown in 
Figure 4. The compare function compares key1 and 

key2 after converting the one belonging to a higher 
order to the order of the other. For example, assume 
that the new key 100000b of O6 is inserted into the 
tree in Figure 3(b). The inserter will compare the new 
key with the leaf entries of the tree to locate a data 
page for O6. The new key 100000b is transformed to 
0100b when compared with 0100b on the tree. The 
new key is matched with 0100b. Thus, O6 is placed on 
data page P1. 

 
Function: Comparison 

Input: key1, key2 
Output: result (compResult, orderDiff) 

Begin 
result.orderDiff = false; 
if ( key1.order < key2.order ) 

key2.cv = transform key2.cv according to  
key1.order; 
result.orderDiff = true; 

else if ( key1.order > key2.order ) 
key1.cv = transform key1.cv according to  
key2.order; 
result.orderDiff = true; 

end If 
result.compResult = key1.cv - key2.cv; 
return result; 

End 
Figure 4. Comparison function of the proposed index 

 
Split keys may occur during the splitting of data 

pages. Assume that the new key 100010b for O8 is 
inserted into the tree in Figure 3(c). The data page P1 
will be located for O8 by traversing our index. 
However, a data page can accommodate only four 
data items, and thus O8 causes an overflow on page 
P1. Since the data stored on P1 have the same key, 
they cannot be divided into groups. The inserter thus 
splits keys. Splitting a key means that part of the sub-
region covered by a key is assigned a higher order. If 
possible for a small index structure, the inserter tries 
to divide a sub-region into a higher-order sub-region 
and the original sub-region, as shown in Figure 5(a). 
Otherwise, the original sub-region is divided to four 
higher-order sub-regions, as shown in Figure 5(b). 
Keys are not created for sub-regions in Figure 5(b) 
that do not have any data. The key for the data on P1 
can be divided, as in Figure 5(a), since the sub-region 
covered by 100010b contains two data items and the 
original sub-region contains three data items. 
Therefore, the inserter splits the key for the sub-
region covered by 0100b into 0100b and 100010b, as 
shown in Figure 3(d). In this case, traverses for insert 
or search operations must be carefully conducted 
when comparing keys. In Figure 3(d), assume that the 
inserter is trying to insert a new datum with key 
100010b in the tree. After comparing 100010b with 
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0100b, the inserter stops to traverse the tree, since the 
inserted key is covered by 0100b, and tries to enter 
the new data item on page P1. However, the new 
datum must be placed in P3 because the leaf entry 
(100010b, P3) is on the tree. To find the same key or 
the covering key with the highest order among the 
inserted keys, the inserter must confirm the next keys 
of the key covering the inserted key on visited 
internal node or leaf node until the inserter meets the 
same key or the larger key than the inserted key. This 
search operation is not very costly, since entries of 
visited internal nodes or leaf nodes are in the main 
memory, where this operation is performed. 

 

 
Figure 5. Key split strategies of the proposed index 

 
3.3 Range Search 

A range search is performed in a simple manner. 
As shown in Figure 3(e), in order to process a range 
query Q, we find all keys covered by regions that 
overlap with Q. Search keys consist of the maximum 
order and the curve values of overlapped regions. In 
the figure, the search keys of Q are 100001b, 
100010b, 101110b and 101101b. We then find through 
our index pids whose keys match the search keys. 
The searcher, like the inserter, tries to find the same 
key or a covering key with the highest order on the 
searched key. In the figure, we will find 0100b and 
100010b. 

 
4. Performance Evaluation 

In this section, we experimentally compare our 
index against the Bdual-tree and the TPR-tree. All 
experiments were performed on a machine with a 
Pentium IV 3GHz CPU and 1GB of memory. The 
disk page size was fixed at 1KB. All reported I/O 
costs correspond to page accesses. We generated 
spatiotemporal data following the methodology of 
(Man et al., 2008; Yufei et al., 2003). The data space 
was two-dimensional, where each dimension had a 
domain of [0, 1000]. Five thousand rectangles were 
sampled from a 128,000 (128-K) spatial dataset (Man 
et al., 2008). It models the positions of airports. Each 
object is an aircraft that moves along a line segment 
connecting two airports. Initially, each aircraft is 
positioned at an arbitrary airport and randomly 
selects another airport as its destination. At 

subsequent timestamps, the aircraft will move from 
the source airport to a target one with a speed that is 
generated in the range [0, 5]. As soon as the object 
reaches its destination, it chooses another airport as 
its next destination, with a new speed obtained in the 
same way as before. In addition to these updates, an 
aircraft also issues an update 25 timestamps (= T) 
after the previous one (Man et al., 2008; Yufei et al., 
2003). An index with a time horizon of H = 2T = 50 
time units is created for each dataset. All objects are 
created and inserted into the index at time 0. Queries 
are issued after H/2. We measure the query cost by 
averaging it over a workload of 100 queries. Range 
queries are generated with a range of 0.01%, 0.02%, 
0.03%, 0.04% and 0.05% of the total data space, and 
are uniformly distributed. kNN queries were 
generated with k at 5, 10, 20, 30, 40, 50, 60, 70, 80, 
90, 100, 150, 200, 500 and 1000, and are uniformly 
distributed. Figure 6 shows positions of the aircraft at 
T = 0 and T = 25. 

 

 
(a) T=0                               (b) T=25 

Figure 6. Airplane positions 
 

We compared the average update cost of our 
index against those of the others. Note that for each 
update, one deletion and one insertion were 
performed. We calculated the average update cost, 
including the deletion and insert costs. Figure 7 
shows the average update cost of three indices with 
respect to dataset size. We recorded the number of 
I/Os whenever 5,000 (5K) updates were performed 
and averaged the total I/Os. As shown in the figure, 
our index and the Bdual-tree achieved significant 
improvement over the TPR-tree. This is on account 
of the properties of the B-tree and R-tree families. 
Usually, when the storage requirements of both index 
structures are similar, the insert and delete costs of R-
tree families are higher than those of B-tree families. 
It seems from Figure 7 that our index only slightly 
outperforms the Bdual-tree. However, our index 
actually performs 1.5~2 times better than the Bdual-
tree. The reason for this is similar to that for the 
storage utilization improvement. Our index does not 
need to keep a high order of the Hilbert curve. It 
flexibly adjusts the order of lower values according 
to the data distribution and the number of objects 



Life Science Journal 2014;11(10)                                                          http://www.lifesciencesite.com 

 

http://www.lifesciencesite.com             lifesciencej@gmail.com  460

without loss of performance. Figure 8 shows the 
update cost with respect to the number of updates. 
Three index structures are constructed using 100,000 
(100K) objects. This experiment has aspects similar 
to those in Figure 7. Our index still performs 
approximately four times and two times better than 
the TPR-tree and Bdual-tree, respectively. 

 

 
Figure 7. Update costs with varying data size 

 

 
Figure 8. Update costs when the number of updates 

is varied 
 

Figures 9 and 10 show the range of query 
performance of the three index structures. Figure 9 
shows the query performance of the three index 
structures with respect to dataset size. We recorded 
the numbers of I/Os of the three index structures 
whenever 100 range queries were performed. The 
query size is 0.03%. The number of I/Os increases 
linearly with an increase in the number of objects. 
Our index outperformed other indices as the number 
of objects increased. The performance gap also 
increased.  

 

 
Figure 9. Range query costs with varying the data size 

Figure 10 shows query performance while 
varying query size. The three index structures were 
constructed with 100,000 (100K) moving objects. 
While the number of I/Os of the TPR-tree and Bdual-
tree increased linearly, our index maintained a 
constant number of I/Os. 

 

 
Figure 10. Range query costs with varying the range 

of query size 

 
Figure 11 shows the target positions of the 

experimental kNN queries with k = 5. Figure 12 
shows the kNN query performance of our index and 
the Bdual-tree with respect to the 100K dataset 
described in the experimental setup. The results in 
Figure 12 show that the performance of the kNN 
query for our index outperformed the Bdual-tree. 

 

 
Figure 11. Target positions of kNN queries with k=5 
 

 
Figure 12. kNN query costs with varying the number of k 

 
This is because the formula used by the kNN 

query algorithm in the Bdual-tree to compute searching 
radius increment yields a small value.  This causes 
the kNN query algorithm of the Bdual-tree to slowly 
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expand the searching area. The results also show that 
our index structure is superior to the Bdual-tree 
structure when handling non-uniform datasets. This is 
because our index dynamically adjusts the Hilbert 
curve order in crowded areas based solely on the 
input dataset, whereas the Bdual-tree uses a static set 
of reference points.  Since our index divides the 
space based entirely on the input dataset, it always 
performs well with any dataset.  However, for the 
Bdual-tree, if the predefined static reference points do 
not fit well with the input dataset, it will not perform 
well. If we look at the input dataset and calibrate the 
reference points in the Bdual-tree before performing 
the experiments, it will yield better results. It is a 
disadvantage of the Bdual-tree that information about 
the dataset is needed in order to tune the reference 
points to fit it. In both index structures, the number of 
I/Os increases linearly with the value of k. When k < 
500, the number of I/Os of our index increases by a 
small value as k increases. This is because of the non-
uniform dataset used. In crowded areas, the kNN 
query does not need to search a large area to obtain 
fewer than 500 objects. 

 
5. Conclusions 

In this paper, we proposed a new indexing 
method based on the Hilbert curve technique for 
moving objects. The contributions of our proposed 
method can be summarized as follows: first, we 
proposed a dynamic Hilbert curve technique that 
adjusts the order of a certain sub-region according to 
the data distribution or the number of objects. This 
technique reduces the index size. As a result, the 
performance of the update and query operations 
improves significantly. Second, the base data 
structure of our indexing method is the B+-tree, and 
thus, it can easily be integrated into commercial 
database management systems. Finally, through 
experiments, we showed that our indexing method 
outperforms the TPR-tree and the latest Bdual-tree 
indexing method. In future work, we will apply our 
indexing method to various big data applications and 
experimentally compare performances of the 
applications. 
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