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Abstract: In this paper we define the concept of dicardinal function, and then (co)weight, (co)densification, (co)net 
weight, (co)pseudo character which are able to be used in classifying of ditopological texture spaces. It is natural to 
ask how there are relationships between the set �  (�  or � ) and dicardinal functions that we defined in 
ditopological texture spaces. Based on the question, our aim in the paper is to investigate dicardinal functions above 
for ditopological texture spaces. We obtain useful some results on bounds of �, the set � of all �-sets and the set 
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1. Introduction 

Being closest to set theory, cardinal 
invariants play a major role in general topology of 
which set theory forms the basis. They are used as a 
most useful tools in classifying topological spaces. 
Some important classes of topological spaces 
distinguished by them are separable spaces, compact 
spaces, topological spaces which has a countable 
basis. Also, by using cardinal invariants, it is possible 
to compare quantitively topological properties, and 
generalize the present results of them. Many 
researchers have contributed to development in 
theory of cardinal functions since 1920. In the 
1920’s, Alexandroff and Urysohn (1929) show that 
every compact, perfectly normal space has cardinality 
≤ 2� . One of results that Čech and Pospíšil (1938) 
obtained states that every compact, first countable 
space has cardinality ≤ �  or ≥ 2� . In 1940’s, it is 
shown by Pondiczery (1944), Hewitt (1946) and 
Marczewski (1947) that a product of at most 2�  
separable space is separable. In 1965, one of Groot’s 
results which generalizes Alexandroff and Urysohn’s 
result above states that a Hausdorff space in which 
every subspace is Lindelöf has cardinality ≤ 2� . 
Arhangel'skii (1969) show that every Lindelöf, first 
countable, Hausdorff space has cardinality ≤ 2� . 

The notion of fuzzy structure introduced by 
L. M. Brown (1993) in [1-2] is redenominated in 
texture space developed one of this structure by L. M. 
Brown and R. Ertürk (2000) in [4-5]. The structure 
makes it possible to be investigated mathematical 
concepts without any complement in account of the 
fact that, in a texture space(�,�), � doesn’t need to 
be a closed set under set-theoretical complement by 
the definition above. Based on the structure of texture 

space, it is obvius intiutively that a convenient 
topology on a texture space doesn’t need to hold the 
existence of the duality of interior and closure and so 
not need to hold both axioms of open sets and ones of 
closed sets. In a series of three papers, L. M. Brown 
et al. present first two ones in 2004 and last one in 
2006. In the first of them subtitled ’Basic concepts’, 
the authors introduce a systematic form of the 
concepts of direlation, difunction, the category dfTex 
ditopological texture space in a categorical setting. In 
second paper, the category dfDitop of ditopological 
texture spaces and bicontinuous difunctions is 
defined. The subject of third paper is on separation 
axioms in general ditopological texture space. In a 
ditopological setting , L. M. Brown and M. M. Gohar 
study compactness in 2009, and strong compactness 
one year later [9-10]. 

In this study, after given concept of 
dicardinal function, (co)weight, (co) net weight, (co) 
densification, (co) pseudo character which are ones of 
most useful tools in classifying ditopological texture 
spaces are defined. It is natural to ask how there are 
relationships between the sets �  (�  or � ) and 
dicardinal functions which will be defined on 
ditopological texture spaces. Based on the question, 
our aim in the paper is to investigate (co) weight, (co) 
net weight, (co) pseudo character, co (densification) 
for ditopological texture spaces. In the section 2 titled 
’Texture Spaces’, we recall the basic definitions of 
texture space, ditopology on the texture space and 
then, some definitions and theorems regarding the 
subjects. The concepts of ordinals, cardinals, 
cardinality of a set and cardinal functions and some 
theorems which are related to cardinals are given in 
the section 3. Finally, in the last section, we give the 
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definition of dicardinal function in ditopological 
texture spaces. Then, we represent dicardinal 
functions and some important theorems for (a 
particular subclass of) the class of all ditopological 
texture spaces. For every ditopological texture space 

� = (�,�,�, �) , ��-�(�)≤ � (�)  and �(�)≤

��-�(�); if � is �� , then |�|≤ max {�(�),�(�)} 

and |�|≤ 2������(�),��-��(�)� . In particular, for 
every Kolmogorov ditopological coseparated texture 

space, |�|≤ max {�(�),�(�)}. If � is ��-�� , then 
|�|≤ �� (�)�(�). 
 
2. Texture Spaces 
        The following definitions and propositions 
were introduced in [1-11]. 
        A texturing on a non-empty set � is a set 
� containing �, ∅ of subsets of � with respect to 
inclusion satisfying the conditions: (�) (�, ⊆) is a 
complete lattice (��) �  is completely distributive, 
(���) �  separates the points of � , (��) Meets ⋀  
and finite joins ⋁  coincide with intersections ⋂  and 
unions ⋃ , respectively, for �. (�,�) is then called 
texture space.  

For each � ∈ �, the �-set �� is defined by  
�� = ⋂ {� ∈ � | � ∈ � }, 

and �-set  
�� = ⋁ {� ∈ � | � ∉ �}= ⋁ {�� | � ∈ �, � ∉ ��}. 

We recall that a texture (�,�) is said to be 
coseparated if, for all  

�, � ∈ �, �� ⊆ �� ⇒ �� ⊆ ��. 
We define � = {�� | � ∈ �} and � = {�� | � ∈ �}. 
 
Texture space: Let (�,�) a texture space, and �, � 
subsets of � . � = (�,�, �,�) is called a 
ditopological texture space, and the pair (�,�) a 
ditopology on (�,�) if (�, �) satisfies 
(�1) �,∅ ∈ �, 
(�2) ��,�� ∈ � ⇒ � � ∩ �� ∈ �, 
(�3) � ⊆ � ⇒ ⋁� ∈ �,  
(�1) �,∅ ∈ �, 
(�2) ��,�� ∈ � ⇒ � � ∪ �� ∈ �, 
(�3) ℱ ⊆ � ⇒ ⋂ℱ ∈ �.  
 
Base and Cobase: Let � = (�, �,�, �) a 
ditopological texture space, and ℬ a subset of � (�). 
ℬ is a base (cobase) for (�, �) if, for all � ∈ � (�), 
there exists a subset ℬ�  of ℬ  such that � =
⋁ℬ� (⋂ℬ �). 
 
Interior and Closure: Let � = (�, �,�, �) be a 
ditopological texture space. The interior and the 
closure of the set � ∈ � is defined, respectively: 

]�[= ⋁ {� | � ⊆ �}, 
[�] = ⋂ {� | � ⊆ �}. 

 
Dense and Codense: A set � ∈ �  is said to be 
dense (codense) in (�, �) if [�] = � (]�[= ∅ ). 
 
�� Axiom: Let � = (�, �,�, �) be a ditopological 
space, (� ∪ �)∨ denote the set of arbitrary joins of 
sets in (� ∪ �) and (� ∪ �)∩   the set of arbitrary 
intersections of sets in � ∪ �. � is said to be ��  if  
(∀�, � ∈ �)(∃� ∈ (� ∪ �)∨) (�� ⊈ �� ⇒ �� ⊈ �

⊈ ��), 
or equivalently, 
(∀�, � ∈ �)(∃� ∈ (� ∪ �)∩) (�� ⊈ �� ⇒ �� ⊈ �

⊈ ��). 
 
Proposition 2.1. The following are characteristic 
properties of ��  ditopological texture space:   
(∀�, � ∈ �)(∃� ∈ � ∪ �) (�� ⊈ �� ⇒ �� ⊈ � ⊈ ��), 
(∀�, � ∈ �)([��] ⊆ [��] and ]��[⊆]��[⇒ � � ⊆ � �). 

 

��  and ��-��  Axioms Let � = (�, �, �,�) be a 
ditopological space. � is said to be �� if  

(∀� ∈ �)(∀� ∈ �) (� ⊈ �� ⇒ [��] ⊈ �). 

� is said to be ��-�� if  
(∀� ∈ �)(∀� ∈ �) (�� ⊈ � ⇒ � ⊆ ]��[. 

 

��  and ��-��  Axioms Let � = (�,�, �,�) be a 

ditopological space. � is said to be �� ���-��� if it 

is ��  and �� ���-���. 
 
Proposition 2.2. The following are characteristic 
properties of ��  ditopological texture space:   

(∀� ∈ �)(∃ℱ ⊆ � ) (� = ⋁ℱ ), 
(∀�, � ∈ �)(∃� ∈ �) (�� ⊈ �� ⇒ �� ⊈ � ⊈ ��). 

 
Proposition 2.3. The following are characteristic 

properties of ��-��  ditopological texture space:  
(∀� ∈ �)(∃� ⊆ � ) (� = ⋂� ), 

(∀�, � ∈ �)(∃� ∈ �) (�� ⊈ �� ⇒ �� ⊈ � ⊈ ��). 
 
3. Cardinal Functions 

The following definitions and propositions 
were introduced in [12-24]. 

 
Cardinal and Ordinal: A set � is called transitive 
iff ∀�∀�(� ∈ � ∧ � ∈ � ⇒ � ∈ � ). An ordinal � is 
a transitive set such that all � ∈ �  are transitive. 
Then, we recall that a cardinal is an ordinal that there 
is no bijection from itself to a smaller ordinal. 
 
Proposition 3.1. If (�,≺) is a well-ordering, then 
there is unique ordinal � and a unique isomorphism 
� ∶ (�,≺)→ (�,∈). 
 
Proposition 3.2. Assuming axiom of choice, for 
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every set �, there exists a relation ≺ on � such 
that (�,≺) is a well-ordering. 
 
Cardinality of a Set: Let � be a set. From the facts 
above, there exists an ordinal that can be mapped 
one-to-one onto �. The smallest one of the ordinals 
is called the cardinality or cardinal number of �, 
written as |�|. 
 
Sum and Product of Cardinals: Let � and � be 
cardinal numbers. The cardinal number � + � ≔
|� × {0}∪ � × {1}| is called the cardinal sum of � 
and � , and �.� ≔|� × �| cardinal product of � 
and �. 
 
Proposition 3.3. If one of cardinal numbers � and � 
is nonzero and the other infinite, then � + � = �. � =
max{�,�}.  
Let � be a set. The set of all subsets of � which 
have cardinality �  is denoted by [�]� , that is, 
[�]� = {� ⊆ � | |�|= � } . The sets [�]��  and 
[�]��  are defined analogously, that is, [�]�� =
{� ⊆ � | |�|< �} and [�]�� = {� ⊆ � | |�|≤ � }. 
 
Proposition 3.4. Let � an infinite set of cardinality 

�, and � ≤ �  a cardinal. Then �[�]��� = � �. 
 We recall that a cardinal function is a function � 
from the class of all topological spaces into the class 
of all infinite cardinals such that, if � and � are 
homeomorphic, then �(�)= �(�). 
 
4. Main Results 

Since � separates the points of �, for every 
�, � ∈ �, � ≠ � ⇒ �� ≠ �� . From the definition �-set, 
for every �, � ∈ �, �� ≠ �� ⇒ � ≠ � . Thus |�|=
|�|. It need to be true that |�|= |�|. To prove the 
equality, we need to use the definition of coseparated 
texture space. 

 
Theorem 4.1. If a texture space (�, �) is 
coseparated, then |�|= |�|. 
 
Proof. Consider a pair of distinct points �, � ∈ �. 
Then �� ≠ �� , and so �� ⊈ ��  or �� ⊈ �� . Since 
(�, �) is coseparated, �� ⊈ ��  or �� ⊈ �� ; 
therefore �� ≠ ��. Thusly, we have an one-one map 
from �  to � . Now, take �, � ∈ � with �� ≠ �� . 
Then �� ⊈ ��  or �� ⊈ �� . From the definition of 
�-set, it is immadiate that �� ⊈ ��  or �� ⊈ ��, and so 
�� ≠ �� ; therefore � ≠ � . Thereby, we have an 
one-one map from � to �. 
 
Dicardinal Function: A function � from the class 
of all ditopological texture spaces (or a particular 
subclass) into the class of all infinite cardinal 

numbers is called a dicardinal function if, for every 
pair �� = (��,��, ��, ��)�∈{�,�}  of ditopological 
texture spaces,  
‘��,�� are dihomeomorphic’ ⇒ �(��)= �(��). 
 
Number of Open and Closed Sets: Let � =
(�, �,�,�) be a ditopological texture space. �(�) 
and �(�) are defined as the number of open sets in 
� plus � and the number of closed sets in � plus 
�, respectively. ��(�) is defined as the number of 
sets in � ∪ � plus �. 
 
Remark 4.1. Clearly, max{�(�), �(�)}≤ �� (�)≤
|�|≤ 2|�| . Also, neither of �(�)  and �(�) 
dominates the other according to [?, Section 2]. If � 
is a complemented ditopological texture space, then 
�(�)= � (�). 
 
Theorem 4.2. If a ditopological texture space 
� = (�,�, �,�) is ��  (Kolmogorov), then 
|�|≤ max {�(�), �(�)}. 
 
Proof. Define � ∶ � → � × �  by �(��)=
(]��[,[��]). Since �  is �� , �  is one-one (See 
Proposition 2.1.(2)). Thus |�|≤ |� × �|=
max{�(�), �(�)}. 
Conclusion 4.1. For every Kolmogorov ditopological 
coseparated texture space, |�|≤ max {�(�),�(�)}. 
 
Weight and Coweight: Let � = (�,�, �,�) be a 
ditopological texture space. The weight and coweight 
of � are defined as follows, 

�(�)= min {|ℬ| | ℬ a base for (�, �)}, 
��-�(�)= min {|ℬ| | ℬ a cobase for (�,�)}, 

respectively. 
 
Densifier and Codensifier: Let � = (�, �,�, �) be 
a ditopological texture space. A subset � of � is 
said to be densifier (codensifier) in � if ⋁� (⋂� ) 
is dense (codense) in (�, �). 
 
Densification and Codensification: The 
densification and codensification of � are defined 
as follows, 

�(�)= min {|�| | � densi�ier in (�, �)}, 
��-�(�)= min {|�| | � codensi�ier in (�,�)}, 

respectively. 
        Now, we show that, in a ditopological 
texture space �, how there are relationships between 
(co)weight and (co)densification. 
 
Theorem 4.3. For every ditopological texture space 
� = (�,�, �,�), we have 

��-�(�)≤ � (�), 
�(�)≤ ��-�(�). 
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Proof. 1. Let ℬ = �����∈�
 be a base for the 

ditopological texture space � not consisting of ∅ 

such that |ℬ|= � (�). Let us set ℳ = ������∈�
 

by choosing a certain �-set ��� such that �� ⊈ ��� 

for each � ∈ �. Since ℬ is a base for �, 
∀� ∈ �,� ≠ ∅ ⇒ � ⊈ ⋂ℳ;  

so ℬ is codensifier in �. Let us define � ∶ ℬ →ℳ 

by ��ℬ�� = ���
. Obviously, � is onto; therefore 

|ℳ|≤ |ℬ| . Since ��-�(�)≤ |ℳ| , ��-�(�)≤
�(�). 
2. Let ℬ = {��}�∈�  be a cobase for the ditopological 
texture space �  not consisting of �  such that 
|ℬ|= ��-�(�) . Let us set � = ������∈�

 by 

choosing a certain �-set ���  such that ��� ⊈ �� for 

each � ∈ �. Since ℬ is a cobase for �, 
∀� ∈ �,� ≠ � ⇒ ⋁� ⊈ �; 

so ℳ is densifier in �. Let us define � ∶ ℬ → � 
by �(��)= ���

. Obviously, �  is onto; therefore 

|�|≤ |ℬ|. Since �(�)≤ |�|, �(�)≤ ��-�(�). 
 
Net and Conet: Let � = (�, �,�, �) be a 
ditopological texture space. A subset �  of �  is 
called a net for (�,�) if there exists a subset �∗ of 
� such that � = ⋁� ∗ for all � ∈ �. A subset ℳ 
of � is called a conet for (�, �) if there exists a 
subset ℳ∗  of ℳ  such that � = ⋃ℳ ∗  for all 
� ∈ �. 
 
Net Weight and Conet Weight: The net weight and 
conet weight of � are defined as follows, 

��(�)= min {|�| | � a net for (�,�)}, 
��-��(�)= min {|�| | � a conet for (�, �)}, 

respectively. 
 
        Then, we show that net weight and conet 
weight have bounds on � in �. 
 
Theorem 4.4. If a ditopological texture space 
� = (�,�, �,�)  is �� , then 

|�|≤ 2������(�),��-��(�)�. 
 
Proof. Let � ⊆ �  be a net for (�,�)  with 
|�|≤ �� (�), let ℳ ⊆ �  be a conet for (�,�) 

with |ℳ|≤ ��-��(�) . Since �  is ��  (See 
Proposition 2.1.(1)) and �,ℳ a net and conet for 
(�, �), respectively, for all �, � ∈ �, there exist a  
member � of � and a member of � of ℳ satisfying 

�� ⊈ �� ⇒ (�� ⊈ � ⊈ �� ∨ �� ⊈ ℳ ⊈ ��). 
Set ℒ�� = {(�,�)∈ � ×ℳ | �,� ⊈ ��} for each 

�� ∈ � . Define � ∶ � → �(� ×ℳ) by �(��)=
ℒ�� . Then, clearly, �  is one-one. Thus |�|≤

2|�×ℳ|≤ 2������(�),��-��(�)�. 
 
Pseudo Base and Copseudo Base: Let � =
(�, �,�,�) be a ditopological texture space. A subset 
� of � is called a pseudo base of � for (�, �) if 
� = ⋂�  for some � ∈ � . A subset �  of �  is 
called a copseudo base of � for (�, �) if � = ⋂�  
for some � ∈ �. 
 
Pseudo Character and Copseudo Character: The 
pseudo character and copseudo character of � are 
defined as follows, 

Ψ(�)= sup{Ψ(�,�) | � ∈ �}, 
��-Ψ(�)= sup{��-Ψ(�,�) | � ∈ �}, 

respectively, where 
Ψ(�,�)
= min {|�| | � a pseudo base of �� for (�, �)}, 

��-Ψ(�,�)
= min {|�| | � a copseudo base of �� for (�,�)}. 

 
Theorem 4.5. If a ditopological texture space 

� = (�,�, �,�) is ��-��, then |�|≤ �� (�)�(�). 
 
Proof. Let � ⊆ �  be a net for (�,�) with 
|�|≤ �� (�), let ��� be a pseudo base for (�, �) 

with ����� ≤ Ψ(�). Set ���
= ��� | � ∈ ����  by 

choosing a certain element �� ∈ �  such that 
�� ⊆ �� ⊆ �  for each � ∈ ���. Then, it is clear that 

����
� ≤ Ψ(�). Moreover, since �  is ��-�� , by 

Preposition 2.3.(1), �� ⊆ ⋂���
⊆ ⋂� ��

= �� ; thus 

⋂���
= �� . Then, the function Ψ ∶ � → [�]��(�) 

defined by the equation Ψ(��)= ���
 is one-one. 

Thus |�|= |�|≤ �� (�)�(�). 
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