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1. Introduction 

In 1965, the fuzzy set theory was introduced 
by Zadeh. Since that time, many researchers have 
been concerned with the characteristics and 
applications of fuzzy sets. Fuzzy graph is an 
important extension of fuzzy theory’s application in 
its relation to graph theory. Fuzzy graph was 
introduced by Rosenfeld (Rosenfeld, 1975) and Yeh 
& Bang (Yeh and Bang, 1975) independently. 

An example in the application of fuzzy 
graph theory is in the modeling of Clinical Waste 
Incineration Process (Baharum, et al., 2009). The 
system was initially modelled using crisp graph 
(Ahmad, et al., 2010). Fuzzy graph provides 
important tools to take various aspects of complexity, 
inexactitude and fuzziness of the network structure of 
the incineration system as compared to the 
description of relation of its crisp graph. The model 
was found to be an Autocatalytic Set (ACS), 
conforming to the key feature of the model proposed 
by Jain and Krishna (Jain and Krishna, 1998). 
However, the model is insufficient to explain the 
process (Ahmad, et al., 2010). Therefore, integration 
of fuzzy graph into the model has eventually created 
a new concept known as Fuzzy Autocatalytic Set 
(FACS) and shown to be a better and improved 
model in explaining the process (Baharum, et al., 
2009) (Ahmad, et al., 2010). Six important variables 
identified in the process are represented as nodes and 
the catalytic relationships are represented by fuzzy 
edges. 

In this paper, we study FACS of fuzzy graph 
Type-3 of an incineration process from a new 
perspective, namely fuzzy quasi-metric spaces as 
defined in (Gregori and Romaguera, 2004). The study 
of FACS from quasi-metric viewpoint can be 
captured to provide a better interpretation to its 
structure. In this paper, we initially introduce the 

notion of fuzzy detour distance between vertices in 
FACS by following the ideas of Nagoor Gani and 
Umamaheswari (Nagoor Gani and Umamaheswari, 
2011). Then, the concepts of fuzzy detour FT3- 
eccentricity of a vertex, fuzzy detour FT3-radius, 
fuzzy detour FT3-diameter, fuzzy detour neighbour 
of a vertex and fuzzy detour boundary of a vertex in 
FACS are introduced. We extend these ideas to 
define fuzzy quasi-metric spaces of FACS of fuzzy 
graph Type-3 and investigate some of their properties 
such as a convergent sequence which is used to 
justify an irreducible graph. 
 
2. Preliminaries 

In this section, some basic definitions that 
are necessary in the paper are reviewed. It began with 
brief explanations on the development of FACS in 
particular fuzzy graph of type-3 and its application in 
modeling clinical waste incineration process, 
followed by some pertinent fuzzy metric concepts 
and facts.  

A clinical waste incineration process in 
Malacca (schematic diagram given in Figure 1) was 
initially modelled using crisp graph (Ahmad, et al., 
2010) as in Figure 2. However the interpretation of 
the graph at the end of the process did not signify the 
product of the process (Baharum, et al., 2009). 
Therefore, sharing of fuzzy graph into the model has 
eventually created a new concept known as Fuzzy 
Autocatalytic Set (FACS) in particular fuzzy graph of 
type-3 (Ahmad, et al., 2010). Rosenfeld (Rosenfeld, 
1975) has given the notion of fuzzy graph as follows. 
Definition 1: A fuzzy graph G:(σ, μ) with a vertex 
set V as the underlying set is a pair of functions that 
σ: V → [0,1] is a fuzzy subset of V and μ: V × V → 
[0,1] is a fuzzy relation on V, such that μ (u,v) ≤ σ (u) 
ᴧ σ (v) for all u, v  V where σ(u)ᴧσ(v) denotes the 
minimum of σ(u) and σ(v). 
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Figure 2. Crisp graph for the clinical waste incineration process  

 
Definition 2: (Rosenfeld, 1975) A path p from a 
vertex vi to a vertex vj in a fuzzy graph is a sequence 
of distinct vertices and edges starting from vi and 
ending at vj. If vi and vj coincide in a path then we call 
p the cycle. 

The underlying crisp graph of the fuzzy graph 
G:(σ, μ) is denoted as G(V,E) where V is a nonempty 
set of vertices and E is the nonempty set of edges. Yeh 
and Bang (Yeh and Bang, 1975) also introduced a 
special case of graph fuzziness where only the edges 
are fuzzy and the vertices remain as a crisp set. After 
fuzzy graphs were introduced by Rosenfeld and Yeh 
& Bang independently in 1975, Blue et al. (Blue, et 
al., 1997) (Blue, et al., 2002) further generalized the 
catalog of various fuzziness possible in graph into five 
types of fuzzy graphs. Furthermore, Ahmad et al. 
(Ahmad, et al., 2010) 

Formalized the five types of fuzzy graphs 
described by Blue et al. as follows. 
Definition 3: Fuzzy graph is a graph ��  satisfying one 
of the fuzziness (��

�  of the ith type) or any of its 
combination: 
1) ��

� = { �� �
, ���

, ���
, …,�� �

} where fuzziness is 

on ���
 for i=l, 2, 3,..., n. 

2) ��
� = {V,EF} where the edge set is fuzzy. 

3) �� 
� = {V,E(��, ℎ� )} where both the vertex and 

edge sets are crisp, but the edges have fuzzy 
heads and tails. 

4) ��
� = {�� ,E} where the vertex set is fuzzy. 

5) ��
� = {V,E(��)} where both the vertex and crisp 

set are crisp but the edges have fuzzy weights. 
The major idea of the notion of FACS is the 

merger of fuzzy graph of type-3 to autocatalytic set. 
The definition of FACS is given as follows. 

 
V1: Waste 
V2: Fuel 
V3: Oxygen 
V4: Carbon Dioxide 
V5: Carbon Monoxide 
V6: Other gases including water 
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Figure 1. The schematic diagram of a clinical waste incinerator 
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Definition 4: (Ahmad, et al., 2010) Fuzzy 
autocatalytic set (FACS) is a subgraph where each of 
whose nodes has at least one incoming link with 
membership value �(��) ∈ (0,1], ∀ �� ∈ �. 

The membership values for fuzzy edge 
connectivity for fuzzy graph are in the interval (0, 1]. 
These values constitute the entries of the adjacency 
matrix for FACS as follows. 
Definition 5 : (Baharum, et al., 2009)  
Let  ����

 denotes fuzzy edge connectivity between 

node � and node � such that 

  ����
 = � 

  0                    �� � = �,    ��   ∉ �  

�(��   )               �� � ≠ �                     
� 

 
A graph with s nodes is completely specified 

by an s× s matrix,  ����
= (��� ) called the adjacency 

matrix of the graph (Harary, 1969). Also a graph � is 
termed irreducible if each node in the graph has access 
to every other node (Harary, 1969). According to 
(Horn and Johnson, 1985) the adjacency matrix ����

 of 

the graph is irreducible if and only if (� +  ����
) ��� >

0. Consequently, the adjacency matrix of FACS of 
fuzzy graph type-3 is irreducible. 

Thus, if a graph is irreducible then its 
associated adjacency matrix is also irreducible and 
vice versa. Furthermore, the definition of a connected 
graph (Harary, 1969) which is for every pair of 
vertices in �  are joined by a path. Hence, by 
Definition of Harary, an irreducible graph is a strongly 
connected graph and the converse is also true. 

As for incineration process, the membership 
values are determined through the chemical reactions 
taken place between six variables that play its vital 
roles in the clinical waste incinerator, namely waste, 
fuel, oxygen, carbon dioxide, carbon monoxide and 
other gases including water. The set of vertices in the 
graph of FACS of the incineration process V={v1, 

v2,…,v6 } is represented by these six variables. From 
the explanation given in (Baharum, et al., 2009) and 
(Ahmad, et al., 2010) pertaining to the construction of 
FACS of Fuzzy Graph of Type-3 for the incineration 
process, the graph is represented as in Figure 3 and its 
adjacency matrix given in Definition 5 is represented 
as in Figure 4. 

Next we recall some related fuzzy metric 
concepts and facts. According to (Romaguera, et al., 
2007) a binary operation * : [0, 1] [0, 1]  [0,1] is a 
continuous t-norm if it satisfies the following 
conditions:  
(1) * is associative and commutative,  
(2) * is continuous,  
(3) a * 1 = a, for all a  [0,1],  
(4) a * b  c*d whenever a c and b  d, for each a, b, 
c, d [0,1].  
 

 
Figure 3. Fuzzy graph of Type-3 for the clinical waste 
incineration process 
 

����
= 

0 0 0.06529 0 0 0.13401

0.00001 0 0 0 0 0

0.15615 0 0 0 0 0

0.51632 0.68004 0.63563 0 0.99999 0

0.00001 0.00001 0.00002 0 0 0

0.32752 0.31995 0.29906 0.00001 0 0

 
 
 
 
 
 
 
  
 

 

 
Figure 4. The adjacency matrix of FACS for the 
clinical waste incineration process (Baharum, et al., 
2009).  
 
Definition 6 : ( f l e t ch er  an d Li n dgr en ,  1982) 
A quasi-metric on a nonempty set X is a nonnegative 
real valued function d on X X such that for all x, y, z 

 X: 
(i) x = y if and only if d(x, y) = d(y, x) = 0, 
(ii) d(x, z)  d(x, y) + d(y, z). 
If d satisfies condition (i) above and (ii') d(x, z)  
max{d(x, y), d(y, z)} then, d is called a non-
Archimedean quasi-metric on X. 
If d satisfies the conditions (i), (ii) and (ii") d(x, y) = 
d(y, x) then, d is called a metric on X. 

The notion of a fuzzy metric space was 
modified by George and Veeramani in 1994 as 
follows. 
Definition 7: (George and Veeramani, 1994) 
A 3-tuple (X, M, *) is called a fuzzy metric space if X 
is an arbitrary (nonempty) set, * is a continuous t-
norm, and M is a fuzzy set on X2× (0, ∞), satisfying 
the following conditions for each x,y,z ∈ X and t, s > 
0: 
(1) M (x, y, t) >0,  
(2) M (x, y,t) =1 if and only if x=y,  
(3) M (x,y,t) = M (y,x,t),  
(4)M (x,y,t) * M (y,z,s)  M (x,z,t+s),  
(5) M (x,y,.): (0, )  (0,1] is continuous.  
 
Remark 8: (George and Veeramani, 1994) 
(1)The value M(x, y, t) can be considered as the 
degree of nearness between x and y with respect to t. 
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(2) M(x, y, ∗) is nondecreasing for all x, y in X.  
The concept of fuzzy quasi-metric space is 

defined by Gregori and Romaguera in 2004. The 
researchers generalize the corresponding notion of 
fuzzy metric space by George and Veeramani (see 
Definition 7) to the quasi-metric context and is given 
as follows. 
Definition 9 : (Gregori and Romaguera, 2004)  
A fuzzy quasi-metric space is an ordered triple (X, M, 
∗) such that X is a nonempty set, ∗ is a continuous t-
norm and M is a fuzzy set on X × X × (0,∞) satisfying 
the following conditions, for all x, y, z ∈ X, s, t > 0: 
Q1: M(x, y, t) >0, 
Q2: M(x, y, t) = 1 if and only if x = y, 
Q3: M(x, y, t) ∗ M(y, z, s)  M(x, z, t +s), 
Q4: M(x, y, ·) : (0,∞)→(0, 1] is continuous. 
Condition Q2 is equivalent to the following: 
M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) < 
1 for all x y and t > 0. 
If (X, M, ∗) is a fuzzy quasi-metric space, we will say 
that (M, ∗) as a fuzzy quasi-metric on X. A fuzzy 
quasi-metric M is a fuzzy metric, in the sense of 
George and Veeramani (1994), if M(x, y, t) = M(y, x, 
t) for all t > 0. 
 
3. The fuzzy detour FT3-distance between vertices 
in FACS  

Following the ideas of Nagoor Gani and 
Umamaheswari (Nagoor Gani and Umamaheswari, 
2011) fuzzy detour distance between vertices in FACS 
of fuzzy graph Type-3 is defined as follows: 
Definition 10: (fuzzy detour FT3-distance between 
vertices in FACS)  
Let GFT3(V,E) be a no-loop Fuzzy Autocatalytic Set 
(FACS) of fuzzy graph Type-3.The fuzzy detour FT3-
distance ����(��, ��) between two vertices �� and �� in 

FACS is defined as the maximum length of any ��- 

�� path, where the FT3-length of a path �: ��,��,...,�� 

is ℓ(�) = ∑
�

�((����,��)) 

�
���  and ���� (�� , �� ) = 0 if and 

only if �� = �� . A ��- �� path of length ����(��, �� ) is 

called ��- �� fuzzy detour path. 

Example 11:    
In this example of FACS with the set of 

vertices V= {�� , �� , �� , �� } and the membership 
values � ( �� ) =  �((��, ����)) for fuzzy edge 
connectivity of FACS are five values, there are two 
paths between �� and ��: 
(1) {�((��, ��)), �((��, ��))} i.e. ��= {��, ��, ��} with 

length ℓ(��) =  
�

�.�
+

�

�.�
= 7.5 

(2) {�((��, ��)), �((��, ��)), �((��, ��))} i.e. ��= 

{��, ��, ��, ��} with length ℓ(��) = 
�

�.�
+

�

�.�
+

�

�.�
=

15.83333  

 
Figure 5. The fuzzy detour FT3-distance ����(��, ��) 

between vertices in FACS  
 

It is clear that ℓ(��) is the fuzzy detour FT3-
distance between �� and �� and hence ���� (��, ��) = 
15.83333 and �� is called the ��- ��fuzzy detour path. 

In the following it can be shown that the 
fuzzy detour FT3-distance is a quasi-metric. To prove 
it, we first give a lemma to show that the fuzzy detour 
FT3-distance satisfies the triangle inequality.  
 Lemma 12: Let ����(��, ��) = �� > 0 for all � ≠ � = 

1,2,3, …, n, then  
���� (�� , �� ) + ���� (�� , ��) + ⋯ + ���� (���� , ��) 
≥  ����(��, ��). 
Proof: (by mathematical induction) 
It is clear that �� : ����(�� , ��) = ����(�� , ��) = �� . 
Now, assume that 
 �� : ���� (�� , ��) + ���� (��, ��) + ⋯ + ���� (���� , 
��) ≥  ����(��, ��) is true. Then we must show that 
 ���� : ����(��, ��) + ����(��, ��) + ⋯ + ����(����, 
��) + ����(��, ����) ≥  ����(��, ���� ) is true. Note 
that  
����(��, ��) + ����(��, ��) + ⋯ + ����(���� , ��) + 
����(��, ����) 
≥ ����(��, ��) + ����(��, ����)  (by �� ) 

 ����(��, ����) (by our assumption). This concludes 
the proof.      
 Theorem 13: Let GFT3(V,E) be a no-loop Fuzzy 
Autocatalytic Set (FACS) of fuzzy graph Type-3. The 
fuzzy detour FT3-distance ���� (�� , �� ) between two 

vertices �� and �� in FACS of fuzzy graph Type-3 is a 

quasi-metric. 
Proof: Since GFT3(V,E) is a no-loop Fuzzy 
Autocatalytic Set (FACS) of fuzzy graph Type-3, 
therefore the adjacency matrix of FACS is irreducible 
(Horn and Johnson, 1985) which imply that the graph 
is strongly connected. Consequently, it is obvious 
from Definition 10 that ���� (�� , �� ) > 0  for all �� , 
�� ∈ V and ����(��, ��) = 0. 

Note that ����(��, ��) ≠ ����(��, ��) due to the graph 

GFT3(V,E) is a directed graph (or digraph). Now, by 
Lemma 12, the condition (ii) of Definition 6 is 
satisfied, i.e., 
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����(��, ��)  ≤ ����(��, ��) + ����(��, ��) for all �� , 
��, �� ∈ V. Hence the fuzzy detour FT3-distance is a 

quasi-metric.      
3.1 The fuzzy detour FT3-distance of FACS for the 
Clinical Waste Incineration Process  

In this section, the concepts of fuzzy detour 
FT3- eccentricity of a vertex, fuzzy detour FT3-radius, 
fuzzy detour FT3-diameter, fuzzy detour neighbour of 
a vertex and fuzzy detour boundary of a vertex in 
FACS are introduced.  
Definition 14:(The fuzzy detour FT3- eccentricity of 
a vertex) 
 Let GFT3(V,E) be a no-loop Fuzzy Autocatalytic Set 
(FACS) of fuzzy graph Type-3.The fuzzy detour FT3- 
eccentricity  ���� (v) of a vertex v of FACS is the 
maximum fuzzy detour FT3- distance from any vertex 
of V to v, i.e. ����(v) = max {���� (u,v) : u ∈ V(GFT3) 
– {v}}. 
It is obvious that ���� (u, v) ≤  ����(v) for any vertex 
u of FACS and a vertex u is an eccentric vertex of a 
vertex v if ���� (u, v) =  ����(v).  
Definition 15:(The fuzzy detour FT3-radius and 
diameter of FACS) 
The fuzzy detour FT3-radius of FACS is the minimum 
fuzzy detour FT3- eccentricity among the vertices of 
FACS. The fuzzy detour FT3- diameter of FACS is 
the maximum fuzzy detour FT3- eccentricity among 
the vertices of FACS.  
Definition 16:(The fuzzy detour neighbour of a 
vertex) 
 Suppose GFT3(V,E) is a no-loop Fuzzy Autocatalytic 
Set (FACS) of fuzzy graph Type-3. For a vertex v in 
V, define ����(v) = min {���� (u,v) : u ∈ V(GFT3) – 
{v}}. A vertex u (≠ v) is called a fuzzy detour 
neighbour of v if ����  (u,v)= ����  (v). The fuzzy 
detour neighbours of v are denoted by N(v). 

As for incineration process (see figure 3), the 
distance between two vertices in FACS of Clinical 
Waste Incineration Process can be computed by using 
the definition of a fuzzy detour FT3-distance on FACS 
(����(��, ��)) and is presented in table 1. 

As for FACS of Clinical Waste Incineration 
Process, we can calculate the following: 
����(v1) = 208.46213, ����(v2) = 258.46213, ����(v3) 
= 214.86622, ���� (v4) =211.80594, ���� (v5) = 
309.03536, ����(v6) = 301.00001. The description of 
the clinical incineration process, the fuzzy detour FT3- 
eccentricity ���� (v) of a vertex v means that every 
element (u) has a certain proportion of the interaction 
with the element v at most with value ����(v). Thus, 
the fuzzy detour FT3-radius of FACS is ���� (v1) = 
208.46213 and the fuzzy detour FT3- diameter of 
FACS is ����(v5) = 309.03536. 

On the other hand, the fuzzy detour 
neighbour of vertex when interpreted physically 

means that every element (u) has a certain proportion 
of the interaction with the element v at least with 
value ����(v). Hence, we can observe the following:  
v6 is a fuzzy detour neighbour of v1. 

 v1 is a fuzzy detour neighbour of v2. 

 v1 is a fuzzy detour neighbour of v3.  

 v5 is a fuzzy detour neighbour of v4. 

 v1 is a fuzzy detour neighbour of v5. 

 v4 is a fuzzy detour neighbour of v6. 

Definition 17:(The fuzzy detour boundary vertex) 
Let GFT3(V,E) be a no-loop Fuzzy Autocatalytic Set 
(FACS) of fuzzy graph Type-3. A vertex v in V is a 
fuzzy detour boundary vertex of a vertex u if 
���� (u, w) ≤  ���� (u, v) for every fuzzy detour 
neighbour w of v. A vertex v is a fuzzy detour 
boundary vertex of FACS if v is a fuzzy detour 
boundary of some vertex of FACS. 

In FACS of Clinical Waste Incineration Process, we 
observe that 
1. v6 is a fuzzy detour neighbour of v1 and v1 is a 

fuzzy detour boundary vertex of v2, v3, v4, v5.  

2. v1 is a fuzzy detour neighbour of v2 and v2 is a 
fuzzy detour boundary vertex of v3, v4, v5, v6. 

3. v1 is a fuzzy detour neighbour of v3 and v3 is a 
fuzzy detour boundary vertex of v2, v4, v5, v6. 

4. v5 is a fuzzy detour neighbour of v4 and v4 is a 
fuzzy detour boundary vertex of v1, v6 but v4 is 
not a fuzzy detour boundary vertex of v2, v3.  

5. v1 is a fuzzy detour neighbour of v5 and v5 is a 
fuzzy detour boundary vertex of v2, v3, v4, v6. 

6. v4 is a fuzzy detour neighbour of v6 and v6 is a 
fuzzy detour boundary vertex of v1, v2, v5 but v6 is 

not a fuzzy detour boundary vertex of v3.  
 

With respect to the fuzzy detour boundary 
vertex v of a vertex u is that the element u has a 
certain proportion of the interaction with the element v 
at most with value ���� (v) which u is further than 
neighbour w of v from u in the sense of fuzzy detour 
distance. This interpretation is presented in the 
following lemma. 
Lemma 18: Let GFT3(V,E) be a no-loop Fuzzy 
Autocatalytic Set (FACS) of fuzzy graph Type-3. 
Every vertex v in V different from u is a fuzzy detour 
boundary vertex of a vertex u (u ≠ v) if and only if 
���� (u, v) ≥ ���� (u, w)  for every fuzzy detour 
neighbour w of v. 
Proof: Suppose GFT3(V,E) be a graph of FACS of 
fuzzy graph Type-3, hence the graph is strongly 
connected (Horn and Johnson, 1985). Then, it is easily 
seen from Definition 17 that each vertex v in V is 
different from u (v is a fuzzy detour boundary vertex 

of a vertex u)  for every fuzzy detour neighbour w 
of v, ���� (u, v) ≥ ���� (u, w) (u ≠ v). 
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Table 1. The fuzzy detour FT3-distance between the vertices in FACS of fuzzy graph Type-3 for Clinical Waste Incineration 
Process  

 
otp⋆ =other pollutants 

 
4. The fuzzy quasi-metric of FACS 

In this section, we introduce a fuzzy quasi-
metric of FACS of fuzzy graph Type-3. The 
information about a graph can provide a better insight 
to its structure by using Definition 21 that will be 
given in this section. This motivates to the 
investigation of the structure of FACS using the 
quasi-metric fuzziness on FACS. The definition will 
be obtained as a consequence of the following 
remarks. 
Remark 19:(Gregori and Romaguera, 2004) Every 
quasi-metric on a nonempty set X can induces a 
fuzzy quasi-metric on X (in the sense of Definition  
9). The converse is also true, i.e. every fuzzy quasi-
metric generates is a quasi-metrizable topology.  
Remark 20:(Gregori and Romaguera, 2004) Let (X, 
d) be a quasi-metric space. Define a continuous t-
norm as a∗b = a.b with the usual multiplication for 
every a, b ∈ [0, 1], and let Md be the function on X 

×X × (0,∞) defined by Md (x, y, t) = 
�

���(�,�)
.Then (X, 

Md, ·) is a fuzzy quasi-metric space and (Md, ·) is 
called the (standard) fuzzy quasi-metric induced by d. 

Now, we are in a position to give the notion 
of a fuzzy quasi-metric of FACS which depends on 
the fuzzy detour FT3-distance in FACS. 

Definition 21: (fuzzy quasi-metric space of FACS) 
Suppose GFT3(V,E) be a no-loop Fuzzy Autocatalytic 
Set of fuzzy graph Type-3 and let a continuous t-
norm is a∗b = a.b the usual multiplication. Let MFT3 
be a fuzzy function defined by MFT3 (��, ��, t) : V×V× 

(0,∞) → (0,1], 

 MFT3 (��, ��, t) = 
�

������(��,��) 
, 

where t is the number of edges in the ��- ��  fuzzy 

detour path p in FACS, ����(��, ��) is a fuzzy detour 

FT3-distance between two vertices ��  and ��  in 

FACS and MFT3 is satisfied the following conditions, 
for all ��, ��, ��V and t, s  0: 

1. MFT3 (��, ��, t)  0 

2. MFT3 (��, ��, t) = 1 if and only if �� = �� 

3. MFT3 (��, ��, t) ∗ MFT3 (��,��, s)   

 MFT3 (��,��, t+s) 
4. MFT3 (��, ��,.) : (0,∞)→(0, 1] is continuous. 

Then an ordered triple (V, MFT3, ·) is said to be a 
fuzzy quasi-metric space of FACS and (MFT3, ·) is 
called the fuzzy quasi-metric induced by ���� on 
FACS.  

 
Table 2. The fuzzy quasi-metric of FACS of fuzzy graph Type-3 for the Clinical Waste Incineration Process 

 
otp⋆ =other pollutants 

 
It is denoted MFT3 (��, ��, t) as MFT3 (��, ��) 

and we will say that MFT3 is a fuzzy quasi-metric, or 



 Life Science Journal 2014;11(9)       http://www.lifesciencesite.com 

 

744 

simply that (V, MFT3) is a fuzzy quasi-metric space of 
FACS. Note that MFT3 is satisfied the four conditions 
in Definition 21 by Remarks 19 and 20. 

Next, we investigate some of the properties 
of the fuzzy quasi-metric space of FACS such as a 
convergent sequence which is used to define an 
irreducible graph. 
Definition 22: (convergent sequence in a fuzzy 
quasi-metric space (V, MFT3) of FACS) 
A sequence {��} in a fuzzy quasi-metric space (V, 
MFT3) of FACS is converges to �� (�. �. �� → ��) if 
there exists fuzzy detour path ρ: ��,����,...,�� of the 
maximum length ���� ( �� , �� ) such that 
lim�→� ���� (��, ��, �) = 1 for all t > 0.  
Lemma 23: Let GFT3(V,E) be a graph of FACS of 
fuzzy graph Type-3 and let {��} be a sequence in a 
fuzzy quasi-metric space (V, MFT3) of FACS which 
converges to ��. Then  
lim�→� ���� (��, ��, �) = 1 for all t > 0 if and only 
if lim 

�→�
{���� (��, ��): ��∈ V(GFT3) – { ��}} = 0. 

Proof: Suppose {��} is a sequence in a fuzzy quasi-
metric space (V, MFT3) of FACS converges to �� . 
Hence by definition 22, there exists fuzzy detour path  
ρ: ��,����,...,�� of the maximum length ����(��, ��) 
and lim�→� ���� (��, ��, �) = 1 for all t > 0 . This 
imply that 
lim�→� ���� (��, ��, �) = 1 for all t > 0 ……(1) 

⇔ lim
�→�

 
�

������(��,��) 
 = 1 (By definition 21)  

 
�

�� ���
�→�

 ����(��,��) 
 = 1  

 

⇔  
�

�� � 
 = 1 for all t > 0. 

Therefore, lim 
�→�

{���� (��, ��): ��∈ V(GFT3) – { ��}} 

= 0 and this concludes the proof.  
 

In other words, by Definition 17, it is shown 
that lim�→� ���� (��, ��, �) = 1 ⟺  �� is the last 
value satisfied equation (1) which is a fuzzy detour 
neighbor of ��  and ��  is a fuzzy detour boundary 
vertex of ��, � ≠ �, � ∈ Λ. 
Theorem 24: Let the ordered pair (V, MFT3) be a 
fuzzy quasi-metric space of FACS. Any graph of 
FACS of fuzzy graph Type-3 is strongly connected 
(irreducible graph) if and only if ∀ �� ∈ �, ∃ a 
sequence { �� } in a fuzzy quasi-metric space (V, 
MFT3) of FACS converges to �� (�. �. �� → ��). 
Proof: Let GFT3(V,E) be a graph of FACS of fuzzy 
graph Type-3 and is strongly connected. Therefore, it 
is clear that for every vertex �� , there exists fuzzy 
detour path between ��  and each other vertex (say 
�� , � ∈ Λ) ρ: �� ,���� ,...,��  with maximum length 
���� ( �� , �� ). Now, it is left to show that 
lim�→� ���� (��, ��, �) = 1 . However, this is 
satisfied by Lemma 23. Hence, by Definition 22, ∃ a 

sequence { �� } in a fuzzy quasi-metric space (V, 
MFT3) of FACS converges to ��, ∀ �� ∈ �.  
Conversely, suppose for every �� ∈ �, ∃ a sequence 
{ �� } in a fuzzy quasi-metric space of FACS 
converges to �� ( �. �. ��  → �� ) such that 
lim�→� ���� (��, ��, �) = 1 for all t > 0 . Hence, 
there exists fuzzy detour path between any vertex �� 
and another vertex �� in GFT3(V,E) of the graph of 
FACS. Therefore, the graph of FACS of fuzzy graph 
Type-3 is clearly strongly connected.     
4.1 The fuzzy quasi-metric of FACS for the 
Clinical Waste Incineration Process 

Let MFT3 be a fuzzy function on V×V× (0,∞) 

defined by MFT3 (��, ��, t) = 
�

������(��,��) 
 where t is the 

number of edges in the ��- �� fuzzy detour path p in 
FACS for the clinical incineration process and 
 MFT3 (��, ��) is shown in the table 2. 

It is clearly seen that the above values of MFT3 (��, ��, 

t) is fulfilled (see definition 21). This means that 0 <
 MFT3 ( �� , �� , t)  ≤ 1, ∀ �� ,  �� ∈ � where � = {�� , 
��, ��, ��, ��, ��} and MFT3 (��, ��, t) = 1. It is easily 
verified that MFT3 (��, �� ,.) is a continuous function 

and MFT3 satisfy the triangle inequality i.e.  
MFT3 (��, ��, t). MFT3 (��, ��, s) ≤ MFT3 (��, ��, t+s) for 

all ��, ��, �� ∈ �, namely,  

MFT3 (��, ��, 1). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,1) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,1) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 1). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 2). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 1). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,2) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 2). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 



 Life Science Journal 2014;11(9)       http://www.lifesciencesite.com 

 

745 

 
MFT3 (��, ��, 4). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 3). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,5) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 5). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 5). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 5). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 

 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 5). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 5). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 3). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,5) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 5). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,5) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,5) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 5). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 5). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 5). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 
 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 1). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,2) 
 
MFT3 (��, ��, 2). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 3). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 1). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 

 
MFT3 (��, ��, 2). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 3). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 1). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 
 
MFT3 (��, ��, 2). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,1) 
 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 1). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 2). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,3) 
 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 2). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 4). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 2). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,4) 
 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��,3) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 1). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,2) 
 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 4). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,1) 
MFT3 (��, ��, 3). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,1) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 2). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
 
MFT3 (��, ��, 1). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 2). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 4). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,2) 
MFT3 (��, ��, 3). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,2) 
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MFT3 (��, ��, 1). MFT3 (��, ��, 3) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 2). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,4) 
MFT3 (��, ��, 3). MFT3 (��, ��, 1) ≤ MFT3 (��, ��,4)  
 
MFT3 (��, ��, 1). MFT3 (��, ��, 2) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 2). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 2). MFT3 (��, ��, 5) ≤ MFT3 (��, ��,3) 
MFT3 (��, ��, 4). MFT3 (��, ��, 4) ≤ MFT3 (��, ��,3) 
 
 5. Conclusion 

This paper explored the realm of FACS of 
fuzzy graph Type-3 in its relation to the quasi-metric 
fuzziness. A new concept namely fuzzy quasi-metric 
space of FACS of fuzzy graph Type-3 is defined and 
implemented in the modeling of the incineration 
process of Ahmad et al. We presented the notion of 
convergent sequence in fuzzy quasi-metric space of 
FACS and used it to justify an irreducibility of its 
graph. 
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