Persistence of the transformed *Paenibacillus polymyxa* expressing CRY1C in the plant leaves and its effect on chlorophyll and carotenoid

Nahed Abdel Ghaffar A. Ibrahim¹ Amal Ibrahim Hussien² Adel El-Sayed Hatem² Hani K. Aldebies² and Enrique Vargas-Osuna²

¹ Department of Microbial Molecular Biology, Agricultural Genetic Engineering Research Institute (ARC), Giza, Egypt.
² Department of Science and Agriculture and Forestry, Agroforestry Entomology Group, ETSIAM, University of Córdoba, Edificio Celestino Mutis, Campus Universitario de Rabanales, Crta Madrid-Cádiz, km 396-a, 14071, Córdoba, Spain.

nahedabelghaffar@hotmail.com

Abstract: The transformed *Paenibacillus polymyxa* bacterial strain expressing Cry1C (tNMO10) that has dual function: bio-fertilizer and biocontrol agent of the Lepidoptera insects was used in spraying the cotton plants. Plant leaves were checked for the presence of the transformed bacteria inside it by PCR detection of cry1C gene and total protein profiling. Two pairs of specific primers that give 2.2 kb and 3.7 kb amplified products from cry1C gene were used. Moreover, chlorophyll A, B & total chlorophyll A+B and carotenoid were determined. The data revealed, the presence of Cry1C toxin protein in the total cellular protein pattern of sprayed plant leaves with tNMO10 while was not found in those sprayed with parent strain (NMO10) and the reference strain *Bt* aizawai. The PCR could detect the 2.2 kb and 3.7 kb of the cry1C gene with plant leaves that sprayed with the tNMO10. Chlorophyll A, B and A+B showed increase in concentration in the second and fourth week after planting in the plant leaves treated with tNMO10 over the concentration of that leaves treated with the NMO10. The plant leaves that not treated with bacteria (control) showed the lowest concentration. The values of CA, CB and CA+B in the second week in plant leaves that treated with control, untransformed strain NMO10 and transformed strain tNMO10 respectively were as follow: CA: 18.63< 24.24< 28.59 mg/L, CB: 14.49< 21.73< 23.88 mg/L, CAB: 33.45< 41.65< 47.36 mg/L. In addition, the cartenoid content showed the same behavior of chlorophyll giving the following values in the second week with control, untransformed strain and transformed strain respectively, 4.18< 5.19< 5.69. Thus, the transformed bacteria tNMO10 caused improvement in the cotton plants through the increase of chlorophyll and carotenoid contents due to its presence survival and expressing its toxin Cry1C protein inside the cotton leaves.

Keywords: *Paenibacillus polymyxa*, NMO10 bacterial strain, tNMO10 transformed bacterial strain, Cry1C toxin protein, Chlorophyll, Carotenoid

1. Introduction

Recent survey recorded that Egyptian soil become poor in organic matter, the content of total soluble nitrogen in the soil ranged between 0.07-0.11 and 13-30 ppm which it is very low values (Sanaa, 2010). Losses of nitrogen fertilizers are not only impact to the environment but also are great economic losses.

Nitrogen supply has large effect on leaf growth because it increases the leaf area of plant and, on that way, it influences on photosynthesis. photosynthetic proteins represent a large percentage of total leaf content of nitrogen (Evans, 1983; Field and Mooney, 1986; Evans, 1989) and chlorophyll content is proportional to leaf nitrogen content (1), also carotenoid have essential role in photosynthesis. So that, Leaves exhibit a structural and functional adaptation of the photosynthetic apparatus to the light intensity experienced during their growth (Prioul *et al.*, 1980). Nitrogen is a structural element of chlorophyll and protein molecules, then affects formation of chloroplast and accumulation of chlorophyll in them (Daughtry, 2000; Amaliotis *et al.*, 2004).

Chlorophyll in the process of photosynthesis sign for physiological responses of plant to nitrogen fertilization (Marija *et al.*, 2011). Leaf chlorophyll content differ within high limits (from 0.05 to 30% of fresh weight matter), the ratio of chlorophyll A to B is 3:1. These ratio differ according to environmental factors affecting the plant and to the physiological process of plant. The highest chlorophyll limits in plant are found in the flowering phase. Chlorophyll playing a role in organogenesis process (Simova *et al.*, 2001). Nitrogen is part of the enzymes associated with chlorophyll synthesis (Chpman and Barreto, 1995) and the chlorophyll concentration represent, a relationship
of crop nitrogen content and yield level (Blackmer and Scheperts, 1995)

The plasmid PHTNC3 containing cry1C gene (Nahed et al., 2008). This plasmid was used to transform the Paenibacillus polymyxa bacterial strain NMO10 (Nahed and Omar, 2009). NMO10 bacterial strain was isolated from rhizosphere of cotton plants from Egyptian soil (Feibo and Omar, 1998), it had high efficiency in fixing nitrogen and high ability to colonize the phyllosphere. The transformed bacterial strain tNMO10, was resulted from the transformation process and showed high activity against Lepidopteron insect, Spodoptera littoralis, as well, its ability to fix nitrogen increased. In a study on the tNMO10 compared with the non transformed original strain NMO10 and with Bacillus thuringiensis (Bt) var aizawai by (Amal et al., 2011), they reported that the transformed bacteria tNMO10 was more toxic (LC50 = 7.04×10⁹ spores + crystals/ ml) than Bt aizawai (LC50 = 8.47×10⁷ spores + crystals/ ml). Moreover, the tNMO10 showed high levels of persistence into foliar tissues and insecticide activity were found at least until 30 days after foliar treatment. On the other hand, its application in the plant increased the amount of nitrogen up to (52.93 mg/plant) as compared with the non transformed strain NMO10 (28.79 mg/plant) and improved soil nitrogenase activity (370.39 Mol C₂H₂/gm/hr) as compared with NMO10 (300.34 Mol C₂H₂/gm/hr) when using ARA (acetylene reduction assay). Thus, the aim of the present study, is to complete studies on the transformed bacterial strain tNMO10 through determining the impact of treatment of cotton plant leaves with different doses of the transformed Paenibacillus polymyxa bacterial strain tNMO10 on yield parameters including presence of toxin in plant leaves and its effect on chlorophyll and carotenoid.

2. Material and Methods

Bacterial strains:

Paenibacillus polymyxa NMO10 (nitrogen fixing bacteria) and its transformed form tNMO10 (NMO10 expressing cry1C gene) were obtained from Dr Nahed A. A. Ibrahim, microbial molecular biology (MBB) lab, MMB dept., AGERI, ARC, Giza, Egypt. Bacillus thuringiensis strain aizawai was used as a reference strain which naturally expresses the cry1C gene.

1. Detection of bacteria in the cotton leaf tissues:

1.1 cry1C detection by PCR

Two pairs of specific primers were used for detection of cry1C gene. 1AF&1AR (Regev et al., 1996) that give 2.2 kb PCR product from cry1C gene. 1AF (ACG GAG GAT CCA TAT GGA GGA TCA AAA TAA AAA TC) and 1AR (CTC TTT TAT GGG GAT CCT AAC ATT AAG CTT TTA TC). The other pair was 1AF &1CR (Nahed et al., 2008), 1CR (TTA TTC CAT GAG TAA AAG CTC TTC C) that give 3.7 kb the full length of cry1C. PCR were done according to the protocol of (Ceron et al., 1995) where 10 ul of the juice of the grinded leaves were added to 90 ul of sterilized water to prepare the DNA template. The reaction conditions were according (Regev et al., 1996).

1.2 Cry1C toxin protein detection by total cellular protein profiling from leaf tissues:

Detection of bacteria in the cotton leaf tissues was done by PCR using two bacterial strains and from leaves of cotton plants. P. polymyxa NMO10, transformed P. polymyxa tNMO10 and Bt var aizawai were grown from the original inoculums in 5ml LB liquid medium (Trypton 10 g/L, yeast 5 g/L, sodium chloride 5 g/L) to get culture in vegetative cells and other time they were grown in 5 ml T3 medium (tryptone 3 g/L, tryptose 2 g/L, yeast extract 1.5 g/L, sodium phosphate buffer 50 mM, MnCl₂ 0.005 g/L, in 1 L dH₂O) to get culture in spore cells. cotton plants (maintained in a special green house for genetically modified microorganisms) were treated by spraying the leaves with spore suspension of NMO10, spores-crystals culture of tNMO10 and spores-crystals culture of Bt aizawai equivalent to LC90 concentration. The leaves were taken 14 days after treatment for check for Cry1C. Prior of working on the leaves, they were superficially disinfected with 10 % sodium hypochlorite for 10 minute, then, washed three times with sterile distilled water. They were finally crushed in liquid nitrogen using a sterilized mortar and stored at -20°C for use.

2. Chlorophyll and carotenoid contents:

The method described by (Hiscox and Israelsten, 1979) was followed. 100 mg of the sample (small pieces of leaves) were introduced into test tube containing 7 ml dimethyl sulfoxide (DMSO) and incubated for overnight to extract chlorophyll and carotenoid, then the extract was filtered and transferred to a cylinder and made up to 10 ml volume with DMSO. For determining chlorophyll, the absorbance was measured by spectrophotometer at 640 nm and 662 nm and for carotenoid the absorbance was measured at 470 nm. The chlorophyll A content (CA), chlorophyll B (CB) and the total chlorophyll (CAB) were calculated according the (Arnon, 1949) equation and the carotenoid were calculated according (villanueva et al., 1985) equation.

Arnon equation:

\[
C A = 12.7 \times (OD_{645}) - 2.69 \times (OD_{662}) \text{ mg / L}
\]
\[
C B = 22.9 \times (OD_{645}) - 2.69 \times (OD_{662}) \text{ mg / L}
\]
\[
C A B = 20.2 \times (OD_{645}) + 8.02 \times (OD_{662}) \text{ mg / L}
\]

Villanueva equation:

\[
\text{Carotenoid} = [A_{470} - 1.28 (CA) + 56.7 (CB)] / (256 \times 0.906)
\]

3. Statistical analysis

Data relating to the values in the tests development, are subjected to analysis of variance. In
case there are significant differences, means were compared to test minimum difference significant (MDS) at the 5% significance level. All analysis were performed using the statistix 8.0 program.

3. Results

Cry 1C analysis

The treated cotton leaves with the transformed *P. p.* bacterial strain tNMO10, parent strain NMO10 and the reference bacterial stain *Bt* aizawai were used for detection of *cry*1C gene. The treated cotton plant leaves were collected at 2, 14 and 28 days after treatment. The detection of *cry*1C in the treated leaves by specific PCR reaction using 1AF&1AR and 1AF&1CR primers showed the PCR products (2.2 kb) & (3.7 kb) respectively corresponding to the *cry*1C (fig 1). Fig 1. A showed the 2.2kb from cotton leaves treated with tNMO10 at 2 and 28 days. Fig 1.B showed the 3.7 kb from the same cotton leaves. Fig 1.C showed the 2.2 kb of *cry*1C from treated leaves with *Bt* reference strain at 2, 14, and 28 days. On the other hand, no any PCR products detected with cotton plant leaves that treated with non transformed parent strain NMO10.

![Image](figure1.png)

Figure 1. The detection of *cry*1C in the treated leaves by specific PCR reaction using 1AF&1AR and 1AF&1CR primers showed the PCR products (2.2 kb) & (3.7 kb) respectively corresponding to the *cry*1C

The Key of samples was:

- a- Bacterial Samples at 28 days: *Bt* =1, *Pp* =2, *tPp* =3
- b- Bacterial samples at 14 days: *Bt* =4, *Pp* =5, *tPp* =6

A: Gel electrophoresis for PCR products resulted from amplification of 2.2 Kb from *cry* 1C gene using the specific primer pair 1AF & 1AR. M: DNA marker, C: +ve control (of *cry*1C gene in its constructed plasmid), 9: *tPp* after 48 h., 3: *tPp* after 28 days.

B: Gel electrophoresis for PCR products resulted from amplification of 3.7 Kb from *cry* 1C gene using the specific primer pair 1AF & 1CR. M: DNA marker, C: +ve control, 9: *tPp* after 48 h., 3: *tPp* after 28 days.

C: Gel electrophoresis for PCR products resulted from amplification of 2.2 Kb from *cry* 1C gene using the specific primer pair 1AF & 1AR.
Protein analysis

The protein profiles of the transformed bacteria *P. polymyxa* tNMO10 respects the untransformed parent strain NMO10 and *Bt* var aizawai. The band corresponding to the Cry1C toxin at the molecular mass 135 KDa is detected only in the spore cells in the *Bt* aizawai as transformed *P. polymyxa* tNMO10 (Fig. 2). Protein profiles obtained from cotton leaf samples that were treated 14 days earlier with tNMO10, NMO10, and *Bt* aizawai. One can observe the presence of the band corresponding to Cry1C only in the treated leaves with tNMO10 (Fig.3).

Levels of chlorophyll and carotenoid

In figure 4, the indicated values of chlorophyll A for four weeks, in cotton plants treated with non-transformed *P. polymyxa* and *P. polymyxa* transformed. Significant differences between treatments (*p* < 0.0001) were found between weeks (*p* < 0.0001). The amount of chlorophyll was higher than the control to the second week after treatment with *P. polymyxa* transformed and Untransformed *P. polymyxa* until the third week. Finally, in the fourth week values were reduced to below baseline.

Fig 2: SDS-PAGE for protein profiling of bacterial cells of transformed *Pp* compared to that from parent cells *Pp* and bacteria *Bacillus thuringiensis Bt* aizawai

- M: protein marker and its bands has been written on left side of the photo
- 1: protein from *Bt* bacterial cells
- 2: protein from spore form of *tPp*
- 3: protein from vegetative form of *tPp*
- 4: protein from spore form of parent strain *Pp*
- 5: protein from vegetative form of *Pp*
Fig 3: SDS-PAGE of protein pattern from plant leaves and bacterial cells
M: protein marker
1: Total cellular protein from bacterial cells of tPp
2: Total cellular protein from plant leaves sprayed with tPp
3: Total cellular protein from plant leaves that not treated with bacteria (control)
4: Total cellular protein from parent bacterial strain Pp
5: Total cellular protein from plant leaves sprayed with Pp

Figure 4: Chlorophyll A levels over the four weeks in cotton plants treated with untransformed *Paenibacillus polymyxa* (Pp) and transform *Paenibacillus polymyxa* (tPp)
Analysis of Variance Table for CLA (chlorophyll A)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat</td>
<td>2</td>
<td>340.98</td>
<td>170.492</td>
<td>37.32</td>
<td>0.0000</td>
</tr>
<tr>
<td>week</td>
<td>3</td>
<td>976.66</td>
<td>325.555</td>
<td>71.27</td>
<td>0.0000</td>
</tr>
<tr>
<td>Treat*week</td>
<td>6</td>
<td>171.96</td>
<td>28.660</td>
<td>6.27</td>
<td>0.0005</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>109.63</td>
<td>4.568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1599.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Mean 18.611; CV 11.48

Figure 5: Chlorophyll B levels over the four weeks in cotton plant treated with untransformed *Paenibacillus polymyxa* (NMO10) and transformed *Paenibacillus polymyxa* (tNMO10).

Analysis of Variance Table for CLB (chlorophyll B)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat</td>
<td>2</td>
<td>266.33</td>
<td>133.163</td>
<td>26.03</td>
<td>0.0000</td>
</tr>
<tr>
<td>week</td>
<td>3</td>
<td>699.21</td>
<td>233.071</td>
<td>45.56</td>
<td>0.0000</td>
</tr>
<tr>
<td>Treat*week</td>
<td>6</td>
<td>71.64</td>
<td>11.939</td>
<td>2.33</td>
<td>0.0644</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>122.76</td>
<td>5.115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1159.94</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Mean 18.926; CV 11.95

LSD All-Pairwise Comparisons Test of CLB (Chlorophyll B) for Treatments

<table>
<thead>
<tr>
<th>Treat</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21.077</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>20.613</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>15.089</td>
<td>B</td>
</tr>
</tbody>
</table>

Alpha 0.05; Standard Error for Comparison 0.9233 Critical T Value 2.064; Critical Value for Comparison 1.9057 Error term used: Error, 24 DF

LSD All-Pairwise Comparisons Test of CLB (Chlorophyll B) for Weeks

<table>
<thead>
<tr>
<th>Week</th>
<th>Mean</th>
<th>Homogeneous Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>23.838</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>20.053</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>20.034</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>11.780</td>
<td>C</td>
</tr>
</tbody>
</table>

Alpha 0.05; Standard Error for Comparison 1.0662 Critical T Value 2.064; Critical Value for Comparison 2.005 Error term used: Error, 24 DF
Figure 6: Chlorophyll levels A + B during the four weeks in cotton plants treated with untransformed *Paenibacillus polymyxa* (Pp) and transformed *Paenibacillus polymyxa* (tPp).

Analysis of Variance Table for CLAB (Chlorophyll A+B)

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat</td>
<td>2</td>
<td>12.5551</td>
<td>6.2775</td>
<td>26.42</td>
<td>0.0000</td>
</tr>
<tr>
<td>Week</td>
<td>3</td>
<td>43.7819</td>
<td>14.5940</td>
<td>61.43</td>
<td>0.0000</td>
</tr>
<tr>
<td>Treat*week</td>
<td>6</td>
<td>2.9213</td>
<td>0.4869</td>
<td>2.05</td>
<td>0.0979</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>5.7015</td>
<td>0.2376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>64.9598</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Mean 4.5606; CV 10.69

Figure 7: Carotenoid levels during the four weeks in cotton plants treated with untransformed *Paenibacillus polymyxa* (Pp) and transformed *Paenibacillus polymyxa* (tPp).

Analysis of Variance Table for CAROTENIDS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat</td>
<td>2</td>
<td>12.5551</td>
<td>6.2775</td>
<td>26.42</td>
<td>0.0000</td>
</tr>
<tr>
<td>Week</td>
<td>3</td>
<td>43.7819</td>
<td>14.5940</td>
<td>61.43</td>
<td>0.0000</td>
</tr>
<tr>
<td>Treat*week</td>
<td>6</td>
<td>2.9213</td>
<td>0.4869</td>
<td>2.05</td>
<td>0.0979</td>
</tr>
<tr>
<td>Error</td>
<td>24</td>
<td>5.7015</td>
<td>0.2376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>64.9598</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grand Mean 4.5606; CV 10.69
4. Discussion

PCR detection of cry1C gene in the treated cotton plant leaves with P. polymyxa untransformed NMO10, P. polymyxa transformed tNMO10 and Bt aizawai, showed the presence of cry1C in both the tNMO10 and Bt aizawai up to 28 day of planting. On the other hand, protein profiling of the cotton leaves that treated with those bacterial strains, showed the Cry1C toxin protein only in the treated plant leaves with transformed Paenibacillus polymyxa tNMO10, but not in the plant leaves that treated with Bt aizawai. These results describe the higher activity of the treated plant leaves with transformed P. polymyxa against Lepidopteron insects than that treated with Bt aizawai (Amal et al., 2011).

Moreover, Inoculation of P. polymyxa (both the original and the transformed) produced an increase chlorophyll levels that were maintained above untreated plants for the first two weeks. For chlorophyll B, AB and carotenoid was an increasing trend during the four weeks of the trial, but in the third week there was a decrease only in the treatment with P. polymyxa transformed. These results agree with the increase in chlorophyll levels chickpea plants inoculated with P. polymyxa (Akhtar and Siddiqui, 2007). In a review by (Natheer et al., 2013; Munee and Kibret, 2014) reported the role of plant growth promoting rhizobacteria (PGPR) including Paenibacillus polymyxa in improving fertilization, nitrogen fixation, increasing chlorophyll A and B content and improving the yield of the crops.

Biljana and Stojanovic, (2005) who did their study on chlorophyll and carotenoid content in wheat cultivars. They found that the carotenoid content in the leaf showed the greatest values but these values were lower than values of chlorophyll. The data of our study showed the same results which the chlorophyll increased with the same rate as carotenoid but not with the same levels. In the second week after planting the content of chlorophyll of cotton plants that treated with control, non transformed bacterial strain NMO10 and transformed bacterial strain tNMO10 were CA: 18.63< 24.24< 28.59 mg/L, CB: 14.49< 21.73< 23.88 mg/L, CAB: 33.45< 41.65< 47.36 mg/L respectively and the content of carotenoid were 4.18< 5.19< 5.69 respectively. In a study by (Sanaa, 2010), the treatment of cotton plant leaves with kinetin and GA3 (Gebrilic acid) significantly increased leaves content of chlorophyll A, B, A+B and carotenoid due to the treatment of plants with organic matter, i.e. increase in nitrogen content. Biljana and Aca, (2009), proved in their study on different wheat cultivars a very close link between chlorophyll and nitrogen content in the leaf. A study by (Marija et al., 2011) on lomp plants, proved, leaves with higher nitrogen concentration.
increased the chlorophyll and carotenoid contents and its transformed tNMO10 increased the bacterial strain present work, the treatment of the cotton plants with nitrogen associated directly with increased chlorophyll previous report (Pramanik and Bera, 2013), they reported that the total chlorophyll content of different growth stages of rice plant was significantly increased for the transplanting of 10-days seedling. These data agree with ours in which the chlorophyll content increased from the first week, then, highly increased in the second week. Continuously, in the same study, 30- day old seedlings gave the lowest value for total chlorophyll content. These results also, agree with our results in which the chlorophyll contents declined down in the third week and re increased in the fourth week but not in the same levels of the second week. Kumar et al. (1995), (Abdel Wahab, 1998; Verma et al., 2004) recorded that N content in the third leaf and chlorophyll A content, increased with increasing nitrogen. In a study by (Lin and Ehleringer, 1982) on cultivars of papa, they reported that after 15 days of development, the photosynthetic rate began a constant decline, and they also mentioned a lot of references that recorded the same observation. the study by (Lin and Ehleringer, 1982), also recorded the observation, that, the higher the initial maximum photosynthetic rate the greater was the rate of decrease and associated with decrease of photosynthetic rate consequently, decreases in the chlorophyll content. Mauromicale et al. (2006), that their study was on potato crop to assess chlorophyll fluorescence parameters in response to nitrogen dose. A positive linear relationship between nitrogen supply and chlorophyll content was obtained. These all previous results are interpreted that the increase of nitrogen associated directly with increased chlorophyll resulting in increased photosynthesis process. Thus, from the literatures and the obtained data of the present work, the treatment of the cotton plants with the bacterial strain Paenibacillus polymyxa NMO10 and its transformed one tNMO10 increased the nitrogen content (Amal et al., 2011), consequently, increased the chlorophyll and carotenoid contents (this work). Moreover, the transformed P.p. tNMO10 strain showed more increase of the nitrogen, chlorophyll and carotenoid as a result of bearing the Cry1C protein as proved by PCR and protein profiling. So, the tNMO10 improved the yield of cotton plant as well as its ability to make the cotton plants protected against Lepidopteron insects due to the presence of Cry1C toxin inside the plant leaves (this work).

References

