
Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 454

Dynamic Hilbert Curve-based B+-Tree to Manage Frequently Updated Data in Big Data Applications

Dongmin Seo, Sungho Shin, Youngmin Kim, Hanmin Jung, Sa-kwang Song

Dept. of Computer Intelligence Research, Korea Institute of Science and Technology Information, South Korea
{dmseo, maximus74, ymkim, jhm, esmallj}@kisti.re.kr

Abstract: In big data application sets, the values of the data used change continually in practice. Therefore,
applications involving frequently updated data require index structures that can efficiently handle frequent update of
data values. Several methods to index the values of frequently updated data have been proposed, and most of them
are based on R-tree-like index structures. Research has been conducted to try to improve the update performance of
R-trees, and focuses on query performance. Even though these efforts have resulted in improved update performance,
the overhead involved and the immaturity of the concurrency control algorithms of R-trees render the proposed
methods a less-than-ideal choice for frequently updated data. In this paper, we propose an update-efficient indexing
method. The proposed index is based on the B+-tree and the Hilbert curve. We present an advanced Hilbert curve
that automatically adjusts the order of the Hilbert curve in sub-regions, according to the data distribution and the
number of data items. We show through experiments that our strategy achieves a faster response time and higher
throughput than competing strategies.
[Dongmin Seo, Sungho Shin, Youngmin Kim, Hanmin Jung, Sa-kwang Song. Dynamic Hilbert Curve-based B+-
Tree to Manage Frequently Updated Data in Big Data Applications. Life Sci J 2014;11(10):454-461]
(ISSN:1097-8135). http://www.lifesciencesite.com. 62

Keywords: Dynamic Hilbert curve; B+-tree, frequently updated data; multi-dimensional data; big data

1. Introduction

Big data has recently emerged as an important
concept in information technology (IT). Big data
poses a challenge for information technology in terms
of providing effective counterplans and making more
accurate predictions through the utilization and
analysis of massive amounts of data. Governments
and leading enterprises across the globe expect big
data to become a major new source of economic
value. Therefore, they are researching its effects on
market trends, and studying new business models that
use big data (Azhar et al., 2010). Data sets for big
data applications are being collected at an increasing
rate by ubiquitous information-sensing mobile
devices, aerial sensory technologies (remote sensing),
software logs, cameras, microphones, radio-
frequency identification readers, and wireless sensor
networks. The actual values of the data used in big
data applications change continually. In the database
community, much research has been conducted on
frequent updation of data in an effort to meet the
requirements posed by big data applications. A major
issue in this area is the improvement of application
performance by using efficient index structures for
frequently updated data.

Generally, big data applications are
characterized by a high volume of updates that occur
when data values (i.e., multidimensional data) change
frequently and continually. The high volume of
updates poses several new challenges for the design
index structures, one of which derives from the need
to accommodate very frequent updates while

allowing for the efficient processing of queries. This
combination of desired functionalities is particularly
troublesome in the context of indexing
multidimensional data. The dominant indexing
technique for multidimensional data with low
dimensionality involves the use of R-tree families
(Antonin, 1984). However, they have been conceived
for largely static datasets and exhibit poor update
performance. Several techniques based on R-tree
families have been proposed for indexing frequently
updated data, but while they are efficient for queries,
their update performance is poor.

Consequently, a few techniques to improve the
update performance of R-tree families have been
proposed (Dongseop et al., 2002; Mongli et al.,
2003). They employ lazy update and bottom-up
update techniques to improve update performance.
However, update performance remains an issue. The
problem is exacerbated by the concurrency control
algorithms of R-trees, such as the Rlink-tree (Philip et
al., 1981). These simply cannot adequately handle a
high volume of concurrent access involving updates.
Notably, frequent tree ascents caused by node
splitting and the propagation of minimum-bounding
rectangle (MBR) updates lead to costly lock
conflicts. This problem is inherent in many
multidimensional index structures. Another problem
with existing index structures for frequently updated
data is that they are not easily integrated into existing
database systems.

Two studies in particular (Christian et al., 2004;
Man et al., 2008) propose another approach, which

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 455

uses classical B+-tree indexing and is based on a
space-filling curve to transform multidimensional
data into one-dimensional values. There are several
advantages to using the B+-tree. First, the B+-tree is
used widely in commercial database systems and has
proved to be very efficient with respect to queries as
well as updates. It is both scalable and robust with
respect to varying workloads. Second, being a one-
dimensional index, it does not exhibit the update
performance problems associated with R-tree
families. Third, it is typically appropriate for
modeling multidimensional data extents as points,
which enables linearization and subsequent B+-tree
indexing. Usually, the order of the space-filling curve
of an index is static. In practice, however, data are
not uniformly distributed and the number of data
points is not fixed. Thus, at a certain point in time, an
excessive number of data points may have the same
curve value. This situation can severely degrade the
performance of indexing methods. Taking this
shortcoming as our motivation, we propose a B+-tree
based on a dynamic Hilbert curve. This is a novel
way of indexing frequently updated data based on the
Hilbert curve, the order of which can be varied
dynamically according to data distribution. Our
proposed index structure dynamically adjusts the
order of the space-filling curve according to the data
distribution of sub-regions in order to mitigate
performance degradation issues.

This paper is organized as follows: in Section 2,
we review previous work directly related to ours. We
present our proposed indexing method in Section 3,
and show our experimental results in Section 4.
Finally, we conclude this paper in Section 5 with
directions for our future work.

2. Related Works

Traditional index structures for
multidimensional data, such as R-trees and their
variants (e.g., R*-trees), were designed to support
efficient query processing rather than to enable
efficient updates. These index structures work well in
applications where queries occur much more
frequently than updates. However, they are not
adequate for applications involving the indexing of
frequently updated data because such applications
bear workloads characterized by heavy loads of
updates and frequent queries. Consequently, several
new index structures have been proposed to index
frequently updated data. The Lazy Update R-tree
(Dongseop et al., 2002) aims to reduce update cost by
handling separately updates of data that do not move
outside their leaf-level MBRs. A generalized
approach to bottom-up updates in R-trees has also
been recently examined (Mongli et al., 2003). The
Time Parameterized R-tree (TPR-tree) (Yufei et al.,

2003) indexes linear functions of time. The current
value of a data item is found by simply applying the
function representing its value to the current time.
MBRs are also functions of time. Specifically, in
each dimension, the lower bound of an MBR is set to
move with the maximum downward change of all
enclosed data, while the upper bound is set to move
with the maximum upward change of all enclosed
data. As enclosed data can be both frequently updated
points and rectangles, this approach ensures that the
bounding rectangles are indeed bounding at all times.
Frequent updates are needed to ensure that updated
data currently in the vicinity are assigned to the same
bounding rectangles. Further, bounding rectangles
never shrink and are generally larger than needed. To
counter this phenomenon, a so-called “tightening” is
applied to bounding rectangles when they are
accessed.

The aforementioned solutions cannot be easily
integrated into an existing relational database, as
considerable changes are required in the “kernel” of a
system (e.g., query optimization, concurrency
control, etc.). Jensen et al. (Christian et al., 2004)
propose the Bx-tree, which consists of B+-trees
indexing the transformed one-dimensional values of
multidimensional data based on a space-filling curve
(e.g., Hilbert curve). In one study (Man et al., 2008),
a Bdual-tree is proposed to enhance query efficiency
by eliminating false hits of Bx-trees. These index
structures employ the Hilbert curve to transform
multidimensional data into one-dimensional data. In
order to make this transformation, the order of the
Hilbert curve must first be determined. The order
influences the performance of the indexing methods.
If a large order value is used for indexing, the index
size becomes large. On the other hand, if we use a
small order value, the number of data points whose
curve values are identical increases. As previously
mentioned, a large number of identical curve values
decreases search performance.

3. Dynamic Hilbert Curve-based B+-Tree
3.1 Naïve Approach based on the Hilbert Curve

In order to explain our index structure more
clearly, we will first present the naïve approach
followed by our proposed approach. The basic
structure is similar to that of the Blink-tree (Srinivasan
et al., 1993), the latter of which is a version of the B+-
tree that has been modified to support concurrency
control techniques. Internal nodes at the same level in
a Blink-tree are linked in concurrency control
algorithms. The leaf nodes contain the Hilbert curve
values of multidimensional data that are being
indexed. The Hilbert curve is one of a variety of
space-filling curves. A space-filling curve is a
continuous path that visits every point in a discrete,

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 456

multidimensional space exactly once and never
intersects itself. Although other curves may be used,
we use the Hilbert curve because it has been found to
be slightly better than the Peano curve (Man et al.,
2008; Bongki et al., 2001). A leaf entry of the Blink-
tree is the (cv, pid) pair, where cv is a Hilbert curve
value and pid is a data page identifier. Data pages
contain information about multidimensional data.
Our index decides the order of the Hilbert curve in
favor of storing all data with the same cv value on
one disk page. Consequently, the tree size is very
small. It can also handle frequent updates of data,
since regions covered by the cvs are virtually static
unless the order of the Hilbert curve is changed.

It is very simple to construct our index using
curve values, as shown in Figure 1. Before
constructing our index, we acquire the Hilbert curve
values of the data. We decide that the order of the
Hilbert curve will be 2, according to the number of
entries that can be stored on a disk page. Assume that
this order is the optimal value for storage utilization.
When the order is 2, the data space is divided into 16
sub-regions, and cvs are assigned to each sub-region.
The leaf nodes of our index contain (cv, pid) pairs,
and each leaf node has a maximum of two entries.
Through our index, an inserter finds a data page for a
new data item using its cv. As shown in Figure 1,
data that have the same curve value are stored on the
same data page. A data page can be represented by a
cv value because the data with the same curve value
are retrieved through cv.

Figure 1. Basic structure of the proposed index

A range search is then performed, as follows.

First, we acquire all cv values in the searcher’s query
range. For example, in Figure 1, the range of query Q
overlaps with two regions that are covered by cvs
0010b and 0011b. We then traverse our index with cvs
0010b and 0011b, and locate leaf entries that contain

P1 and P2. The searcher loads data pages P1 and P2
and then filters objects (O1, O2, O3) stored in P1 and
P2, in order to achieve the final results (O1, O2).

In this approach, index structures are very small
because the order of the Hilbert curve is determined
to maximize storage utilization. Furthermore, the
index structures change much less frequently because
regions covered by cvs are virtually static unless the
order of the Hilbert curve is changed. However, in
practice, data are not uniformly distributed at any
given time. They can be highly skewed in sub-
regions, and the number of data points in some data
spaces may increase. Eventually, the number of data
points with the same cv value exceeds the optimal
level. For this reason, in spite of high storage
utilization, the overall performance of the algorithm
in terms of updating and searching is degraded. To
solve this problem simply, we can use the highest
order of the Hilbert curve. However, the performance
of the algorithm will suffer because this lowers
storage utilization. In particular, using the highest
order severely affects update performance because it
increases the likelihood of the curve value of an
object being updated.

In Figure 2(a) and Figure 2(b), we assign
Hilbert curve values to data when the order is 1 and
2, respectively. Both data spaces have the same size
and O1 and O2 move along the same paths, which are
denoted by arrows. In Figure 2, the curve value of O1
does not change, but the O2 curve value changes
twice. Again, as the order increases, so too will the
possibility of the curve values being updated. If the
order of the Hilbert curve can be varied according to
the data distribution and the number of data points in
a certain sub-region, the performance of the index
structures can improve. However, using different
orders for different sub-regions makes mapping data
to cvs impossible. In this paper, we propose a new
indexing method based on the Hilbert curve that
dynamically varies the order of the Hilbert curve in
sub-regions. We also propose a technique to map the
values of data to cvs in different curve orders.

Figure 2. The order of the Hilbert curve and the

likelihood of curve value updates

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 457

3.2 Construction Process
In Figure 3, we assume that the initial order of

the Hilbert curve is 2 and the blocking factor of a
data page is 4. Our index in the figure consists of a
Blink-tree and data pages. A leaf entry of our index
consists of (key, pid). A pid is the identifier of a data
page where data having the same key are stored. A
key is made up of (o, cv), where o is the order of the
Hilbert curve and cv is the Hilbert curve value when
the order is o. The order o is adopted dynamically
according to the data distribution. An inserter
performs insertion operations in three phases. In the
first phase, the inserter creates a key for a newly
inserted datum. In the second phase, the inserter
locates the data page for the new key by traversing
our index and adjusts the order of the Hilbert curve, if
necessary. Finally, in the third phase, the new datum
is inserted into the located data page. In this phase, if
the object page cannot accommodate the new datum,
the inserter performs split operations.

The initial order of the Hilbert curve is set by
the user. With its location, the inserter calculates a cv
value for the new datum. It then concatenates the bit

string of cv and the bit string of the initial order o to
create the key of the new datum. For example, in
Figure 3(a), the cv of O1 is 0001b, and the order is
10b. Thus, the key for O1 is 100001b (10b + 0001b).
Even though both bit strings are concatenated, the
key is not treated as an integer in the compare
function of our index. We will show how to compare
keys when we describe the next phase. In this phase,
the inserter locates a proper data page for the new
datum by traversing our index with the new key. As
mentioned above, a leaf entry of our index consists of
the key and the pid. If the inserter finds a leaf entry
whose key is the same as the new key, it skips to the
last phase. Otherwise, the inserter gets the pid of the
previous leaf entry to make a new entry for the new
datum, and places the new entry on the leaf page. In
Figure 3(a), O4 is the new datum to be inserted and
there is no leaf entry that matches its key. The
inserter thus fetches the pid of the previous entry to
make a new entry and places the new entry (101010b,
P1) on the leaf page. O4 is then inserted into the pid
data page in the next phase.

Figure 3. Construction processing phases of the proposed index

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 458

When locating a leaf entry in our index, the
inserter examines neighboring keys and determines
whether they can be merged with the new key. If the
number of the neighboring keys that are covered with
the lower-order key on the new key is 2, the new key
is merged with those neighbors. However, if the
number of neighboring keys is 1, the keys do not
merge because this would increase dead space and
degrade search performance. Merging the keys means
that the sub-regions covered by them are merged as
well, thus lowering their order. Assume that O5 is
being inserted into our index in Figure 3(a). The key
for O5, 100010b, is placed between 100001b and
100011b, and the number of leaf entries in our index
is 5. However, as previously mentioned, the inserter
investigates neighboring keys and the new key to see
if sub-regions covered by them can be merged to a
lower-order sub-region. As shown in Figure 3(a), the
sub-regions of O1, O2, and O5 can be merged into
sub-region 00b. O1, O2, and O5 are stored on the same
page and are always loaded together. Thus, their
curve values do not need to be assigned to each sub-
region. In this case, we lower the order of the sub-
region and assign the same key to the objects, i.e., O1,
O2, and O5. The existing keys (100001b and 100011b)
are deleted, and a single new key for O1, O2, and O5
namely, 0100b is entered on the leaf node, as shown
in Figure 3(b). Merging keys reduces the index
structure without affecting search performance. Once
the keys are merged, O5 is inserted into data page P1.

If the page has enough space, O5 is saved on it.
Otherwise, a split operation for the data page is
initiated. The inserter divides the data on page P1 and
the new datum into two groups, according to the
following grouping criteria: (1) data with a common
key must be placed in the same group; (2) data with
similar key values should be placed in the same
group; (3) the number of data items in both groups
should be similar; (4) each group should be filled to
over 30% of its capacity. Since we assume that the
maximum number of data items on a page is 4, O5
cannot be placed in data page P1. Consequently, the
inserter starts a split operation. The sub-regions of
O1, O2, and O5 were earlier merged into the lower
sub-region 00b, so that the keys of P1 and O5 are
ordered as 0100b (O1, O2, O5), 101001b (O3), and
101010b (O4). According to the above split criteria,
the inserter stores O1, O2, and O5 to P1, and O3 and O4
to the new page P2. Our index contains curve values
derived from different orders, i.e., the order of 0100b
is 1, and the order of 1010001b and 101010b is 2.
Keys in our index are arranged in order of ascending
value of cv. If cvs of keys are the same, the order is
decided based on the value of o. Therefore, our index
uses a new key comparison method, as shown in
Figure 4. The compare function compares key1 and

key2 after converting the one belonging to a higher
order to the order of the other. For example, assume
that the new key 100000b of O6 is inserted into the
tree in Figure 3(b). The inserter will compare the new
key with the leaf entries of the tree to locate a data
page for O6. The new key 100000b is transformed to
0100b when compared with 0100b on the tree. The
new key is matched with 0100b. Thus, O6 is placed on
data page P1.

Function: Comparison

Input: key1, key2
Output: result (compResult, orderDiff)

Begin
result.orderDiff = false;
if (key1.order < key2.order)

key2.cv = transform key2.cv according to
key1.order;
result.orderDiff = true;

else if (key1.order > key2.order)
key1.cv = transform key1.cv according to
key2.order;
result.orderDiff = true;

end If
result.compResult = key1.cv - key2.cv;
return result;

End
Figure 4. Comparison function of the proposed index

Split keys may occur during the splitting of data

pages. Assume that the new key 100010b for O8 is
inserted into the tree in Figure 3(c). The data page P1
will be located for O8 by traversing our index.
However, a data page can accommodate only four
data items, and thus O8 causes an overflow on page
P1. Since the data stored on P1 have the same key,
they cannot be divided into groups. The inserter thus
splits keys. Splitting a key means that part of the sub-
region covered by a key is assigned a higher order. If
possible for a small index structure, the inserter tries
to divide a sub-region into a higher-order sub-region
and the original sub-region, as shown in Figure 5(a).
Otherwise, the original sub-region is divided to four
higher-order sub-regions, as shown in Figure 5(b).
Keys are not created for sub-regions in Figure 5(b)
that do not have any data. The key for the data on P1
can be divided, as in Figure 5(a), since the sub-region
covered by 100010b contains two data items and the
original sub-region contains three data items.
Therefore, the inserter splits the key for the sub-
region covered by 0100b into 0100b and 100010b, as
shown in Figure 3(d). In this case, traverses for insert
or search operations must be carefully conducted
when comparing keys. In Figure 3(d), assume that the
inserter is trying to insert a new datum with key
100010b in the tree. After comparing 100010b with

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 459

0100b, the inserter stops to traverse the tree, since the
inserted key is covered by 0100b, and tries to enter
the new data item on page P1. However, the new
datum must be placed in P3 because the leaf entry
(100010b, P3) is on the tree. To find the same key or
the covering key with the highest order among the
inserted keys, the inserter must confirm the next keys
of the key covering the inserted key on visited
internal node or leaf node until the inserter meets the
same key or the larger key than the inserted key. This
search operation is not very costly, since entries of
visited internal nodes or leaf nodes are in the main
memory, where this operation is performed.

Figure 5. Key split strategies of the proposed index

3.3 Range Search

A range search is performed in a simple manner.
As shown in Figure 3(e), in order to process a range
query Q, we find all keys covered by regions that
overlap with Q. Search keys consist of the maximum
order and the curve values of overlapped regions. In
the figure, the search keys of Q are 100001b,
100010b, 101110b and 101101b. We then find through
our index pids whose keys match the search keys.
The searcher, like the inserter, tries to find the same
key or a covering key with the highest order on the
searched key. In the figure, we will find 0100b and
100010b.

4. Performance Evaluation

In this section, we experimentally compare our
index against the Bdual-tree and the TPR-tree. All
experiments were performed on a machine with a
Pentium IV 3GHz CPU and 1GB of memory. The
disk page size was fixed at 1KB. All reported I/O
costs correspond to page accesses. We generated
spatiotemporal data following the methodology of
(Man et al., 2008; Yufei et al., 2003). The data space
was two-dimensional, where each dimension had a
domain of [0, 1000]. Five thousand rectangles were
sampled from a 128,000 (128-K) spatial dataset (Man
et al., 2008). It models the positions of airports. Each
object is an aircraft that moves along a line segment
connecting two airports. Initially, each aircraft is
positioned at an arbitrary airport and randomly
selects another airport as its destination. At

subsequent timestamps, the aircraft will move from
the source airport to a target one with a speed that is
generated in the range [0, 5]. As soon as the object
reaches its destination, it chooses another airport as
its next destination, with a new speed obtained in the
same way as before. In addition to these updates, an
aircraft also issues an update 25 timestamps (= T)
after the previous one (Man et al., 2008; Yufei et al.,
2003). An index with a time horizon of H = 2T = 50
time units is created for each dataset. All objects are
created and inserted into the index at time 0. Queries
are issued after H/2. We measure the query cost by
averaging it over a workload of 100 queries. Range
queries are generated with a range of 0.01%, 0.02%,
0.03%, 0.04% and 0.05% of the total data space, and
are uniformly distributed. kNN queries were
generated with k at 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 150, 200, 500 and 1000, and are uniformly
distributed. Figure 6 shows positions of the aircraft at
T = 0 and T = 25.

(a) T=0 (b) T=25

Figure 6. Airplane positions

We compared the average update cost of our
index against those of the others. Note that for each
update, one deletion and one insertion were
performed. We calculated the average update cost,
including the deletion and insert costs. Figure 7
shows the average update cost of three indices with
respect to dataset size. We recorded the number of
I/Os whenever 5,000 (5K) updates were performed
and averaged the total I/Os. As shown in the figure,
our index and the Bdual-tree achieved significant
improvement over the TPR-tree. This is on account
of the properties of the B-tree and R-tree families.
Usually, when the storage requirements of both index
structures are similar, the insert and delete costs of R-
tree families are higher than those of B-tree families.
It seems from Figure 7 that our index only slightly
outperforms the Bdual-tree. However, our index
actually performs 1.5~2 times better than the Bdual-
tree. The reason for this is similar to that for the
storage utilization improvement. Our index does not
need to keep a high order of the Hilbert curve. It
flexibly adjusts the order of lower values according
to the data distribution and the number of objects

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 460

without loss of performance. Figure 8 shows the
update cost with respect to the number of updates.
Three index structures are constructed using 100,000
(100K) objects. This experiment has aspects similar
to those in Figure 7. Our index still performs
approximately four times and two times better than
the TPR-tree and Bdual-tree, respectively.

Figure 7. Update costs with varying data size

Figure 8. Update costs when the number of updates

is varied

Figures 9 and 10 show the range of query
performance of the three index structures. Figure 9
shows the query performance of the three index
structures with respect to dataset size. We recorded
the numbers of I/Os of the three index structures
whenever 100 range queries were performed. The
query size is 0.03%. The number of I/Os increases
linearly with an increase in the number of objects.
Our index outperformed other indices as the number
of objects increased. The performance gap also
increased.

Figure 9. Range query costs with varying the data size

Figure 10 shows query performance while
varying query size. The three index structures were
constructed with 100,000 (100K) moving objects.
While the number of I/Os of the TPR-tree and Bdual-
tree increased linearly, our index maintained a
constant number of I/Os.

Figure 10. Range query costs with varying the range

of query size

Figure 11 shows the target positions of the

experimental kNN queries with k = 5. Figure 12
shows the kNN query performance of our index and
the Bdual-tree with respect to the 100K dataset
described in the experimental setup. The results in
Figure 12 show that the performance of the kNN
query for our index outperformed the Bdual-tree.

Figure 11. Target positions of kNN queries with k=5

Figure 12. kNN query costs with varying the number of k

This is because the formula used by the kNN

query algorithm in the Bdual-tree to compute searching
radius increment yields a small value. This causes
the kNN query algorithm of the Bdual-tree to slowly

Life Science Journal 2014;11(10) http://www.lifesciencesite.com

http://www.lifesciencesite.com lifesciencej@gmail.com 461

expand the searching area. The results also show that
our index structure is superior to the Bdual-tree
structure when handling non-uniform datasets. This is
because our index dynamically adjusts the Hilbert
curve order in crowded areas based solely on the
input dataset, whereas the Bdual-tree uses a static set
of reference points. Since our index divides the
space based entirely on the input dataset, it always
performs well with any dataset. However, for the
Bdual-tree, if the predefined static reference points do
not fit well with the input dataset, it will not perform
well. If we look at the input dataset and calibrate the
reference points in the Bdual-tree before performing
the experiments, it will yield better results. It is a
disadvantage of the Bdual-tree that information about
the dataset is needed in order to tune the reference
points to fit it. In both index structures, the number of
I/Os increases linearly with the value of k. When k <
500, the number of I/Os of our index increases by a
small value as k increases. This is because of the non-
uniform dataset used. In crowded areas, the kNN
query does not need to search a large area to obtain
fewer than 500 objects.

5. Conclusions

In this paper, we proposed a new indexing
method based on the Hilbert curve technique for
moving objects. The contributions of our proposed
method can be summarized as follows: first, we
proposed a dynamic Hilbert curve technique that
adjusts the order of a certain sub-region according to
the data distribution or the number of objects. This
technique reduces the index size. As a result, the
performance of the update and query operations
improves significantly. Second, the base data
structure of our indexing method is the B+-tree, and
thus, it can easily be integrated into commercial
database management systems. Finally, through
experiments, we showed that our indexing method
outperforms the TPR-tree and the latest Bdual-tree
indexing method. In future work, we will apply our
indexing method to various big data applications and
experimentally compare performances of the
applications.

Acknowledgement

This work was supported by the IT R&D
program of MSIP/KEIT. [2014-044-024-002,
Developing On-line Open Platform to Provide Local-
business Strategy Analysis and User-targeting Visual
Advertisement Materials for Micro-enterprise
Managers].

Corresponding Author:
Dr. Sa-kwang Song
Department of Computer Intelligence Research
Korea Institute of Science and Technology Information
Daejeon, 305-806, South Korea
E-mail: esmallj@kisti.re.kr

References
1. Azhar R, Adnan A, Saeed M, Shah K. The

performance of mapreduce over the varying
nature of data. J. Life Science 2013;10(4):1263-
1266.

2. Antonin G. R-trees: a dynamic index structure
for spatial searching. Proc. Management of Data
1984;14(2):47-57.

3. Dongseop K, Sangjun L, Sukho L. Indexing the
current positions of moving objects using the
lazy update R-tree. Proc. Mobile Data
Management 2002;113-120.

4. Mongli L, Wynne H, Christian S.J, Bin C,
Kenglik T. Supporting frequent updates in R-
trees: a bottom-up approach. Proc. Very Large
Database 2003;29:608-619.

5. Philip L.L, Bing Y. Efficient locking for
concurrent operations on B-tree. J. ACM
Transactions on Database Systems
1981;6(4):650-670.

6. Christian S.J, Dan L, Beng C.O. Query and
update efficient B+-tree based indexing of
moving objects. Proc. Very Large Database
2004;30:768-779.

7. Man L.Y, Yufei T, Nikos M. The Bdual-tree:
indexing moving objects by space filling curves
in the dual space. J. Very Large Database
2008;17(3):379-400.

8. Yufei T, Dimitris P, Jimeng S. The TPR*-tree: an
optimized spatio-temporal access method for
predictive queries. Proc. Very Large Database
2003;29:790-801.

9. Srinivasan V, Michael J.C. Performance of
B+tree concurrency control algorithms. J. Very
Large Database 1993;2(4):361-406.

10. Bongki M, Jagadish H.V, Christos F, Joel H.S.
Analysis of the clustering properties of Hilbert
space-filling curve. J. IEEE 2001;13(1):124-141.

